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Experimental scenario

A basic experimental setting:

Two observers Alice and Bob, who are spatially separated, perform
measurements on a physical system (e.g. a quantum state)

Alice can choose between two binary measurements a1, a2 to
perform on the system. The measurements cannot be performed
simultaneously. Similarly for Bob with measurements b1, b2.

After each run of the experiment, Alice and Bob obtain two
outcomes, oA and oB .

a1 or a2 b1 or b2

oA = 0 or 1 oB = 0 or 1
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Experimental scenario

Suppose the experiment is repeated a large amount of times.

For each context, i.e. each possible choice of joint measurements,
we will obtain a probability distribution over the joint outcomes.

For our purposes, we will only need to know which events are
possible.

Example: the Hardy model.

A B 00 10 01 11

a1 b1 1 1 1 1

a1 b2 0 1 1 1

a2 b1 0 1 1 1

a2 b2 1 1 1 0

Such a possibility table is called a possibilistic empirical model.
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A classical viewpoint

From the point of view of classical physics, we expect an empirical
model to satisfy the following two properties:

No-signalling : Because Alice and Bob cannot communicate, Alice’s
choice of measurement should not influence Bob’s statistics, or
viceversa.
Non-contextuality : Every time Alice and Bob perform their
measurements, they are looking at a portion of a predetermined set
of outcomes, which is independent of their choice.

ai

oA oB

bj

λ

In other words, the state of the whole system is determined by a
hidden variable λ, whose value is independent of Alice and Bob’s
choices.
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Contextuality

Are these assumptions realistic?

Consider the Hardy model. Suppose Alice and Bob have chosen
(a1, b1), and observed (0, 0). What is the predetermined state of
the system?

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1© 1 1 1
a1 b2 0 1 1 1
a2 b1 0 1 1 1
a2 b2 1 1 1 0

This determines the following assignments:

a1 a2 b1 b2

0 ? 0 ?
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Contextuality

We may conclude that such a model is simply not possible to realise.

It turns out that it is realisable in quantum mechanics!

If we use an entangled qubit as a shared resource between Alice and Bob,
then behaviour of exactly the kind we have considered can be achieved.
This phenomenon is called (possibilistic) contextuality.

Fine but ...

What does topology have to do with this?
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Contextuality: local consistency vs global inconsistency

The bundle diagram representation of empirical models helps us
understand contextuality as a topological feature.

No-signalling corresponds to the fact that each local section can
always be extended to its adjacent contexts. In other words, the
diagram is locally consistent.

Contextuality correponds to the impossibility of extending a local
feature to a global one. This means that the diagram is globally
inconsistent.

Therefore, contextuality of no-signalling empirical models can be
loosely interpreted as a discrepancy between local consistency
and global inconsistency, which is ultimately a topological
property:
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Why sheaf theory?

Intuitively, a presheaf is an assignment of information to local
‘pieces’ of a topological space.

More precisely, given a space X , we have a functor

PS : Open(X )op −→ C,

which assigns, to each open subset U ⊆ X , some information in a
target category C.

Such information can be naturally restricted to smaller subsets:

U ⊆ U ′ 7−→
(
ρU

′

U : PS(U ′) −→ PS(U)
)

Presheaves were introduced to study the extendability of local
properties to global ones

This is exactly what we are looking for!
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Empirical models as presheaves:

Let X be the set of measurements (e.g. X = {a1, b1, a2, b2})
Let M be the collection of contexts (e.g.
M = {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}})
We equip X with the topology induced by M.

Given a possibility table describing the empirical model, we can see
it as a presheaf S : Open(X )op → Set,

S :: C ∈M 7−→ {Possible events at C}

Example:

A B 00 10 01 11
a1 b1 1 1 1 1
a1 b2 0 1 1 1
a2 b1 0 1 1 1
a2 b2 1 1 1 0

S (C ) := {(a1, b2) 7→ (0, 1), (1, 0), (1, 1)}
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Contextuality

The elements of S (C ), i.e. the possible events, are called local
sections.

Definition

A model S is contextual at a section s if s is not part of any
global section g ∈ S (X ).

A model S is strongly contextual if there are no global
sections.

The question of extending local sections to global ones is
well-studied in algebraic topology

The main ingredient? Sheaf cohomology!
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Sheaf cohomology

Thanks to sheaf cohomology, we can define cohomology
obstructions to the extension of local sections. A local section is
extendable if and only if the obstruction vanishes.

However, they can only be defined for a presheaf of abelian groups

Hence, we need to ‘abelianise’ our empirical model presheaf
S : Open(X )op → Set, by allowing formal linear combinations of
sections:

F := FZS : Open(X )op −→ Set
FZ−−−→ AbGrp

Thanks to this procedure, the cohomology obstruction is applicable
to a large class of empirical models, e.g. the GHZ model, PR-boxes,
the Peres-Mermin “magic” square, the whole class of models
admitting All-vs-Nothing arguments, ...

However, this ‘abelianisation’ gives rise to a significant amount of
false positives.
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The possibility of linearly adding
sections allows us to find a global
section (for F) containing the red
section. Thus cohomology does not
detect contextuality in this case!
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A strongly contextual model which is cohomologically non-contextual
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This model presents a false positive for every single local section.
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A new perspective: joint scenarios

Suppose we have a scenario S , with a set of measurements X and a
set of contexts M.

We define the first joint scenario S (1)

a

b

c

d

e

f

g

{a, b, c} {b, c, d}

{a, b, d}{a, c, d}
{b, e, f}

{e, g}

S S(1)

its set of measurements X (1) is M. In other words, in the simplicial
complex description of S (1), we have a vertex for each context of S
its set of contexts M(1) consists of pairs of intersecting contexts:

M(1) := {{C1,C2} : C1 ∩ C2 6= ∅},

i.e. an edge connecting each pair of intersecting contexts

S (1) is always well defined. Thus, the procedure can be repeated:
S (0) := S
For all k ≥ 1, we define the k-th joint scenario by

S (k) :=
(
S (k−1)

)(1)

.
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A new perspective: joint models

Suppose we have an empirical model S : Open(X )op → Set on a
scenario S .

We define the first joint model S (1) : Open(X (1))op → Set on the
first joint scenario S (1):

For each context C ∈M = X (1), its set of outcomes is OC := S (C).
Given a pair C ,C ′ of intersecting contexts of S , define

S (1)({C ,C ′}) := {(sC , sC ′) ∈ S (C)× S(C ′) :

sC agrees with sC ′ in C ∩ C ′}.

The first joint model is a well-defined empirical model. Thus, the
procedure can be iterated:

S (0) := S

For all k ≥ 1, we define the k-th joint model by

S (k) :=
(
S (k−1))(1).
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Results

Joint models allow us to study the local extendability of sections.

There is a one-to-one correspondance between the global section of
S and the ones of S (1). Thus, studying the contextuality of S is
equivalent to studying the contextuality of S (1).

By reiterating the joint model construction a sufficient amount of
times, we can get rid of cohomological false positives in the vast
majority of empirical models:

Theorem

Let S be a cyclic scenario (i.e. such that S (1) is a chordless cycle) with
n contexts. Then, given a model S on S we have

S is contextual⇐⇒ S (n−1)is cohomologically contextual

Therefore, for cyclic models, cohomology is a complete invariant for
contextuality.
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Extending the invariant to general models

All the empirical models we know satisfy the Cyclic contextuality
property (CCP), which intuitively means that they ‘display’ their
contextuality on a cycle.

Therefore, we can extend the invariant to all the models satisfying
the CCP:

Theorem

Let S be a general scenario. Given a model S on S satisfying the CCP,
we have

S is contextual⇔ S (n−1) is cohomologically contextual,

where n is the size of the cycle responsible for the contextuality of the
model.
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Extending the invariant to general models

The CCP is extremely common. In fact, we suspect all the
models satisfy the CCP. For this reason, we propose the following
conjecture:

Conjecture

Let S be a general scenario. Given a model S on S, there exists an
n ≥ 0 such that

S is contextual⇔ S (n−1) is cohomologically contextual.

In other words, we strongly suspect the invariant is in fact universal.
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Thank you for your
attention! Questions?
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