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The problem



Where does it come from?

Quantum theory does not trouble me at all. 1t is just the
way the world works. What eats me, gets me, drives me,
pushes me, is to understand how it got that way. What is
the deeper foundation underneath it? Where does it
come from?

J. A. Wheeler




Introduction. Arguably, the “right view” in science is the
one from which one learns things that remain hidden in other
ways to look at nature.

There are many ways to look at quantum theory (QT). Each
of them is organized around a particular fundamental concept,
e.g., “‘quantum system”, e.g., “‘measurement scenario”. The
problem is that none of these concepts is given a priori, but
all of them are defined through operations the experimenter
performs.



Quantum systems and scenarios

e The world is not “made of”” quantum systems.

e Quantum systems are ‘“‘created” by they way the exper-
imenter interrogates the world.



Quantum systems

One qubit




Quantum systems

One qubit

One qutrit

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys.
Rev. Lett. 73, 58 (1994).



Quantum systems and scenarios

e The world is not “made of” scenarios.

e Scenarios are “created” by they way and extent to which
the experimenter interrogates the world.



Quantum systems

One qubit Two incompatible measurements

o ¢]

One qutrit




One qubit Two incompatible measurements
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One qutrit Two compatible measurements

O0——0




One qubit

One qutrit

Two incompatible measurements

o ¢]

Two compatible measurements

O0——0

S-cycle



The experimenter can always enlarge at will both the quan-
tum system and the scenario. Consequently, any general prob-
abilistic theory (GPT) that provides probabilities to the mea-
surement outcomes should consistently connect the probabil-
ities of all these extensions. Then, a reasonable question is
whether there is an alternative way to address the problem of
what probability assignments a theory allows, without sepa-
rating the study into quantum systems or measurement sce-
narios, but adopting a perspective that naturally contains them
all.

Here, we will introduce an approach, the graph-theoretic
approach to GPTs, that does precisely that. This nonstandard
way to look at QT will turn out to be particularly illuminating
about what is the property of nature that enforces OT.



Measurements

Definition. A measurement M is an interaction that pro-
duces an outcome and transforms the state of the system
(which encodes the probabilities of the outcomes of future
measurements) into a new state. M can be characterized by

a set {M, },.cx of transformations, one for each outcome
z e X.



Measurements, events

Definition. A measurement M is an interaction that pro-
duces an outcome and transforms the state of the system
(which encodes the probabilities of the outcomes of future
measurements) into a new state. M can be characterized by

a set {M, },.cx of transformations, one for each outcome
x € X.

Definition. If the input state is p, then M, p is the state after
measuring M and obtaining outcome x. An event (M,.pl|p)
is the transformation M, of the input state p when M gives
outcome x. P(M,.p|p) denotes the probability of (M_.p|p).



Born’s rule

Born’s rule.
(I) States are represented by unit vectors |p) and |M,.p).

(ID) P(Mgplp) = [(Maplp)|*.

M. Born, Z. Physik 37, 863 (1926).



Problem

Born’s rule.

(I) States are represented by unit vectors |p) and |M,.p).
(D) P(Maplp) = [(Map|p)].

Problem.
What property of the world enforces (I) and (II)?




Born’s rule is almost QT

(a) Connects the mathematical formalism (the Hilbert
space) with the experiments.

(b) Provides the empirical content of the concepts of

2% e

“state”, “system”, and “measurement”’.

(c) Tells us how a state transforms after a measurement.
G. Liiders, Ann. Phys. (Leipzig) 8, 322 (1951).

(d) Teaches us how to compute the probabilities for each
measurement outcome.

(e) Is responsible for nearly all predictions of QT.



|deal measurements

Definition. A measurement is ideal if:

(1) It gives the same outcome when performed consecutive
times,

(11) only disturbs measurements that are incompatible,

(ii1) each of its coarse-grainings has a realization that satis-
fies (1) and (i1).

Axiom. Two ideal measurements, each on a different sys-
tem, constitute an ideal measurement for the joint system.

G. Chiribella and X. Yuan, arXiv:1404.3348.



Disturbs, incompatible, coarse=

Definition. A measurement { M, },c x disturbs a measure-
ment {N,},cy if, from the outcome statistics of {N;} ey,
we can detect whether {M,},.cx was performed before

{Ny}yey

Definition. Two measurements, { M }.cx and { N, },ev,
are incompatible or not jointly measurable if there is no mea-
surement {E;c,y}mex,yesf such that, for all p and all z € X,

P(Myplp) = _,cy P(Lsyplp) and, forall pandally € Y,
P(Nyplp) = >_zex P(Lazyplp).

Definition. A measurement {N,, },cy is a coarse-graining
of a measurement { M, },c x if, for all x, there is y such that,

for all p, P(M_plp) < P(Nypl|p).



QT is only about ideal measure

Newmark’s theorem. Generalized measurements are rep-
resented in QT by POVMs, but the Hilbert space in which
each of these POVMs is defined can be extended to a larger
Hilbert space such that the POVM corresponds to a PVM, i.e.,
to an ideal measurement.

M. A. Neumark, Izv. Akad. Nauk S.S.S.R. [Bull. Acad. Sci.
U.S.S.R.] Sér. Mat. 4, 53 (1940); Izv. Akad. Nauk S.S.S.R.
[Bull. Acad. Sci. U.S.S.R.] Sér. Mat. 4 277 (1940); C.R. (Dokl.)
Acad. Sci. U.R.S.S. (N.S.) 41 359 (1943).



Physics and idealization

Observation. We do not assume that ideal measurements
can be implemented with infinite precision or in a perfectly
noiseless way. We only assume that ideal measurements exist
as idealizations and that physical theories must (at least) give
the probabilities of the outcomes of ideal measurements.




Assumption. Physical theories are possible. There
are similar experiments for which the theory assigns the
same probabilities and independent experiments, one with
events {(M,p|p)} and the other with events {(N,p'|p")},
such that the joint events {(M.,p,N,p'|p,p’)} satisfy
P(Maup, Nyp'lp, p') = P(Maplp) P(Nyp'|p').



The graph-theoretic approach to GPTs

A. Cabello, S. Severini, and A. Winter, Phys. Rev. Lett. 112,
040401 (2014).



Equivalence

Definition. Two events (Mp|p) and (N, p|p) are equiv-
alent, denoted (M, p|p) ~ (Nypl|p), if they correspond to
indistinguishable transformations of the same state p. Two
transformations M, and N, are equivalent, denoted M, ~
Ny, if (Maplp) ~ (N plp) for all p.



Equivalence, exclusivity

Definition. Two events (Mp|p) and (N, p|p) are equiv-
alent, denoted (M, p|p) ~ (Nypl|p), if they correspond to
indistinguishable transformations of the same state p. Two
transformations M, and N, are equivalent, denoted M, ~
Ny, if (Maplp) ~ (Nyp|p) for all p.

Definition. Two events (M, p|p) and (Nyp|p) are ex-
clusive, denoted (Mplp) L (Nypl|p), if there is an ideal
measurement {£, }.cz with two different outcomes z and 2’
such that (M plp) ~ (L.plp) and (Nyplp) ~ (L. plp).
If (Mzplp) ~ (Nyplp) and (Mzplp) L (L.plp), then
(Nyplp) L (L.plp). Two transformations M, and N, are
exclusive, denoted M, L N, if (M, p|p) L (Nyp|p) for all

p.



Graph of exclusivity

Definition. For a given theory, the graph of exclusivity G
represents the set of all sets of equivalence classes of trans-
formations produced by ideal measurements that have GG as
graph of exclusivity.



Graph of exclusivity for a set of tran

red & triangular

hard & green rectangular & big

dry & soft small & wet



Graph of exclusivity for a set of'tr

red & triangular

hard & green rectangular & big

dry & soft small & wet

The reason why the transformations “red & triangular” and
“rectangular & big” are exclusive is because there is an ideal
measurement M (of the color, shape, and size) such that, for
any initial state p, the tranformations “red & triangular” and
“rectangular & big” correspond to different outcomes of M.



Graph of exclusivity

Definition. For a given theory, the graph of exclusivity G
represents the set of all sets of equivalence classes of trans-
formations produced by ideal measurements that have G' as
graph of exclusivity.

Observation. All exclusivity graphs are realizable in clas-
sical probability theory.



Graph of exclusivity, probability'a

Definition. For a given theory, the graph of exclusivity G
represents the set of all sets of equivalence classes of trans-
formations produced by ideal measurements that have G as
graph of exclusivity.

Definition. A probability assignment for the graph of ex-
clusivity GG is a vector of probabilities

p:V(G) — [0,1]V()

such that p; € [0,1] forevery i € V(G) and p; +p; < 1
whenever (i, j) € E(G). V(G) is the set of vertices of G and
E(G) is the set of edges of G.



The E principle

Theorem. The events produced by ideal measurements sat-
isfy the exclusivity principle, i.e., if every two events in a set
are exclusive (i.e., if they are pairwise exclusive), then all the
events in the set are mutually exclusive.

E.g., if every two events in the set {i,j, k} are pairwise
exclusive, then the valid probability assignments {p;, p;, px }
must satisfy p; + p; + pr. < 1 (and not only p; + p; < 1,
pi +pr < Ll,and p; + pr < 1).

G. Chiribella and X. Yuan, arXiv:1404.3348.



Investigating GPTs by their sets of pit

Problem. Given a theory, what is the set S(G) of valid
probability assignments for any graph of exclusivity G.



Classical probability theory

Problem. Given a theory, what is the set S(G) of valid
probability assignments for any graph of exclusivity G.

Result.
For classical probability theory,

S(G) = STAB(G) = convex hull{p € {0, 1}V .
pip; = 0if (¢, ) € E(G)},

i.e., the stable set polytope of G.



Problem. Given a theory, what is the set S(G) of valid
probability assignments for any graph of exclusivity G.

Result.
For QT,

S(G) =TH(G) = {p e [0, ]V : p; = (M) plp) ?,

{plp)] =1, (M pMP p)| =1,
(MM p) =0, V(4 4) € E(G)},

1.e., the theta body of G.



More general probabilistic theorl

Problem. Given a theory, what is the set S(G) of valid
probability assignments for any graph of exclusivity G.

Result.
For more general probabilistic theories,

S(G) = QSTAB(G) = {p € [0, 1]V .
Y pi <1, Vee C(G)},

i.e., the clique-constrained stable set polytope of G. C'(G) is
the set of cliques of G. A clique is a subset of V' (G) such that
every two vertices are adjacent.

A. Cabello, S. Severini, and A. Winter, Phys. Rev. Lett. 112,
040401 (2014).



Born’s rule

Problem. Given a theory, what is the set S(G) of valid
probability assignments for any graph of exclusivity G.

Result.
For QT,

S(G) = TH(G) = {p € [0,1]V (1 = |<M§;2@
{plp)] =1, (M pMP p)| =1,
(MM p) =0, V(4 4) € E(G)},

1.e., the theta body of G.



Born’s rule

Problem. Given a theory, what is the set S(G) of valid
probability assignments for any graph of exclusivity G.

Result.
For QT,

S(G) =TH(G) = {p € [0, YV : p; = (M) plp) ?,

Qo) =MDl MDp)| =T

(MM p) =0, V(4 4) € E(G)},

1.e., the theta body of G.



Born’s rule

Problem. Given a theory, what is the set S(G) of valid
probability assignments for any graph of exclusivity G.

Result.
For QT,

S(G) =TH(G) = {p € [0,1]V O p; = (M) plp) |,
ol =1, [(MPpIMT)p)| =1,

@WU) ) =0, ¥(4,7) € E(

1.e., the theta body of G.




Problems

Problem 1. What is the physical principle that singles out
TH(G)?



Problems

Problem 1. What is the physical principle that singles out
TH(G)?

Problem 2. What is the largest set of valid probability as-
signments S(G) that is not logically inconsistent (and, in par-
ticular, satisfies the exclusivity principle in every situation)?



Is it a valid probability assignment?

1
2

D | =
N | —

N |
N[ —

R. Wright, in Mathematical Foundations of Quantum Mechan-
ics, edited by A. R. Marlow (Academic, San Diego, 1978),
p. 255.

S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).



The old results

A. Cabello, Phys. Rev. Lett. 110, 060402 (2013).

B. Amaral, M. Terra Cunha, and A. Cabello, Phys. Rev. A 89,
030101(R) (2014).



One experiment (its E graph)




Another similar experiment




The two experiments can be seen asa

oS




OR product




What are the valid assignments?




The second experiment IS simi




The two experiments are independe
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E principle implies

P\P3+ PPy + P3Py + PP, + P2 <1



The E principle implies

PP+ PP3+ PsPi+ F{ + PP < 1

P1P3+P2P1+R3P4+P4P2+R52§1



The E principle implies

PP+ PPy + P3P, + P} + PsP> < 1

PiPs+ PBP + PP+ PP+ P2<1 PPy + P,Ps + P2 + PP, + PPy <1



The E principle implies

P\Ps+ PyP3+ P3P+ P2 + PsP2 < 1 PPy + P} + PsPs + P4Ps + PP, < 1

PiPs+ PBP + PP+ PP+ P2<1 PP+ PyPs+ P} + PP, + PPy < 1



The E principle implies

P\Ps+ PPy + P3Py + P} + PsPy < 1 PPy + P2 + PsPs+ PyP3 + PsP, < 1

PiPs+ PBP + PP+ PP+ P2<1

PPy + PyPs + P2 + PP, + PsPy < 1 P2 4+ PyPy + P3Py + PyP; + PsPs < 1



The E principle implies

P\Ps+ PPy + P3Py + P} + PsPy < 1 PPy + P2 + PsPs+ PyP3 + PsP, < 1

P\Py+ PyP, + P3Py + PPy + P2 < 1 PPy + P3P+ P} + PP + PsP, < 1 P{ + PyPy+ P3Py + PyPs + PP < 1

(PL+ P+ Ps+ P+ P5)* <5



The E principle implies

P\Ps+ PPy + P3Py + P} + PsPy < 1 PPy + P2 + PsPs + PyPs + PsP, < 1

P\P3+ PyPy + P3Py + PP, + P2 <1 PP+ PyPs+ P} + PP + PsPy < 1 P{ + PPy + P3Py + PoPs + PsP3 < 1

(PL+ P+ Ps+ P+ P5)* <5
P +P,+Ps+P+Ps <5

A. Cabello, Phys. Rev. Lett. 110, 060402 (2013).



Complement

Definition. The complement of G, denoted G, is the graph
Witﬁ the same vertices as G and such that two distinct vertices
of GG are adjacent if and only if they are not adjacent in G.



Complement

Definition. The complement of G, denoted G, is the graph
witE the same vertices as G and such that two distinct vertices
of GG are adjacent if and only if they are not adjacent in G.

<




The EP is prowerful for self-complem
B T




The EP is prowerful for self-compie




For self-complementary graphs

Result. If GG is a self-complementary graph, the exclusivity

principle excludes any set of probability assignments strictly
larger than TH (G).



For self-complementary graphs

Result. If G is a self-complementary graph, the exclusivity

principle excludes any set of probability assignments strictly
larger than TH (G).

Proof. Let P be an assignment which is not in T'H (G).
Then, there is an assignment P in T'H(G) such that
ZieV(G) P;P; > 1. Since G and G are isomorphic, after

permuting the entries given by the isomorphism, P becomes
an element of 7'H ((G) and the previous inequality implies that
P is not allowed by the exclusivity principle. H

B. Amaral, M. Terra Cunha, and A. Cabello, Phys. Rev. A 89,
030101(R) (2014).



The new results

A. Cabello, arXiv:1801.06347.



Result 1. For every graph of exclusivity (G, the exclusiv-
ity principle, together with the assumptions that similar and
independent experiments exist, single out 7'H (G).



The proof is based on the following cons
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Generalized composition

Definition (generalized composition). If G is a graph with n
vertices, then the graph G[G1, ..., G,] is constructed by tak-
ing the disjoint graphs G4, ..., G, and joining every vertex of
G, with every vertex of G; whenever v; and v; are adjacent
vertices in G.

Q
o]
[e]

g o

C,C7,C7,Cy

H(C7) — g[C'?a ?77 0—75 C7]




Step 1. For any GG, H(G) is isomorphic to H(G).



Step 1. For any GG, H(G) is isomorphic to

G

QY

G

Q).



e

Step 1. For any GG, H(G) is isomorphic to H(G).

G G G G

Ql
Q
Q
Q




Step 1. For any GG, H(G) is isomorphic to H(G).

G

G

G

G

G

G

Therefore, S[H(G)] C TH[H(G)].

G

QY

B. Amaral, M. Terra Cunha, and A. Cabello, Phys. Rev. A 89,

030101(R) (2014).



Step 2. For any G, the only induced subgraphs of H(G)
that can_have odd cycles C),, with n_2_5, or their comple-
ments C',, are the ones in each of GG, G, GG, and G.
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Step 2. For any G, the only induced subgraphs of H(G)

that can have odd cycles C),, with n > 5, or their comple-
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Step 2. For any G, the only induced subgraphs of H(G)

that can have odd cycles




Step 2. For any G, the only induced subgraphs of H(G)
that can_have odd cycles C),, with n_2_5, or their comple-
ments C,,, are the ones in each of G, G, GG, and G.

For any graph not having as induced graphs odd cycles C),,
with n > 5, or their complements C_n the set of valid prob-
ability assignments for any theory satisfying the exclusivity
principle is identical to the one of classical probability theory.

A. Cabello, S. Severini, and A. Winter, Phys. Rev. Lett. 112,
040401 (2014).



Step 2. For any G, the only induced subgraphs of H(G)
that can_have odd cycles C),, with n_2_5, or their comple-
ments C,,, are the ones in each of G, G, GG, and G.

Therefore, the only nonclassical probability assignments in
H(G) are the ones that S(G), S(G),S(G), and S(G) may
have. This implies

S[H(G)] = convex hllll{p — (p17p27p37p4)
e {(5(@), 0V oV 5(@)),
(816, 0" e(@y, 0™ N,
(0N, (@), 0" D, S(G))}}
Therefore S|H(G)] determines S(G). Since we have already

proven that S|H(G)| C TH|H(G)], then S(G) C TH(G).
Since, for QT, S(G) = TH(G), this finishes the proof. W
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Problem 1

Problem 1. What is the physical principle that singles out
TH(G)?



Result 1. For every graph of exclusivity (G, the exclusiv-
ity principle, together with the assumptions that similar and
independent experiments exist, single out 7'H (G).



Problem 2

Problem 2. What is the largest set of valid probability as-
signments S(G) that is not logically inconsistent (and, in par-
ticular, satisfies the exclusivity principle in every situation)?



Result 2. For every graph of exclusivity GG, no physi-
cal theory that assigns probabilities to the outcomes of ideal
measurements can produce probability assignments outside

TH(G).



Result 2. For every graph of exclusivity GG, no physi-
cal theory that assigns probabilities to the outcomes of ideal

measurements can produce probability assignments outside
TH(G).

Proof. For the outcomes of ideal measurements, Result 1

implies that the probability assignments outside T'H (G) are
logically inconsistent. [ ]

A. Cabello, arXiv:1801.06347.



For years, we thought that we would understand QT when
we identify the physical principle that singles out QT from
the set of GPTs. Behind this way of thinking is, however,
the assumption that there are logically consistent GPTs that
can produce probabilities beyond those allowed by QT. The
particular way to look at QT we have described here shows
that this is not the case.



e There is a crucial message in the specific way nature is
contextual: The sets of probability assignments to the
outcomes of ideal measurements for every graph of ex-
clusivity are indistinguishable from the ones of a uni-
verse with no laws.



e There is a crucial message in the specific way nature is
contextual: The sets of probability assignments to the
outcomes of ideal measurements for every graph of ex-
clusivity are indistinguishable from the ones of a uni-
verse with no laws.

e From the graph-theoretic perspective, QT is the largest
and wildest logically consistent theory.



e There is a crucial message in the specific way nature is
contextual: The sets of probability assignments to the
outcomes of ideal measurements for every graph of ex-
clusivity are indistinguishable from the ones of a uni-
verse with no laws.

e From the graph-theoretic perspective, QT is the largest
and wildest logically consistent theory.

e This is quite disturbing, as it suggests that the hypothet-
ical principles singling out QT from the set of GPTs that
we have been searching for do not exist.



e There is a crucial message in the specific way nature is
contextual: The sets of probability assignments to the
outcomes of ideal measurements for every graph of ex-
clusivity are indistinguishable from the ones of a uni-
verse with no laws.

e From the graph-theoretic perspective, QT is the largest
and wildest logically consistent theory.

e This is quite disturbing, as it suggests that the hypothet-
ical principles singling out QT from the set of GPTs that
we have been searching for do not exist.

e The ontological message of QT is that nature has no
laws governing the outcomes of certain “slicings of the
world.”



e There is a crucial message in the specific way nature is
contextual: The sets of probability assignments to the
outcomes of ideal measurements for every graph of ex-
clusivity are indistinguishable from the ones of a uni-
verse with no laws.

e From the graph-theoretic perspective, QT is the largest
and wildest logically consistent theory.

e This is quite disturbing, as it suggests that the hypothet-
ical principles singling out QT from the set of GPTs that
we have been searching for do not exist.

e The ontological message of QT is that nature has no
laws governing the outcomes of certain “slicings of the
world.”

e Classical probability theory emerges when, in addition
to (1)—(ii1) in the definition of ideal measurements, we
ask ideal measurements to produce outcomes admitting
a joint probability distribution.



