Towards a complete cohomology invariant for contextuality

Giovanni Carù

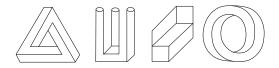
Quantum Group Department of Computer Science University of Oxford

Quantum Contextuality in Quantum Mechanics and Beyond Prague, 20 May 2018

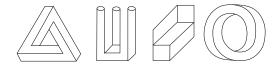
イロト イヨト イヨト イヨト

Outline

Ontextuality and "impossible figures": a topological viewpoint.

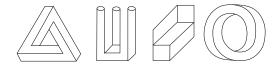


・ロト ・御ト ・ヨト ・ヨト 三日



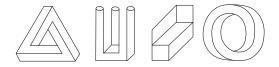
<ロト <四ト <注入 <注下 <注下 <

2 The sheaf theoretic description of contextuality.



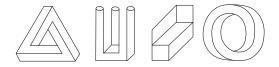
イロト イヨト イヨト イヨト

- 2 The sheaf theoretic description of contextuality.
- Sheaf cohomology: a tool to detect contextuality.



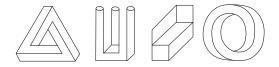
・ロト ・御ト ・モト ・モト

- On the sheaf theoretic description of contextuality.
- Sheaf cohomology: a tool to detect contextuality.
 - Main results



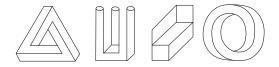
イロト イヨト イヨト イヨト

- One sheaf theoretic description of contextuality.
- Sheaf cohomology: a tool to detect contextuality.
 - Main results
 - False positives and limitations



イロト イヨト イヨト イヨト

- One sheaf theoretic description of contextuality.
- Sheaf cohomology: a tool to detect contextuality.
 - Main results
 - False positives and limitations
- A new viewpoint: joint models and scenarios



- One sheaf theoretic description of contextuality.
- Sheaf cohomology: a tool to detect contextuality.
 - Main results
 - False positives and limitations
- A new viewpoint: joint models and scenarios
- Solution An (almost) complete cohomology invariant for contextuality

- * ロ * * 御 * * 注 * * 注 * こ * の < で

A basic experimental setting:

• Two observers Alice and Bob, who are spatially separated, perform measurements on a physical system (e.g. a quantum state)

A basic experimental setting:

- Two observers Alice and Bob, who are spatially separated, perform measurements on a physical system (e.g. a quantum state)
- Alice can choose between two binary measurements *a*₁, *a*₂ to perform on the system. The measurements cannot be performed simultaneously.

A basic experimental setting:

- Two observers Alice and Bob, who are spatially separated, perform measurements on a physical system (e.g. a quantum state)
- Alice can choose between two binary measurements a_1, a_2 to perform on the system. The measurements cannot be performed simultaneously. Similarly for Bob with measurements b_1 , b_2 .

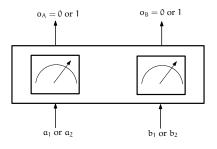
A basic experimental setting:

- Two observers Alice and Bob, who are spatially separated, perform measurements on a physical system (e.g. a quantum state)
- Alice can choose between two binary measurements a_1, a_2 to perform on the system. The measurements cannot be performed simultaneously. Similarly for Bob with measurements b_1 , b_2 .

• After each run of the experiment, Alice and Bob obtain two outcomes, o_A and o_B .

A basic experimental setting:

- Two observers Alice and Bob, who are spatially separated, perform measurements on a physical system (e.g. a quantum state)
- Alice can choose between two binary measurements a_1, a_2 to perform on the system. The measurements cannot be performed simultaneously. Similarly for Bob with measurements b_1 , b_2 .
- After each run of the experiment, Alice and Bob obtain two outcomes, *o_A* and *o_B*.



- * ロ * * 御 * * 注 * * 注 * こ * の < で

• Suppose the experiment is repeated a large amount of times.

- Suppose the experiment is repeated a large amount of times.
- For each **context**, i.e. each possible choice of joint measurements, we will obtain a **probability distribution over the joint outcomes**.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Suppose the experiment is repeated a large amount of times.
- For each **context**, i.e. each possible choice of joint measurements, we will obtain a **probability distribution over the joint outcomes**.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

• For our purposes, we will only need to know which events are **possible**.

- Suppose the experiment is repeated a large amount of times.
- For each **context**, i.e. each possible choice of joint measurements, we will obtain a **probability distribution over the joint outcomes**.
- For our purposes, we will only need to know which events are **possible**.

Example: the Hardy model.

А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	<i>b</i> ₂	1 0 0 1	1	1	1
a ₂	b_1	0	1	1	1
a 2	b_2	1	1	1	0

- Suppose the experiment is repeated a large amount of times.
- For each **context**, i.e. each possible choice of joint measurements, we will obtain a **probability distribution over the joint outcomes**.
- For our purposes, we will only need to know which events are **possible**.

Example: the Hardy model.

А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	<i>b</i> ₂	0	1	1	1
a 2	b_1	0	1	1	1
a ₂	b_2	1 0 0 1	1	1	0

• Such a possibility table is called a possibilistic empirical model.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

- ◆ □ ▶ → @ ▶ → 差 ▶ → 差 → りへの

• From the point of view of **classical physics**, we expect an empirical model to satisfy the following two properties:

- From the point of view of **classical physics**, we expect an empirical model to satisfy the following two properties:
 - *No-signalling*: Because Alice and Bob cannot communicate, **Alice's** choice of measurement should not influence Bob's statistics, or viceversa.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- From the point of view of **classical physics**, we expect an empirical model to satisfy the following two properties:
 - *No-signalling*: Because Alice and Bob cannot communicate, **Alice's** choice of measurement should not influence Bob's statistics, or viceversa.
 - *Non-contextuality*: Every time Alice and Bob perform their measurements, they are looking at a portion of a **predetermined** set of outcomes, which is **independent of their choice**.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

- From the point of view of **classical physics**, we expect an empirical model to satisfy the following two properties:
 - *No-signalling*: Because Alice and Bob cannot communicate, **Alice's** choice of measurement should not influence Bob's statistics, or viceversa.
 - *Non-contextuality*: Every time Alice and Bob perform their measurements, they are looking at a portion of a **predetermined** set of outcomes, which is **independent of their choice**.



In other words, the state of the whole system is determined by a hidden variable λ, whose value is independent of Alice and Bob's choices.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ▼ ● ◆

• Are these assumptions realistic?

- Are these assumptions realistic?
- Consider the Hardy model. Suppose Alice and Bob have chosen (a_1, b_1) , and observed (0, 0).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

- Are these assumptions realistic?
- Consider the Hardy model. Suppose Alice and Bob have chosen (a_1, b_1) , and observed (0, 0). What is the predetermined state of the system?

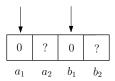
А	В	(0,0)	(1, 0)	(0, 1)	(1, 1)
a_1	b_1	1	1	1	1
a_1	b_2	0	1	1	1
a ₂	b_1	0	1	1	1
a_2	b_2	1	1	1	0

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

- Are these assumptions realistic?
- Consider the Hardy model. Suppose Alice and Bob have chosen (a_1, b_1) , and observed (0, 0). What is the predetermined state of the system?

А		(0,0)	(1, 0)	(0, 1)	(1, 1)
a_1	b_1	① 0 0	1	1	1
a_1	b_2	0	1	1	1
a_2	b_1	0	1	1	1
a_2	b_2	1	1	1	0

This determines the following assignments:

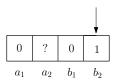


< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

- Are these assumptions realistic?
- Consider the Hardy model. Suppose Alice and Bob have chosen (a_1, b_1) , and observed (0, 0). What is the predetermined state of the system?

А	В	(0,0)	(1, 0)	(0, 1)	(1, 1)
a_1	b_1	1	1	1	1
a_1	$b_2 \\ b_1$	0	Х	(\mathbb{I})	Ж
a_2	b_1	0	1	1	1
a_2	b_2	1	1	1	0

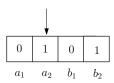
This determines the following assignments:



- Are these assumptions realistic?
- Consider the Hardy model. Suppose Alice and Bob have chosen (a_1, b_1) , and observed (0, 0). What is the predetermined state of the system?

А	В	(0,0)	(1, 0)	(0, 1)	(1, 1)
a_1	b_1	1	1	1	1
a_1	b_2	0	Х	(1)	Ж
a_2	b_1	0	(\mathbb{I})	Х	Ж
a_2	b_2	1	1	1	0

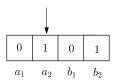
This determines the following assignments:



- Are these assumptions realistic?
- Consider the Hardy model. Suppose Alice and Bob have chosen (a_1, b_1) , and observed (0, 0). What is the predetermined state of the system?

А	В	(0,0)	(1, 0)	(0, 1)	(1,1)
a_1	b_1	1	1	1	1
a_1	b_2	0	Х	1	Ж
a_2	b_1	0	(\mathbb{I})	Х	Ж
a_2	b_2	Х	Х	Х	0

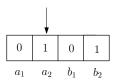
This determines the following assignments:



- Are these assumptions realistic?
- Consider the Hardy model. Suppose Alice and Bob have chosen (a_1, b_1) , and observed (0, 0). What is the predetermined state of the system?

А	В	(0,0)	(1, 0)	(0, 1)	(1,1)
a_1	b_1	1	1	1	1
a_1	b_2	0	Х	(1)	Ж
a_2	b_1	0	(1)	Х	Ж
- a ₂	b_2	Х	Х	Х	0

This determines the following assignments:



<ロト <回ト < 注ト < 注ト = 注

No predetermined global assignment!

We may conclude that such a model is simply not possible to realise.

We may conclude that such a model is simply not possible to realise.

It turns out that it is realisable in quantum mechanics!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We may conclude that such a model is simply not possible to realise.

It turns out that it is realisable in quantum mechanics!

If we use an entangled qubit as a shared resource between Alice and Bob, then behaviour of exactly the kind we have considered can be achieved. This phenomenon is called **(possibilistic) contextuality**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

We may conclude that such a model is simply not possible to realise.

It turns out that it is realisable in quantum mechanics!

If we use an entangled qubit as a shared resource between Alice and Bob, then behaviour of exactly the kind we have considered can be achieved. This phenomenon is called **(possibilistic) contextuality**.

< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

Fine but ...

We may conclude that such a model is simply not possible to realise.

It turns out that it is realisable in quantum mechanics!

If we use an entangled qubit as a shared resource between Alice and Bob, then behaviour of exactly the kind we have considered can be achieved. This phenomenon is called **(possibilistic) contextuality**.

Fine but ...

What does topology have to do with this?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- * ロ > * 御 > * 注 > * 注 > … 注 … のへの

А	В	00	10	01	11
a_1	<i>b</i> ₁				
a_1	b_2				
а ₁ а ₂	b2 b1				
a_2	b_2				

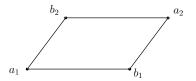
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

А	В	00	10	01	11
a_1	b_1				
а ₁ а ₂	b_1 b_2 b_1				
a_2	b_1				
a_2	b_2				



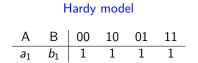
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

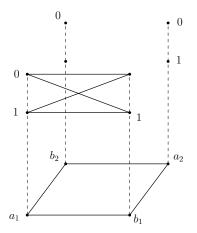
А	В	10	01	11
a_1	$egin{array}{c} b_1 \ b_2 \ b_1 \ b_2 \ b_2 \ b_2 \end{array}$			
a ₁ a ₁ a ₂ a ₂	b_2			
a_2	b_1			
a_2	b_2			



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

						0	• 0
А	В	00	10	01	11		
a_1	b_1					-	• 1
a_1	b_2					0	1
a_2	b_1						ł
a_2	b_2						i i
							1
						b_2	a_2
							7
						$a_1 \checkmark b_1$	

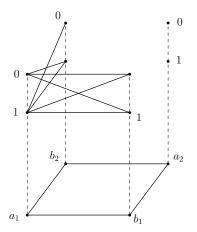




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hardy model

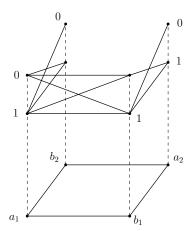
А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	b_2	0	1	1	1



◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

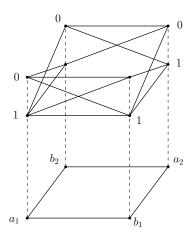
Hardy model

А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	b_2	0	1	1	1
an	b_1	0	1	1	1



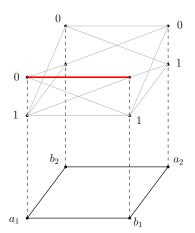
Hardy model

		00			
a_1	b_1	1 0 0 1	1	1	1
a_1	b_2	0	1	1	1
a_2	b_1	0	1	1	1
an	bo	1	1	1	0



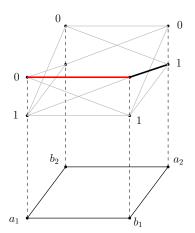
Hardy model

	А		00			11
Ì	a_1	b_1	1	1	1	1
	a_1	b_2	0	1	1	1
	a_2	b_1	① 0 0	1	1	1
	a ₂	b	1		1	0



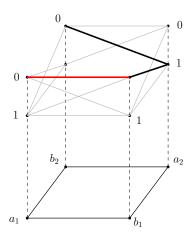
Hardy model

А	В	00	10	01	11
a_1	b_1 b_2 b_1	1	1	1	1
a ₁ a ₂	b_2	0	1	1	1
a_2	b_1	0	(\mathbb{I})	X	Х
an	bo	1	1	1	0



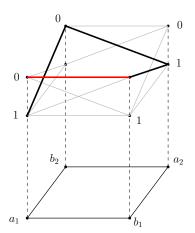
Hardy model

А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	b_2	0	1	1	1
a_2	b_1	0	(\mathbb{I})	X	Х
a_2	b_2	X	(\mathbb{I})	X	0



Hardy model

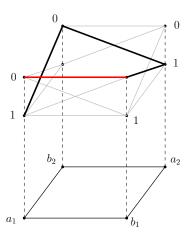
А	В	00	10	01	11
a_1	b_1	1	1	1	1
b_2	b_2	0	1	1	1
a_2	b_1	0	(\mathbb{D})	Х	Х
a_2	b_2	X	(\mathbb{D})	X	0



Hardy model

А	В	00	10	01	11
a_1	b_1	1	1	1	1
b ₂	b_2	0	1	1	1
a_2	b_1	0	(\mathbb{D})	Х	X
a_2	b_2	X	(\mathbb{D})	Х	0

The Hardy model is **Contextual** at the red **section**



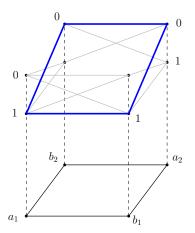
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hardy model

А	В	00	10	01	11
a_1	b_1	1	1	1	1
b ₂	b_2	0	1	1	1
a_2	b_1	0	(\mathbb{D})	Х	X
a_2	b_2	X	(\mathbb{D})	Х	0

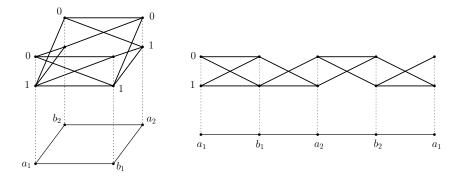
The Hardy model is $\ensuremath{\textbf{Contextual}}$ at the red $\ensuremath{\textbf{section}}$

However, a portion of the model can be explained deterministically



æ

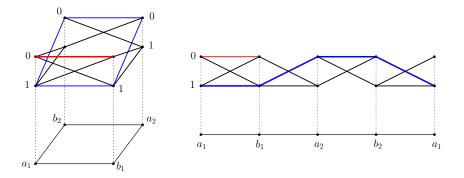
• We will often use the **planar version** of a bundle diagram:



<ロ> (四)、(四)、(日)、(日)、

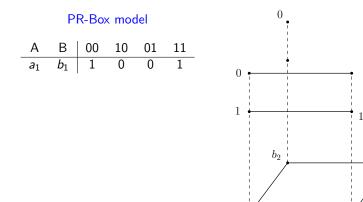
2

• We will often use the **planar version** of a bundle diagram:



<ロ> (四)、(四)、(日)、(日)、

æ



 a_1

 b_1

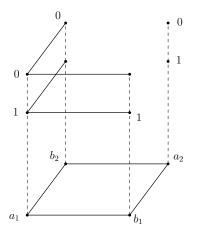
• 0

1

 a_2

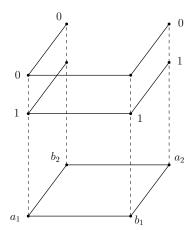
PR-Box model

А	В	00	10	01	11
a_1	b_1	1	0	0	1
a_1	b_2	1	0	0	1



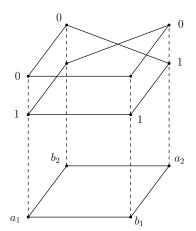
PR-Box model

		00			
a_1	b_1	1	0	0	1
a_1	b_2	1 1 1	0	0	1
an	b_1	1	0	0	1



PR-Box model

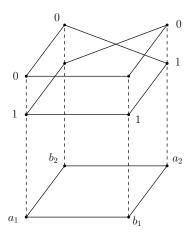
А	В	00	10	01	11
a_1	b_1	1	0	0	1
a ₁ a ₂	b_2 b_1	1	0	0	1
	b_1	1	0	0	1
a_2	b_2	0	1	1	0



PR-Box model

А	В	00	10	01	11
a_1	b_1	1	0	0	1
а ₁ а ₁	b_1 b_2	1	0	0	1
a ₂	b_1	1	0	0	1
a_2	b_2	0	1	1	0

This model is contextual at every section. We say that it is strongly contextual



2

• The bundle diagram representation of empirical models helps us understand contextuality as a **topological feature**.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

- The bundle diagram representation of empirical models helps us understand contextuality as a **topological feature**.
- No-signalling corresponds to the fact that each local section can always be extended to its adjacent contexts.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- The bundle diagram representation of empirical models helps us understand contextuality as a **topological feature**.
- No-signalling corresponds to the fact that each local section can always be extended to its adjacent contexts. In other words, the diagram is locally consistent.

< ロ > (四 > (四 > (三 > (三 >))) (三 =))

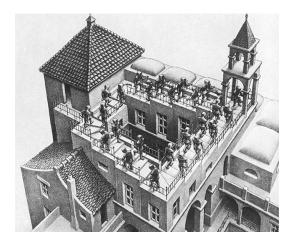
- The bundle diagram representation of empirical models helps us understand contextuality as a **topological feature**.
- No-signalling corresponds to the fact that each local section can always be extended to its adjacent contexts. In other words, the diagram is locally consistent.
- Contextuality correponds to the **impossibility of extending a local feature to a global one**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

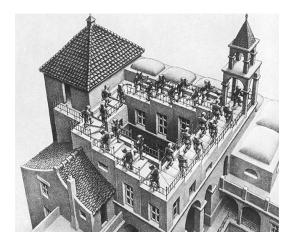
- The bundle diagram representation of empirical models helps us understand contextuality as a **topological feature**.
- No-signalling corresponds to the fact that each local section can always be extended to its adjacent contexts. In other words, the diagram is locally consistent.
- Contextuality correponds to the **impossibility of extending a local feature to a global one**. This means that the diagram is **globally inconsistent**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- The bundle diagram representation of empirical models helps us understand contextuality as a **topological feature**.
- No-signalling corresponds to the fact that each local section can always be extended to its adjacent contexts. In other words, the diagram is locally consistent.
- Contextuality correponds to the **impossibility of extending a local feature to a global one**. This means that the diagram is **globally inconsistent**.
- Therefore, contextuality of no-signalling empirical models can be loosely interpreted as a **discrepancy between local consistency and global inconsistency**, which is ultimately a **topological property**:

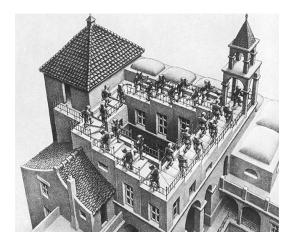


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



・ロト ・西ト ・ヨト ・ヨ

• This discrepancy is typical of impossible figures



- This discrepancy is typical of impossible figures
- It has been studied in detail using sheaf theory and sheaf cohomology

◆□ >

Why sheaf theory?

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 ■ - のへの

• Intuitively, a **presheaf** is an assignment of **information** to local 'pieces' of a topological space.

- Intuitively, a **presheaf** is an assignment of **information** to local 'pieces' of a topological space.
- More precisely, given a space X, we have a functor

$$\mathsf{PS}: \mathbf{Open}(X)^{op} \longrightarrow \mathcal{C},$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 _ 釣�?

which assigns, to each open subset $U \subseteq X$, some information in a target category C.

- Intuitively, a **presheaf** is an assignment of **information** to local 'pieces' of a topological space.
- More precisely, given a space X, we have a functor

$$\mathsf{PS}: \mathbf{Open}(X)^{op} \longrightarrow \mathcal{C},$$

which assigns, to each open subset $U \subseteq X$, some information in a target category C.

• Such information can be naturally restricted to smaller subsets:

$$U \subseteq U' \longmapsto \left(
ho_U^{U'} : \mathsf{PS}(U') \longrightarrow \mathsf{PS}(U)
ight)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

- Intuitively, a **presheaf** is an assignment of **information** to local 'pieces' of a topological space.
- More precisely, given a space X, we have a functor

$$\mathsf{PS}: \mathbf{Open}(X)^{op} \longrightarrow \mathcal{C},$$

which assigns, to each open subset $U \subseteq X$, some information in a target category C.

• Such information can be naturally restricted to smaller subsets:

$$U \subseteq U' \longmapsto \left(\rho_U^{U'} : \mathsf{PS}(U') \longrightarrow \mathsf{PS}(U) \right)$$

• Presheaves were introduced to study the extendability of local properties to global ones

- Intuitively, a **presheaf** is an assignment of **information** to local 'pieces' of a topological space.
- More precisely, given a space X, we have a functor

$$\mathsf{PS}: \mathbf{Open}(X)^{op} \longrightarrow \mathcal{C},$$

which assigns, to each open subset $U \subseteq X$, some information in a target category C.

• Such information can be naturally restricted to smaller subsets:

$$U \subseteq U' \longmapsto \left(
ho_U^{U'} : \mathsf{PS}(U') \longrightarrow \mathsf{PS}(U)
ight)$$

- Presheaves were introduced to study the extendability of local properties to global ones
- This is exactly what we are looking for!

• Let X be the set of measurements (e.g. $X = \{a_1, b_1, a_2, b_2\}$)

• Let X be the set of measurements (e.g. $X = \{a_1, b_1, a_2, b_2\}$)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

• Let \mathcal{M} be the collection of **contexts** (e.g. $\mathcal{M} = \{\{a_1, b_1\}, \{a_1, b_2\}, \{a_2, b_1\}, \{a_2, b_2\}\})$

• Let X be the set of measurements (e.g. $X = \{a_1, b_1, a_2, b_2\}$)

- Let \mathcal{M} be the collection of **contexts** (e.g. $\mathcal{M} = \{\{a_1, b_1\}, \{a_1, b_2\}, \{a_2, b_1\}, \{a_2, b_2\}\})$
- We equip X with the topology induced by \mathcal{M} .

- Let X be the set of measurements (e.g. $X = \{a_1, b_1, a_2, b_2\}$)
- Let \mathcal{M} be the collection of **contexts** (e.g. $\mathcal{M} = \{\{a_1, b_1\}, \{a_1, b_2\}, \{a_2, b_1\}, \{a_2, b_2\}\})$
- We equip X with the topology induced by \mathcal{M} .
- Given a possibility table describing the empirical model, we can see it as a presheaf $\mathscr{S} : \mathbf{Open}(X)^{op} \to \mathbf{Set}$,

 $\mathscr{S} :: C \in \mathcal{M} \longmapsto \{ \text{Possible events at } C \}$

- Let X be the set of measurements (e.g. $X = \{a_1, b_1, a_2, b_2\}$)
- Let \mathcal{M} be the collection of **contexts** (e.g. $\mathcal{M} = \{\{a_1, b_1\}, \{a_1, b_2\}, \{a_2, b_1\}, \{a_2, b_2\}\})$
- We equip X with the topology induced by \mathcal{M} .
- Given a possibility table describing the empirical model, we can see it as a presheaf *S* : **Open**(X)^{op} → **Set**,

 $\mathscr{S} :: C \in \mathcal{M} \longmapsto \{ \text{Possible events at } C \}$

Example:

		00			
a_1	b_1	1	1	1	1
a_1	<i>b</i> ₂	0	1	1	1
a_2	b_1	0	1	1	1
a_2	b_2	1 0 0 1	1	1	0

 $\mathscr{S}(\mathsf{C}) := \{(a_1, b_2) \mapsto (0, 1), (1, 0), (1, 1)\}$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○ ◆○

• The elements of $\mathscr{S}(C)$, i.e. the possible events, are called **local** sections.

• The elements of $\mathscr{S}(C)$, i.e. the possible events, are called **local** sections.

Definition

A model *S* is contextual at a section s if s is not part of any global section g ∈ S(X).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• The elements of $\mathscr{S}(C)$, i.e. the possible events, are called **local** sections.

Definition

• A model \mathscr{S} is contextual at a section s if s is not part of any global section $g \in \mathscr{S}(X)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• A model *S* is strongly contextual if there are no global sections.

• The elements of $\mathscr{S}(C)$, i.e. the possible events, are called **local** sections.

Definition

- A model *S* is contextual at a section s if s is not part of any global section g ∈ S(X).
- A model S is strongly contextual if there are no global sections.
- The question of extending local sections to global ones is well-studied in **algebraic topology**

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• The elements of $\mathscr{S}(C)$, i.e. the possible events, are called **local** sections.

Definition

- A model *S* is contextual at a section s if s is not part of any global section g ∈ S(X).
- A model S is strongly contextual if there are no global sections.
- The question of extending local sections to global ones is well-studied in **algebraic topology**

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• The main ingredient?

• The elements of $\mathscr{S}(C)$, i.e. the possible events, are called **local** sections.

Definition

- A model *S* is contextual at a section s if s is not part of any global section g ∈ S(X).
- A model S is strongly contextual if there are no global sections.
- The question of extending local sections to global ones is well-studied in **algebraic topology**

< ロ > (四 > (四 > (三 > (三 >))) (三 =))

• The main ingredient? Sheaf cohomology!

- + ロ ト + 母 ト + 生 ト ・ 生 ・ りへの

• Thanks to sheaf cohomology, we can define **cohomology obstructions** to the extension of local sections.

• Thanks to sheaf cohomology, we can define **cohomology obstructions** to the extension of local sections. A local section is extendable **if and only if the obstruction vanishes**.

- Thanks to sheaf cohomology, we can define **cohomology obstructions** to the extension of local sections. A local section is extendable **if and only if the obstruction vanishes**.
- However, they can only be defined for a presheaf of abelian groups

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

- Thanks to sheaf cohomology, we can define **cohomology obstructions** to the extension of local sections. A local section is extendable **if and only if the obstruction vanishes**.
- However, they can only be defined for a presheaf of abelian groups
- Hence, we need to 'abelianise' our empirical model presheaf
 S: Open(X)^{op} → Set, by allowing formal linear combinations of sections:

$$\mathcal{F} := \mathcal{F}_{\mathbb{Z}}\mathscr{S} : \mathbf{Open}(X)^{op} \longrightarrow \mathbf{Set} \xrightarrow{\mathcal{F}_{\mathbb{Z}}} \mathbf{AbGrp}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

- Thanks to sheaf cohomology, we can define **cohomology obstructions** to the extension of local sections. A local section is extendable **if and only if the obstruction vanishes**.
- However, they can only be defined for a presheaf of abelian groups
- Hence, we need to 'abelianise' our empirical model presheaf
 𝒮 : Open(X)^{op} → Set, by allowing formal linear combinations of sections:

$$\mathcal{F} := F_{\mathbb{Z}}\mathscr{S} : \mathbf{Open}(X)^{op} \longrightarrow \mathbf{Set} \xrightarrow{F_{\mathbb{Z}}} \mathbf{AbGrp}$$

• Thanks to this procedure, the cohomology obstruction is applicable to a large class of empirical models, e.g. the GHZ model, PR-boxes, the Peres-Mermin "magic" square, the whole class of models admitting All-vs-Nothing arguments, ...

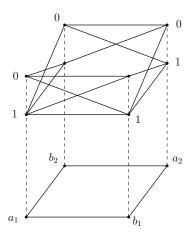
- Thanks to sheaf cohomology, we can define **cohomology obstructions** to the extension of local sections. A local section is extendable **if and only if the obstruction vanishes**.
- However, they can only be defined for a presheaf of abelian groups
- Hence, we need to 'abelianise' our empirical model presheaf
 𝒮 : Open(X)^{op} → Set, by allowing formal linear combinations of sections:

$$\mathcal{F} := F_{\mathbb{Z}}\mathscr{S} : \mathbf{Open}(X)^{op} \longrightarrow \mathbf{Set} \xrightarrow{F_{\mathbb{Z}}} \mathbf{AbGrp}$$

- Thanks to this procedure, the cohomology obstruction is applicable to a large class of empirical models, e.g. the GHZ model, PR-boxes, the Peres-Mermin "magic" square, the whole class of models admitting All-vs-Nothing arguments, ...
- However, this 'abelianisation' gives rise to a significant amount of false positives.

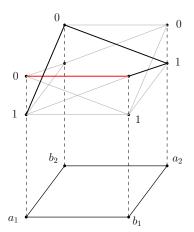
Hardy model

А	В	00	10	01	11
a_1	b_1	1	1	1	1
а ₁ а ₂	b_2	0	1	1	1
a_2	$b_1 \\ b_2 \\ b_1$	0	1	1	1
a ₂	b_2	1	1	1	0



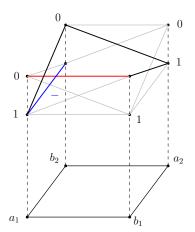
Hardy model

А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	b_2	0	1	1	1
а ₁ а ₂	$b_1 \\ b_2 \\ b_1$	0	1	1	1
a_2	b_2	1	1	1	0



Hardy model

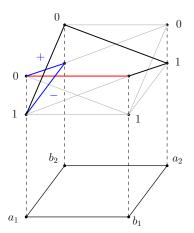
А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	b_2	0	1	1	1
а ₁ а ₂	$b_1 \\ b_2 \\ b_1$	0	1	1	1
a_2	b_2	1	1	1	0



Hardy model

А	В	00	10	01	11
a_1	b_1	1	1	1	1
a_1	b_2	0	1	1	1
a_2	b_1	0	1	1	1
a_2	b_2	1	1	1	0

The possibility of **linearly adding** sections allows us to find a global section (for \mathcal{F}) containing the red section. Thus cohomology does not detect contextuality in this case!

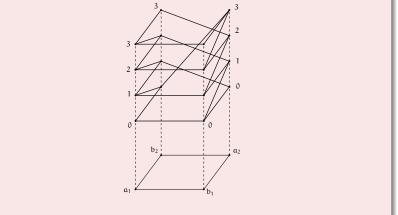


<ロ> (四)、(四)、(日)、(日)、

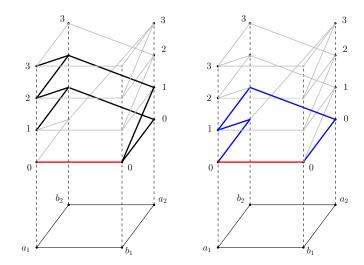
æ

▲ □ ▶ ▲ 個 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ● ●

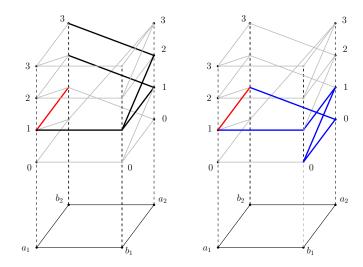
A strongly contextual model which is cohomologically non-contextual



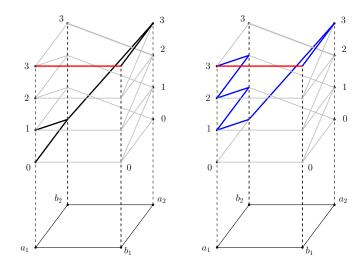
This model presents a false positive for every single local section.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

A new perspective: joint scenarios

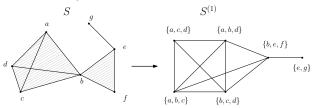
▲□▶ ▲□▶ ★目▶ ★目▶ 目 のへで

A new perspective: joint scenarios

• Suppose we have a scenario S, with a set of measurements X and a set of contexts \mathcal{M} .

- Suppose we have a scenario S, with a set of measurements X and a set of contexts \mathcal{M} .
- We define the **first joint scenario** $S^{(1)}$

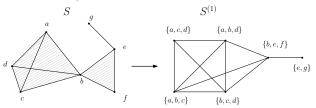
- Suppose we have a scenario *S*, with a set of measurements *X* and a set of contexts *M*.
- We define the **first joint scenario** $S^{(1)}$



・ロト ・御ト ・ヨト ・ヨト

- E

- Suppose we have a scenario *S*, with a set of measurements *X* and a set of contexts *M*.
- We define the first joint scenario $S^{(1)}$

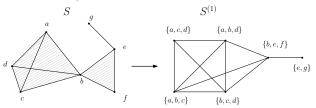


its set of measurements X⁽¹⁾ is M. In other words, in the simplicial complex description of S⁽¹⁾, we have a vertex for each context of S

《曰》 《圖》 《臣》 《臣》

- E

- Suppose we have a scenario *S*, with a set of measurements *X* and a set of contexts *M*.
- We define the first joint scenario $S^{(1)}$



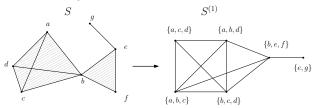
its set of measurements X⁽¹⁾ is M. In other words, in the simplicial complex description of S⁽¹⁾, we have a vertex for each context of S
its set of contexts M⁽¹⁾ consists of pairs of intersecting contexts:

$$\mathcal{M}^{(1)} := \{ \{ C_1, C_2 \} : C_1 \cap C_2 \neq \emptyset \},\$$

《曰》 《圖》 《臣》 《臣》

i.e. an edge connecting each pair of intersecting contexts

- Suppose we have a scenario *S*, with a set of measurements *X* and a set of contexts *M*.
- We define the first joint scenario $S^{(1)}$



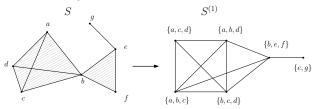
its set of measurements X⁽¹⁾ is M. In other words, in the simplicial complex description of S⁽¹⁾, we have a vertex for each context of S
 its set of contexts M⁽¹⁾ consists of pairs of intersecting contexts:

$$\mathcal{M}^{(1)} := \{ \{ C_1, C_2 \} : C_1 \cap C_2 \neq \emptyset \},\$$

i.e. an edge connecting each pair of intersecting contexts

• $S^{(1)}$ is always well defined. Thus, the procedure can be repeated:

- Suppose we have a scenario *S*, with a set of measurements *X* and a set of contexts *M*.
- We define the first joint scenario $S^{(1)}$



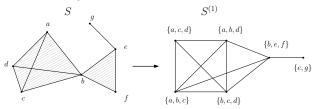
its set of measurements X⁽¹⁾ is M. In other words, in the simplicial complex description of S⁽¹⁾, we have a vertex for each context of S
its set of contexts M⁽¹⁾ consists of pairs of intersecting contexts:

$$\mathcal{M}^{(1)} := \{ \{ C_1, C_2 \} : C_1 \cap C_2 \neq \emptyset \},\$$

i.e. an edge connecting each pair of intersecting contexts

S⁽¹⁾ is always well defined. Thus, the procedure can be repeated:
 S⁽⁰⁾ := S

- Suppose we have a scenario *S*, with a set of measurements *X* and a set of contexts *M*.
- We define the first joint scenario $S^{(1)}$



its set of measurements X⁽¹⁾ is M. In other words, in the simplicial complex description of S⁽¹⁾, we have a vertex for each context of S
its set of contexts M⁽¹⁾ consists of pairs of intersecting contexts:

$$\mathcal{M}^{(1)} := \{ \{ C_1, C_2 \} : C_1 \cap C_2 \neq \emptyset \},\$$

i.e. an edge connecting each pair of intersecting contexts

• $S^{(1)}$ is always well defined. Thus, the procedure can be repeated:

•
$$S^{(0)} := S$$

• For all $k \ge 1$, we define the k-th joint scenario by $S^{(k)} := \left(S^{(k-1)}\right)^{(1)}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Suppose we have an empirical model S : Open(X)^{op} → Set on a scenario S.

- Suppose we have an empirical model S : Open(X)^{op} → Set on a scenario S.
- We define the first joint model $\mathscr{S}^{(1)}$: **Open** $(X^{(1)})^{op} \to$ **Set** on the first joint scenario $S^{(1)}$:

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Suppose we have an empirical model S : Open(X)^{op} → Set on a scenario S.
- We define the first joint model $\mathscr{S}^{(1)}$: **Open** $(X^{(1)})^{op} \to$ **Set** on the first joint scenario $S^{(1)}$:
 - For each context $C \in \mathcal{M} = X^{(1)}$, its set of outcomes is $O_C := \mathscr{S}(C)$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Suppose we have an empirical model S : Open(X)^{op} → Set on a scenario S.
- We define the first joint model $\mathscr{S}^{(1)}$: **Open** $(X^{(1)})^{op} \rightarrow$ **Set** on the first joint scenario $S^{(1)}$:
 - For each context $C \in \mathcal{M} = X^{(1)}$, its set of outcomes is $O_C := \mathscr{S}(C)$.
 - Given a pair C, C' of intersecting contexts of S, define

$$\mathscr{S}^{(1)}(\{C,C'\}) := \{(s_C,s_{C'}) \in \mathscr{S}(C) \times \mathscr{S}(C') : s_C \text{ agrees with } s_{C'} \text{ in } C \cap C'\}$$

(日) (個) (돈) (돈) (돈)

- Suppose we have an empirical model S : Open(X)^{op} → Set on a scenario S.
- We define the first joint model $\mathscr{S}^{(1)}$: **Open** $(X^{(1)})^{op} \rightarrow$ **Set** on the first joint scenario $S^{(1)}$:
 - For each context $C \in \mathcal{M} = X^{(1)}$, its set of outcomes is $O_C := \mathscr{S}(C)$.
 - Given a pair C, C' of intersecting contexts of S, define

$$\mathscr{S}^{(1)}(\{C, C'\}) := \{(s_C, s_{C'}) \in \mathscr{S}(C) \times \mathscr{S}(C') : s_C \text{ agrees with } s_{C'} \text{ in } C \cap C'\}$$

<ロト <回ト < 注ト < 注ト = 注

• The first joint model is a well-defined empirical model. Thus, the procedure can be iterated:

- Suppose we have an empirical model S : Open(X)^{op} → Set on a scenario S.
- We define the first joint model $\mathscr{S}^{(1)}$: **Open** $(X^{(1)})^{op} \rightarrow$ **Set** on the first joint scenario $S^{(1)}$:
 - For each context $C \in \mathcal{M} = X^{(1)}$, its set of outcomes is $O_C := \mathscr{S}(C)$.
 - Given a pair C, C' of intersecting contexts of S, define

$$\mathscr{S}^{(1)}(\{C, C'\}) := \{(s_C, s_{C'}) \in \mathscr{S}(C) \times \mathscr{S}(C') : s_C \text{ agrees with } s_{C'} \text{ in } C \cap C'\}$$

<ロト <回ト < 注ト < 注ト = 注

• The first joint model is a well-defined empirical model. Thus, the procedure can be iterated:

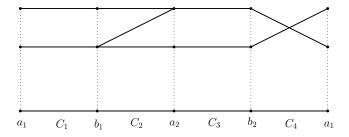
•
$$\mathscr{S}^{(0)} := \mathscr{S}$$

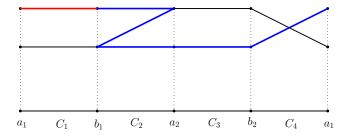
- Suppose we have an empirical model S : Open(X)^{op} → Set on a scenario S.
- We define the first joint model $\mathscr{S}^{(1)}$: **Open** $(X^{(1)})^{op} \rightarrow$ **Set** on the first joint scenario $S^{(1)}$:
 - For each context $C \in \mathcal{M} = X^{(1)}$, its set of outcomes is $O_C := \mathscr{S}(C)$.
 - Given a pair C, C' of intersecting contexts of S, define

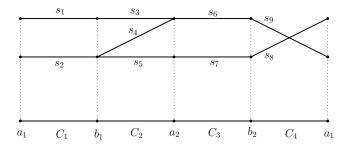
$$\mathscr{S}^{(1)}(\{C, C'\}) := \{(s_C, s_{C'}) \in \mathscr{S}(C) \times \mathscr{S}(C') : s_C \text{ agrees with } s_{C'} \text{ in } C \cap C'\}$$

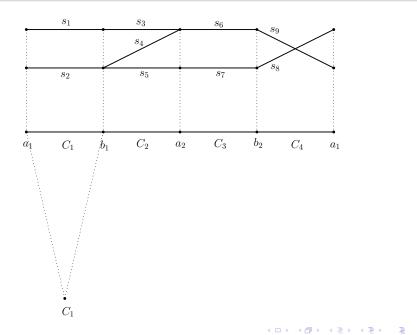
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

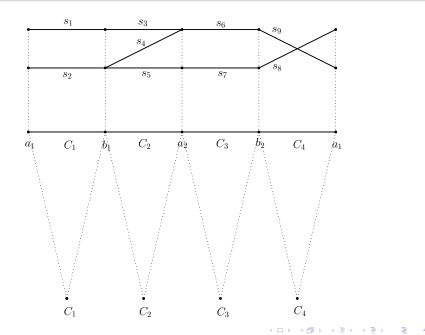
- The first joint model is a well-defined empirical model. Thus, the procedure can be iterated:
- $\mathscr{S}^{(0)} := \mathscr{S}$
- For all $k \ge 1$, we define the k-th joint model by $\mathscr{S}^{(k)} := (\mathscr{S}^{(k-1)})^{(1)}$.

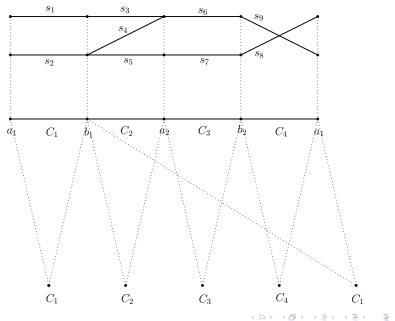




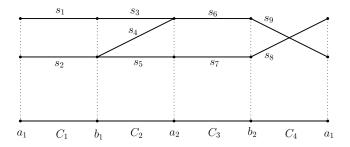








Sac



 C_2

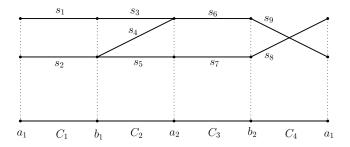
 C_1

 C_1

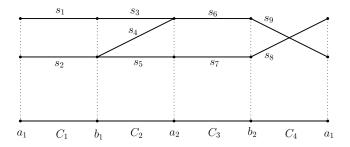
 C_4

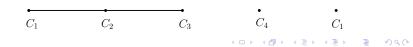
 C_3

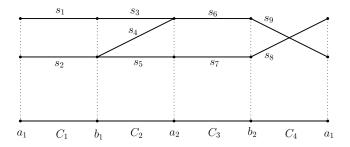
 C_1

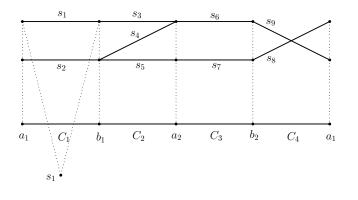


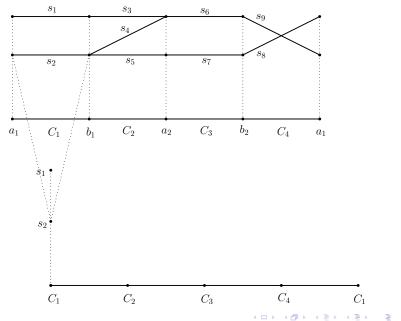
 C_2 C_3 C_4 C_1



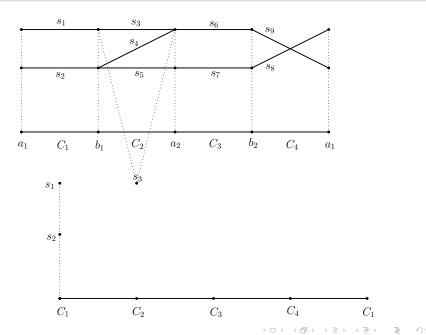


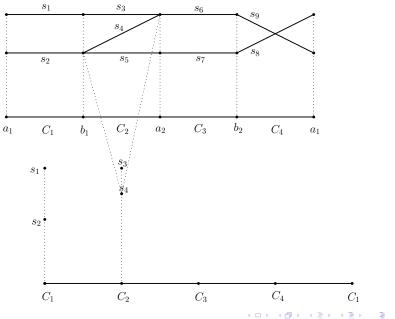




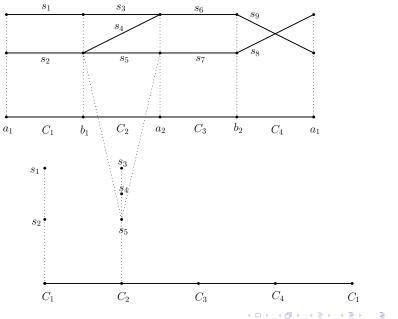


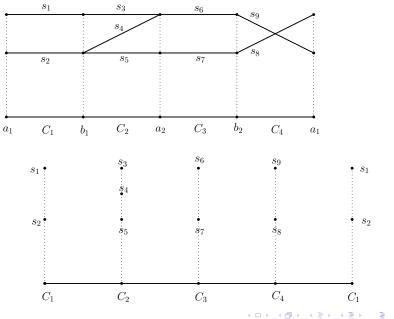
SQA

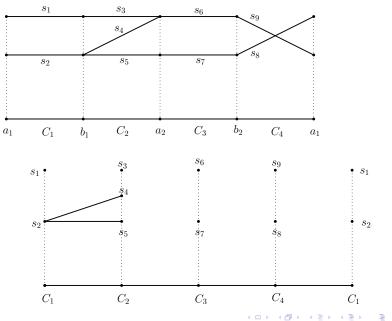




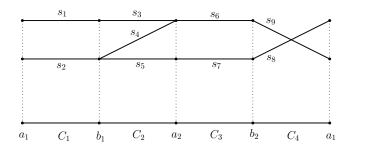
SQA

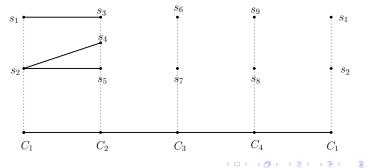


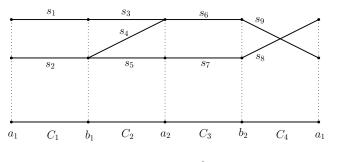


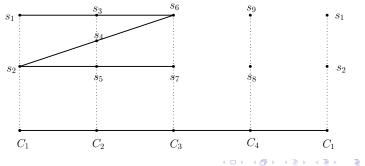


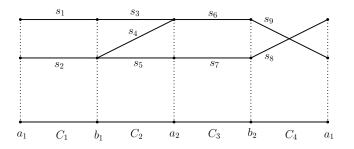
~ ~ ~

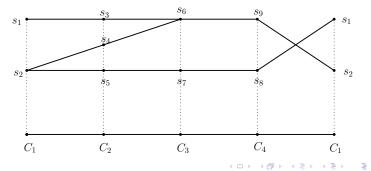


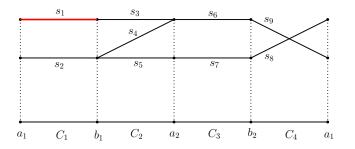


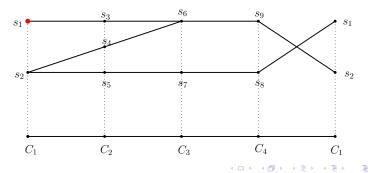




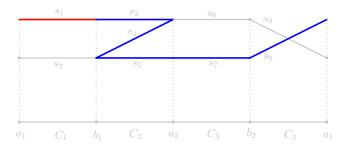


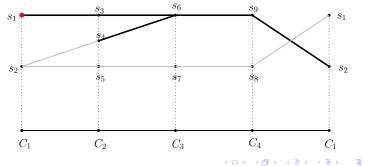






Example





500

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Joint models allow us to study the local extendability of sections.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

- Joint models allow us to study the local extendability of sections.
- There is a one-to-one correspondance between the global section of \mathscr{S} and the ones of $\mathscr{S}^{(1)}$. Thus, studying the contextuality of \mathscr{S} is equivalent to studying the contextuality of $\mathscr{S}^{(1)}$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

- Joint models allow us to study the local extendability of sections.
- There is a one-to-one correspondance between the global section of \mathscr{S} and the ones of $\mathscr{S}^{(1)}$. Thus, studying the contextuality of \mathscr{S} is equivalent to studying the contextuality of $\mathscr{S}^{(1)}$.
- By reiterating the joint model construction a sufficient amount of times, we can get rid of cohomological false positives in the vast majority of empirical models:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Joint models allow us to study the local extendability of sections.
- There is a one-to-one correspondance between the global section of \mathscr{S} and the ones of $\mathscr{S}^{(1)}$. Thus, studying the contextuality of \mathscr{S} is equivalent to studying the contextuality of $\mathscr{S}^{(1)}$.
- By reiterating the joint model construction a sufficient amount of times, we can get rid of cohomological false positives in the vast majority of empirical models:

Theorem

Let S be a **cyclic scenario** (i.e. such that $S^{(1)}$ is a chordless cycle) with n contexts. Then, given a model \mathscr{S} on S we have

 \mathscr{S} is contextual $\iff \mathscr{S}^{(n-1)}$ is cohomologically contextual

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注

- Joint models allow us to study the local extendability of sections.
- There is a one-to-one correspondance between the global section of \mathscr{S} and the ones of $\mathscr{S}^{(1)}$. Thus, studying the contextuality of \mathscr{S} is equivalent to studying the contextuality of $\mathscr{S}^{(1)}$.
- By reiterating the joint model construction a sufficient amount of times, we can get rid of cohomological false positives in the vast majority of empirical models:

Theorem

Let S be a **cyclic scenario** (i.e. such that $S^{(1)}$ is a chordless cycle) with n contexts. Then, given a model S on S we have

 \mathscr{S} is contextual $\iff \mathscr{S}^{(n-1)}$ is cohomologically contextual

• Therefore, for cyclic models, cohomology is a complete invariant for contextuality.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

• All the empirical models we know satisfy the **Cyclic contextuality property (CCP)**, which intuitively means that they 'display' their contextuality on a cycle.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

- All the empirical models we know satisfy the **Cyclic contextuality property (CCP)**, which intuitively means that they 'display' their contextuality on a cycle.
- Therefore, we can extend the invariant to all the models satisfying the CCP:

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

- All the empirical models we know satisfy the **Cyclic contextuality property (CCP)**, which intuitively means that they 'display' their contextuality on a cycle.
- Therefore, we can extend the invariant to all the models satisfying the CCP:

Theorem

Let S be a general scenario. Given a model ${\mathscr S}$ on S satisfying the CCP, we have

 \mathscr{S} is contextual $\Leftrightarrow \mathscr{S}^{(n-1)}$ is cohomologically contextual,

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

where n is the size of the cycle responsible for the contextuality of the model.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

• The CCP is extremely common.

• The CCP is **extremely common**. In fact, we suspect **all the models satisfy the CCP**. For this reason, we propose the following conjecture:

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

• The CCP is **extremely common**. In fact, we suspect **all the models satisfy the CCP**. For this reason, we propose the following conjecture:

Conjecture

Let S be a general scenario. Given a model ${\mathscr S}$ on S, there exists an $n\geq 0$ such that

 \mathscr{S} is contextual $\Leftrightarrow \mathscr{S}^{(n-1)}$ is cohomologically contextual.

<ロト <四ト <注入 <注下 <注下 <

• The CCP is **extremely common**. In fact, we suspect **all the models satisfy the CCP**. For this reason, we propose the following conjecture:

Conjecture

Let S be a general scenario. Given a model ${\mathscr S}$ on S, there exists an $n\geq 0$ such that

 \mathscr{S} is contextual $\Leftrightarrow \mathscr{S}^{(n-1)}$ is cohomologically contextual.

<ロト <四ト <注入 <注下 <注下 <

In other words, we strongly suspect the invariant is in fact universal.

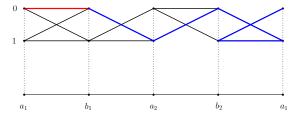


Figure: The Hardy model

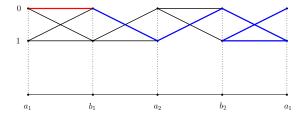


Figure: The Hardy model

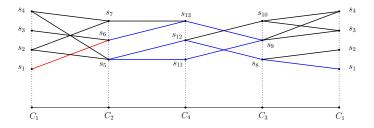


Figure: The first joint model of the Hardy model

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

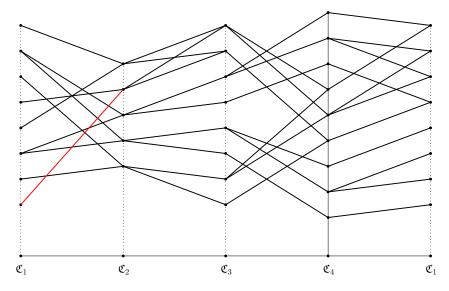


Figure: The third joint model of the Hardy model

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

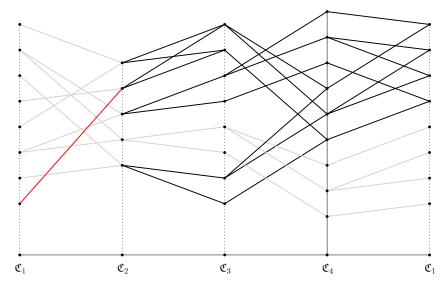
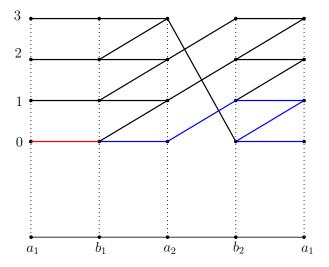
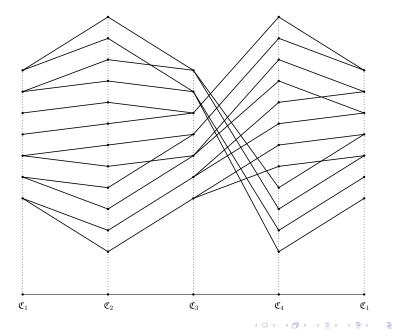


Figure: The third joint model of the Hardy model

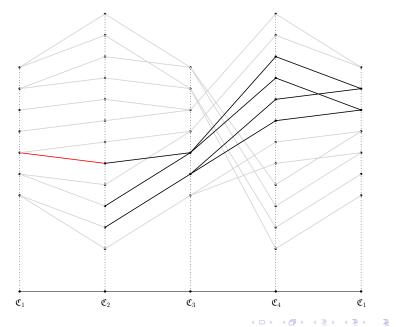
▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで



- E



500



200

Thank you for your attention! Questions?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで