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Contextuality supplies the magic for quantum computing?

Contextuality ←→ Universal QC via MSD (Howard et al.)

Strong contextuality ←→ Non-linear `2-MBQC (Raussendorf)

Degree of contextuality relates to degree of advantage in
probabilistic computation (Abramsky, Barbosa, SM)

ε ≥ NCF(e)ν( f )

ε – error; NCF(e) – classicality; ν( f ) – hardness of task
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Problem: single-qubit non-linear protocol
(Dunjko, Kapourniotis, Kashefi)

|+〉 Ua Vb Wa⊕b σX meas.

Classical control (⊕L):

Classical inputs a,b ∈ Z2

Controls transformations on
resource
Announces meas. outcome
{+1 7→ 0,−1 7→ 1}
o = a⊗2 b

Quantum resource:
Prepare qubit in state |+〉
Transformations

U0 =V0 =W0 = I

U1 =V1 =W1 = Rz(π/2)

Return meas. outcome

Boosts computational power: ⊕L −→ P

Issue: contextuality cannot arise with a single qubit!
So what, if anything, is the non-classical behaviour?
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Ontological models*

Usual setting for proving no-go theorems

Space of ontic states Λ

Quantum mechanics Ontological models
Preparation ρ dρ ∈ P(Λ)
Transformation U fU : Λ→ Λ

Measurement M ξM : Λ→ P(O)

Empirical data eρ,U,M should be reproduced as

eρ,U,M = ∑
λ∈Λ

dρ(λ )ξM( fU(λ ))

Weighted average over ontic states

*No implicit assumptions about additional ‘features’ (cf. Spekkens)
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Classicality: Bell-Kochen-Specker

Non-contextuality

Context: a set of compatible measurements

C = {M1, . . . ,Mn}

Ontological representations respect compatibility

ξC(λ ) = ∏
M∈C

ξM(λ )

. . . and are context-independent; e.g. if M ∈C,C′

ξM(C) = ξM(C′)
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Classicality: Spekkens

Non-contextuality of transformations

A context is a convex decomposition of a fixed transformation,
e.g.

T =
1
2

Ua +
1
2

UA (C)

T =
1
3

Ua +
1
3

Ub +
1
3

Uc . (C′)

Ontological representations respect convex decompositions,
e.g.

fT =
1
2

fUa +
1
2

fUA =
1
3

fUa +
1
3

fUb +
1
3

fUc

. . . and are context-independent

f
U (C)

a
= f

U (C′)
a
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Classicality III

Non-contextuality of transformations in sequential contexts

A context is a sequence Un ◦Un−1 ◦ · · · ◦U1

Ontological representations respect sequentiality

fUn◦···◦U1 = fUn ◦ · · · ◦ fU1

. . . and are context-independent

fU (C) = fU (C′)

Example: Quantum advantage in shallow circuits*
Contextuality is necessary for advantage
Sufficient for a weaker kind of advantage

*Bravyi, Gossett, Kitaev ’17
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Proposal for generalised non-contextuality

Basic components of an operational physical theory:
preparations (P), transformations (T), measurements (M)

A context is a composition/combination of basic components
Ontological representations respect composition/combination
. . . and are context-independent

Components Composition
Locality M ×
Non-contextuality (BKS) M ×
Measurement NC (Spekkens) M ⊗
Preparation NC (Spekkens) P +λ

Preparation Independence (PBR) P ×
Subsystem Condition (SM) P ⊗
Transformation NC (Spekkens) T +λ

Seq. Transformation NC T ◦
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An appropriate ontology

|+〉 Ua Vb Wa⊕b σX meas.

Artificial problem: boost ⊕L−→ P
Trivial without matching restriction on ontological models

l2-ontological models:

Ontic states Λ = (Z2)
n

Transformations fU(λλλ ) = λλλ ⊕uuu
Measurements ξM(λλλ ) = λλλ ·mmm⊕m′

(Wlog, project onto relevant copies of Z2)

i.e. Bits, single bit reversible transformations, CNOTs, parity
Crucially, no C-swaps, or Toffolis, etc.
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Parity proof of contextuality

Ontological realisation of the protocol requires the following
equations to be satisfied

(λλλ ⊕uuu0⊕ vvv0⊕www0) ·111 = 0

(λλλ ⊕uuu0⊕ vvv1⊕www1) ·111 = 1

(λλλ ⊕uuu1⊕ vvv0⊕www1) ·111 = 1

(λλλ ⊕uuu1⊕ vvv1⊕www0) ·111 = 1

System of equations is not jointly satisfiable

1st equation: overall number of 1’s in λλλ ,uuu0,vvv0,www0 is even
2nd equation: overall number of 1’s in λλλ ,uuu0,vvv1,www1 is odd, etc.
Sum RHS: odd
Sum LHS: even (each vector appears even number of times)
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Some results

|+〉 Ua Vb Wa⊕b σX meas.

Result 1
DKK protocol −→ (AvN) sequential transformation contextuality

Cf. Anders and Browne protocol using BKS contextuality

l2-TBQCs: ⊕L control computer with access to a resource
Fixed preparation
Controlled unitaries
Fixed 2-outcome measurement

Result 2
Any deterministic non-linear l2-TBQC −→
(strong) sequential transformation contextuality

Cf. Raussendorf theorem for BKS contextuality
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Quantum advantage for probabilistic computation

(joint with Dan Browne, Lorenzo Catani, Luciana Henaut, Anna Pappa)

|+〉 Ua Vb σX meas.

Task: compute a⊗2 b

Maximise success probability
Tsirelson bound for qubits
Similar for qutrits, with ⊗3, etc.
Dimensional witness!

pmax
success

bit 0.75
Spekkens toy bit 0.75
stabiliser qubit 0.75
qubit 0.85
qutrit 1

11 / 18



Tsirelson bound

(joint with Dan Browne, Lorenzo Catani, Luciana Henaut, Anna Pappa)

Correspondence with Tsirelson in CHSH scenario

12 / 18



Empirical models

Empirical model: for each context C, a distribution eC over possible
outcomes

e = {eC}

Cf. Abramsky and Brandenburger

|+〉 Ua Vb σX meas.

E.g. CHSH strategy

context outcome
a b o = 0 o = 1

C0 0 0 3/4 1/4

C1 0 1 1/4 3/4

C2 1 0 1/4 3/4

C3 1 1 0 1

eC0 = (3/4, 1/4)

eC1 = (1/4, 3/4)

eC2 = (1/4, 3/4)

eC3 = (0,1)
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Quantifying contextuality

Empirical model: for each context C, a distribution eC over possible
outcomes

e = {eC}

Non-contextual fraction NCF(e): max ω over all decompositions

e = ωeNC+(1−ω)e′

s.t. eNC is non-contextual

Contextual fraction CF(e): 1−NCF(e)

CF(e),NCF(e) ∈ [0,1]

Cf. Contextual fraction as a measure of contextuality. Abramsky, Barbosa, SM
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Advantage, contextuality and hardness

Task: Compute f : (Z2)
r→ Z2 by l2-TBQC with resource e

Result 3
Let ε be the failure probability. Then

ε ≥ NCF(e)ν( f )

ε quantifies error
NCF(e) quantifies (non)contextuality
ν( f ) quantifies degree of nonlinearity of f

Previous results follow from this one

Cf. Contextual fraction as a measure of contextuality. Abramsky, Barbosa, SM
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Classical erasure

(joint with Dan Browne, Lorenzo Catani, Luciana Henaut, Anna Pappa)

|+〉 Ua Vb σX meas.

Classically, can compute a⊗2 b with l2-operations and erasure

U0 = I U1 = NOT V0 = RESET0 V1 = I

Undesirable for an ontological model

fI 6= I

Expected erasure cost per run, averaged over pairs of inputs,
to compute a function g, with 1- and 2-bit gates

ν̃(g)
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Contextuality-erasure tradeoff

(joint with Dan Browne, Lorenzo Catani, Luciana Henaut, Anna Pappa)

|+〉 Ua Vb σX meas.

Landauer’s Principle
Erasure of a bit results in an entropy increase of at least kT ln2 in
the non-information-bearing degrees of freedom of the system

Verification of quantumness
If for n runs, uniformly random inputs, entropy increase ∆S,

ε ≥
[
NCF(e)− ∆S

nkT ln2

]
ν̃(g)

∆S≥
[

1−CF(e)− ε

ν̃(g)

]
nkT ln2

CF(e)≥ 1− ε

ν̃(g)
− ∆S

nkT ln2
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Conclusion

Novel way to be non-classical:
sequential transformation contextuality
Quantifiably relates to quantum advantage in l2-TBQCs
Results parallel Anders and Browne, Raussendorf, etc.
for BKS contextuality
Available to single qubits
Dimensional, irreversibility & quantumness witnesses

Some open questions
Is it exhibited in less restricted models?
E.g. of indefinite causal structures
Where else does it play a role?
E.g. other single qubit advantages (Knill-Laflamme, Galvão),
other informatic tasks, universal QC (similar to Howard et al.)?
Resource-theoretic treatment
Experimental tests
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