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Preamble and trigger warning I

What follows will be (means) relative to non-contextuality.
If one does not accept the assumption-axiom of context
independence of (quantum) observables then all intertwines
(“identical” observables belonging to different contexts) “break” up;
and, just as in the case of allowing only vectors with Pythagorean
triples coordinates (Meyer 1999), the physical claims are nullified
because “value indefiniteness (aka contextuality) diagrams” decay
into isolated contexts, all “defined on different domain probability
spaces” (Dzhafarov&Kon, 2018).



Some questions one could ask, and answers one might
expect

◮ Does a(n empirical) structure of propositions (logic) uniquely
induce a probability? No!

◮ What kind of non-Boolean (non-classical) structure of
propositions can one imagine?

◮ Partition logic (Svozil 1993, Dvurečenskij,
Pulmannová&Svozil, 1995); models include

◮ Wright’s generalized urn model as well as (Wright, 1978,
1990)

◮ Moore’s finite automaton state identification problem (Moore,
Svozil 1993, Svozil&Schaller, 1995,1996).

◮ quantum logic (Hilbert lattices)
◮ general logics constructed by the pasting of Boolean

subalgebras (contexts, blocks)
◮ What criteria/axioms to assume for probabilities? Classical

Kolmogorov’s probability theory for classical bits & pieces or
blocks. “Stitching” or “pasting” of these blocks. Eg,
Gleason-type frame functions on quantum contexts: additivity
of mutually exclusive events, totally (im)probable events have
probability 0 and 1, respectively.



(Geometric) Strategies to classical probabilities

◮ Froissart (1981), Pitowsky (1986), Tsirelson (1993): geometric
interpretation of probability distributions as the surface of a
convex polytope “spanned” by vertices aka “mutually exclusive
extreme cases.”

◮ The vertices are encoded by two-valued states on the logic.
◮ The Bell-type face (in)equalities indicating “inside-outside

relations” are very similar to Boole’s “conditions of possible
experience” (1854,1862). The hull problem of finding these
faces is NP-complete in the number of vertices.

◮ Wright (1978,1990): Quasiclassical probabilities are in the
convex hull of the dispersion-free two-valued states (aka
classical truth assignments).



Heuristic use of the terms value indefiniteness and
contextuality

Heuristically, a collection of observables (hypothetical propositions)
can be called contextual if (in order of severe deviation from
classicality) it

◮ “somehow” is not classical; eg. exhibits complementarity
(non-distributivity);

◮ has no (quasi)classical probability interpretation in terms of
the convex hull of the (Kochen&Specker 1967, Theorem 0:
separating) set of classical truth assignments;

◮ is partial (unless inconsistent) and thus value indefinite
(Gleason 1957, Zierler&Schlessinger 1965, Kochen&Specker
1967, Pitowsky 1998, ACCS, ACS, 2012-2015).



Trigger warning II

The term contextuality has been used by the realist John Bell to
enforce value definiteness on intertwined collections of observables
(grouped into maximal classical subalgebras called “contexts,”
“cliques” or “blocks”) at the price of their dependency on the
measurement context – thereby effectively discarding the
assumption of an “isolated” observable (from whatever is effectively
co-measured alongside of it). This is in contrast to the quantum
(logical) formalism, in particular to elementary propositions
identified with perpendicular projection operators.
Thus the current wide use of the term contextuality is often-times
confusing and distractive: many researchers using the term would
not like it to imply realism and context dependence of quantum
observables.



Example I: Pentagon logic
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# 1 2 3 4 5 6 7 8 9 10

v1 1 0 0 1 0 1 0 1 0 0
v2 1 0 0 0 1 0 0 1 0 0
v3 1 0 0 1 0 0 1 0 0 0
v4 0 0 1 0 0 1 0 1 0 1
v5 0 0 1 0 0 0 1 0 0 1
v6 0 0 1 0 0 1 0 0 1 0
v7 0 1 0 0 1 0 0 1 0 1
v8 0 1 0 0 1 0 0 0 1 0
v9 0 1 0 1 0 0 1 0 0 1
v10 0 1 0 1 0 1 0 0 1 0
v11 0 1 0 1 0 1 0 1 0 1

ve
1

2
0 1

2
0 1

2
0 1

2
0 1

2
0



Example I: two-valued states on the pentagon logic (Wright,
1978)
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Example I: Probabilities on partition logics from two-valued
states on the pentagon logic – with λi ≥ 0, i = 1, . . . 11,
∑11

i=1 λi = 1

λ1 + λ2 + λ3

λ7 + λ8 + λ9 + λ10 + λ11

λ4 + λ5 + λ6

λ1 + λ3 + λ9 + λ10 + λ11

λ2 + λ7 + λ8λ1 + λ4 + λ6 + λ10 + λ11

λ3 + λ5 + λ9

λ1 + λ2 + λ4 + λ7 + λ11

λ6 + λ8 + λ10

λ4 + λ5 + λ7 + λ9 + λ11



Example I: hull computation on the pentagon logic
The full hull computations for the probabilities p1, . . . , p10 on all
atoms 1, . . . , 10 reduces to 16 inequalities, among them

p4 + p8 + p9 ≥ +p1 + p2 + p6,

2p1 + p2 + p6 + p10 ≥ 1 + p4 + p8.
(1)

If one considers only the five probabilities on the intertwining
atoms, then the Bub-Stairs) inequalitiy (Bub, 2009)

p1 + p3 + p5 + p7 + p9 ≤ 2 (2)

result. Concentration on the four non-intertwining atoms yields

p2 + p4 + p6 + p8 + p10 ≥ 1. (3)

Limiting the hull computation to adjacent pair expectations of
dichotomic ±1 observables yields the
Klyachko-Can-Biniciogolu-Shumovsky inequality (2008)

E13 + E35 + E57 + E79 + E91 ≥ 3. (4)



Examples I: Wright’s 12th dispersionless measure on the
pentagon: neither quasi-classical nor quantum
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Examples II: Specker’s “Käfer” (bug) combologic
(Kochen&Specker, 1965, 67) - true (1) implies false (0) /

true (1) / inseparable logics
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Examples II: Specker’s “Käfer” (bug) combologic
(Kochen&Specker, 1965, 67) - true (1) implies false (0) /

true (1) / inseparable logics
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Examples II: Specker’s “Käfer” (bug) combologic
(Kochen&Specker, 1965, 67) - true (1) implies false (0) /

true (1) / inseparable logics
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Example III: True (1) implies false (0) / true (1) and value
indefinite / partiality logics (Abbott, Calude, Svozil 2015,

Svozil 2018)
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Example III: True (1) implies false (0) / true (1) and value
indefinite / partiality logics (Abbott, Calude, Svozil 2015,

Svozil 2018)
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Example III: True (1) implies false (0) / true (1) and value
indefinite / partiality logics (Abbott, Calude, Svozil 2015,

Svozil 2018)
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Strategies to obtain value indefiniteness / partiality

The scheme of the construction & proof of partiality of value
assignments is as follows:

(i) Find a logic (collection of intertwined contexts of observables)
exhibiting a true-implies-false property on the two atoms a and
b.

(ii) Find another logic exhibiting a true-implies-true property on
the same two atoms a and b.

(iii) Then join (paste) these logics into a larger logic, which, given
a, neither allows b to be true nor false. Consequently b must
be value indefinite.

ps: the Abbott, Calude, Svozil 2015 logic introduced earlier has a
quantum (Hilbert space) realization of |a〉 =

(

1, 0, 0
)⊺

, and

|b〉 =
(

1
√

2
, 1

2 ,
1
2

)⊺

; Thus the probability to observe b given a is

50:50.
pps: partiality /value indefiniteness /strong contextuality can be
extended to any vector non-collinear and non-orthogonal to a.



Meaning of value indefiniteness/partiality of the truth
assignments in view of the arbitrariness in the choice of

logics connecting a and b

Given a, there exist a continuum of possible pathways to b; many
with very different “contextual” properties.
Since the selection of these pathways (or logics connecting them) is
merely hypothetical, personal and thus epistemic, “I am inclined to
believe” (cf. Born 1926) that in the quantum world there does not
exist an observable b, given a, unless both are orthogonal or
collinear. What we effectively do when we allegedly “measure b” are
just “translations” of properties which are relational (via
entanglement throuh interaction) to a, mediated through our
measurement devices; thereby we fapp introduce stochasticity
because of the many uncontrollable degrees of freedom of the latter.
Cf. https://arxiv.org/abs/1804.10030



Thank you for your attention!
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