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Preliminaries: Couplings

X1, X2, . . . , Xn

(Y1, Y2, . . . , Yn)

Definition

A statement on (property of) a joint distribution of random variables is
called a C-statement (C-property) if, for any n and any (allowable)
X1, X2, . . . , Xn, a coupling (Y1, Y2, . . . , Yn) that satisfies C exists and
is unique. This coupling is called the C-coupling of X1, X2, . . . , Xn.
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C-contextuality: Measure (through quasicouplings)

C C C C
a b · d α1

a ′ b ′ c ′ · α2

· b ′′ c ′′ d ′′ α3

β1 β2 β3 β4

min
∑

|QPr [a, b, d, a ′, b ′, c ′, b ′′, c ′′, d ′′]|− 1

= minTV−1, effectively determinable by LP



Example: Cyclic systems of binary random variables
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Example: Cyclic systems of binary random variables

n > 5 investigated in psychophysics (with Ru Zhang,
Cervantes)
n = 5— KCBS-type system
n = 4— EPR/Bohm-Bell-type system (“Snow Queen”
experiment, with Cervantes)
n = 3— Suppes-Zanotti (origianl Bell) or Leggett-Garg-type
system (with Basieva, Cervantes, Khrennikov)
n = 2— question order (Moore-Wang-Busemeyer) type system
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Theorem

The degree of contextuality in a cyclic system of binary random variables is
1/2 of

max
(ι1,...,ιk)∈{−1,1}n:

∏n
i=1 ιi=−1

n∑
i=1

ιi
〈
RiiR

i
i⊕1
〉
− n+ 2−

n∑
i=1

∣∣∣〈Rii〉− 〈Ri	1i 〉∣∣∣ .



Example: Cyclic systems of binary random variables

Theorem

A cyclic system of binary random variables is contextual iff

max
(ι1,...,ιk)∈{−1,1}n:

∏n
i=1 ιi=−1

n∑
i=1

ιi
〈
RiiR

i
i⊕1
〉
> (n− 2)+

n∑
i=1

∣∣∣〈Rii〉− 〈Ri	1i 〉∣∣∣ .
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2-Slit, many detectors
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Canonical Representation

1 | 2 | 3 | 4 | 5 //

1 | not 1
2 | not 2
3 | not 3
4 | not 4
5 | not 5



Canonical Representation

1 | 2 | 3 | 4 | 5 //

12 | not 12
13 | not 13
. . .

34 | not 34
35 | not 35
45 | not 45



Canonical Representation

R11 c = 1

R21 c = 2

q = 1

=⇒

D11 D12 D1(2k−1−1)

D21 D22 · · · D2(2k−1−1)

q ′ = 1 2 · · ·
(
2k−1 − 1

)



Canonical Representation

Theorem

The system (consisting of R11 and R21) is noncontextual if and only if
one of the R11 and R21 nominally dominates the other.

Definition

R11 nominally dominates R21 if Pr
[
R11 = i

]
< Pr

[
R21 = i

]
for no

more than one value of i = 1, . . . , k.
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Theorem

The system (consisting of R11 and R21) is noncontextual if and only if
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Example

x: 1 2 3 4 5

Pr
[
R11 = x

]
.2 .3 .1 .3 .1

Pr
[
R21 = x

]
.1 .2 .4˙ .3 0
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2 Theory with incomplete sets of dichotomizations (e.g., for continuous
random variables on R).

3 Contextually labeled observables in Hilbert spaces.
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Summary

1 Contextuality analysis applies to systems of content-context-indexed
random variables, after they have been transformed into a canonical
(split representation) form, in which all random variables are
dichotomous. Each of these dichotomous random variables answers the
question: does the outcome of a given initial random variable fall within
a given subset of its possible values?

2 A system of random variables is considered C-noncontextual iff the
canonical representation thereof has a probabilistic coupling in which any
set of content-sharing dichotomous random variables satisfies C.

3 The minimal total variation (less one) across all possible quasi-couplings
of the canonical representation of the system is a measure of
contextuality of the system.
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Summary

CbD approach to contextuality satisfies the following:

1 any subsystem of a noncontextual system of random variables is
noncontextual;

2 componentwise transformations of a noncontextual system of random
variables are noncontextual;

3 a consistently connected (“non-signaling”) system is (non)contextual iff it
is (non)contextual in the traditional sense.
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