
Using probabilistic couplings in data analysis

V́ıctor H. Cervantes1, Ehtibar N. Dzhafarov2

Purdue University
1cervantv@purdue.edu
2ehtibar@purdue.edu

Quantum Contextuality in Quantum Mechanics and Beyond
Prague

May 19, 2019



Introduction

Stochastically unrelated random variables

Consider a coin flipped n1 times here and another coin flipped n2
times in the USA.

The number of head of these coins may be represented by random
variables X1 ∼ Binomial(n1, p1) and X2 ∼ Binomial(n1, p2).



Introduction

Stochastically unrelated random variables

Random variables X1 and X2 are generally taken as independent
random variables.

There is no logical justification for this.

We investigated a more principled approach: using all possible couplings
and choosing one that is optimal in accordance with certain criteria.

We did this for the case where both X1 and X2 have the same n.



Introduction

Stochastically unrelated random variables
Bell inequalities

Note that in the usual Alice-Bob setting, the situation is similar when
considering each pair of measurements performed by Alice with varying
choices of Bob, and vice versa.



Introduction

Couplings

A coupling of a pair of random variables {X, Y }

is a random variable
(
X̃, Ỹ

)
(with jointly distributed components), such that X̃

d
= X, Ỹ

d
= Y,

where
d
= stands for “has the same distribution as.”

A coupling always exists, generally non-uniquely.



Optimal couplings

Coupling of two binomial random variables

Optimal Coupling

We applied the maximum likelihood meaning of optimality to the task
of identifying and comparing two probabilities from two stochastically
unrelated sets of binary events.



Optimal couplings

Coupling of two binomial random variables

Let X1 ∼ Binomial(n, p1) and X2 ∼ Binomial(n, p2) be two
stochastically unrelated random variables for a given number of
observations n.

Let Z = (Z1, Z2) be a coupling of X1 and X2



Optimal couplings

Coupling of two binomial random variables

Z is a random 2× 2 matrix whose cells follow a multinomial
distribution with parameters (n, θ11, θ12, θ21, θ22) such that
θ11 + θ12 = p1 and θ11 + θ21 = p2.[

θ11 θ12
θ21 θ22

]



Optimal couplings

Coupling of two binomial random variables

Z is a random 2× 2 matrix whose cells follow a multinomial
distribution with parameters (n, θ11, θ12, θ21, θ22) such that
θ11 + θ12 = p1 and θ11 + θ21 = p2.[

θ11 p1 − θ11
p2 − θ11 1− p1 − p2 + θ11

]

Given data for X1 = x1 and X2 = x2, we wish to explore the likelihood
of the possible couplings Z.



Optimal couplings

Coupling of two binomial random variables

Z is a random 2× 2 matrix whose cells follow a multinomial
distribution with parameters (n, θ11, θ12, θ21, θ22) such that
θ11 + θ12 = p1 and θ11 + θ21 = p2.[

θ11 p1 − θ11
p2 − θ11 1− p1 − p2 + θ11

]
Given data for X1 = x1 and X2 = x2, we wish to explore the likelihood
of the possible couplings Z.



Optimal couplings

Coupling of two binomial random variables

Note that a realization of a coupling Z is of the following form[
m11 m12
m21 m22

]
where
m11 +m12 +m21 +m22 = n,
m11 ∈ {max(x1 + x2 − n, 0), . . . ,min(x1, x2)},
m11 +m12 = x1,

m11 +m21 = x2.

Pr(Z = {m11,m12,m21,m22}) =
(

n
m11m12m21m22

)∏2
i=1

∏2
j=1 θ

mij

ij



Optimal couplings

Coupling of two binomial random variables

Likelihood

Thus, the likelihood is defined by

L(θ11, p1, p2|n, x1, x2) =

Pr(Z1 = x1, Z2 = x2) =

b∑
m11=a

Pr(Z = {m11, x1 −m11, x2 −m11, n− x1 − x2 +m11})

where a = max(x1 + x2 − n, 0) and b = min(x1, x2)



Optimal couplings

Coupling of two binomial random variables

Maximizing the likelihood

Given data, the likelihood can easily be maximized numerically.

Also, by functional invariance of likelihood estimators,

p̂i = xi/n, i = 1, 2

.



Optimal couplings

Coupling of two binomial random variables

Maximizing the likelihood (examples)
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Coupling of two binomial random variables

Maximizing the likelihood (examples)



Optimal couplings

Coupling of two binomial random variables

Maximizing the likelihood (examples)



Optimal couplings

Testing equality of two probabilities

Likelihood

If we assume equality of proportions, the restricted likelihood becomes

L(θ11, p|n, x1, x2) =

b∑
m11=a

1

2−(n−x1−x2+m11)
×

n!

m11!(x1 −m11)!(x2 −m11)!(n− x1 − x2 +m11)!
×

θm11

11 (2p− 2θ11)
x1+x2−2m11(1− 2p+ θ11)

n−x1−x2+m11



Optimal couplings

Testing equality of two proportions

Maximizing the likelihood (examples)

For all cases we have explored, the optimal coupling maximizing (p, θ11), is
given by

p̂ = x1+x2
2n = 1

2(
x1
n + x2

n )

θ̂11 =

{
max(0, (x1+x2)/n− 1) (minimal coupling)

min(x1/n, x2/n) (maximal coupling)



Optimal couplings

Testing equality of two proportions

Maximizing the likelihood (examples)



Optimal couplings

Testing equality of two proportions

Maximizing the likelihood (examples)



Optimal couplings

Testing equality of two proportions

Testing equality

Ho : p1 = p2 = p

vs.

Ha : p1 6= p2

λ̂ =
max{L(θ11,p1,p2|n,x1,x2)}

max{L(θ11,p|n,x1,x2)}
.



Optimal couplings

Testing equality of two proportions

Testing equality

We approximate the distribution of λ̂ via parametric bootstrap:

1 Given n, x1, x2 find λ̂, and θ̂11, p̂ such that
L(θ̂11, p̂|n, x1, x2) = max{L(θ11, p|n, x1, x2)}

2 For each possible sample of Z distributed with θ̂11, p̂ find λ(n, z1, z2).



Optimal couplings

Testing equality of two proportions

Testing equality (examples)



Optimal couplings

Testing equality of two proportions

Testing equality (examples)



Discussion

Closing Remarks

Optimal couplings are readily identifiable, and the independent coupling
is rarely optimal.

Considerations of stochastical unrelatedness and couplings lead to
rethink the basic assumptions of statistical analysis.

Some conclusions may coincide between optimal and independence
couplings (e.g., some point estimates).

Decisions may not necessarily be the same: given the same data and
choice of significance level, the optimal coupling leads to a more
conservative test.



Thank you!
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