Measures of Contextuality and Noncontextuality

Ehtibar N. Dzhafarov

Purdue University

(joint work with Janne V. Kujala)

QCQMB III, May 2019

If a system of random variables is contextual, what is the degree of its contextuality?

- If a system of random variables is contextual, what is the degree of its contextuality?
- But also of interest: If a system of random variables is noncontextual, what is the degree of its noncontextuality?

- If a system of random variables is contextual, what is the degree of its contextuality?
- But also of interest: If a system of random variables is noncontextual, what is the degree of its noncontextuality?

$$\max_{(\iota_1,\ldots,\iota_k)\in\{-1,1\}^n:\prod_{i=1}^n\iota_i=-1}\sum_{i=1}^n\iota_i\left\langle R_i^iR_{i\oplus1}^i\right\rangle - n + 2 - \sum_{i=1}^n\left|\left\langle R_i^i\right\rangle - \left\langle R_i^{i\oplus1}\right\rangle\right| > 0.$$

- If a system of random variables is contextual, what is the degree of its contextuality?
- But also of interest: If a system of random variables is noncontextual, what is the degree of its noncontextuality?

$$\max_{\substack{(\iota_1,\ldots,\iota_k)\in\{-1,1\}^n:\prod_{i=1}^n\iota_i=-1\\ i=1}}\sum_{i=1}^n\iota_i\left\langle R_i^iR_{i\oplus1}^i\right\rangle - n + 2 - \sum_{i=1}^n\left|\left\langle R_i^i\right\rangle - \left\langle R_i^{i\ominus1}\right\rangle\right| > 0.$$
$$\max_{\substack{(\iota_1,\ldots,\iota_k)\in\{-1,1\}^n:\prod_{i=1}^n\iota_i=-1\\ i=1}}\sum_{i=1}^n\iota_i\left\langle R_i^iR_{i\oplus1}^i\right\rangle - n + 2 - \sum_{i=1}^n\left|\left\langle R_i^i\right\rangle - \left\langle R_i^{i\ominus1}\right\rangle\right| \le 0.$$

Consider an indexed set of random variables

$$\mathcal{R} = \left\{ R_{\alpha} : \alpha \in I \right\},\,$$

in which some, but not necessarily all random variables are jointly distributed.

Consider an indexed set of random variables

$$\mathcal{R} = \left\{ R_{\alpha} : \alpha \in I \right\},\,$$

in which some, but not necessarily all random variables are jointly distributed.

 \blacksquare A coupling of $\mathcal R$ is an identically indexed set of random variables

$$S = \{S_{\alpha} : \alpha \in I\}$$

such that,

Consider an indexed set of random variables

$$\mathcal{R} = \left\{ R_{\alpha} : \alpha \in I \right\},\,$$

in which some, but not necessarily all random variables are jointly distributed.

 \blacksquare A coupling of $\mathcal R$ is an identically indexed set of random variables

$$S = \{S_{\alpha} : \alpha \in I\}$$

such that,

 $\mathsf{JD}\left(S\right),$

Consider an indexed set of random variables

$$\mathcal{R} = \left\{ R_{\alpha} : \alpha \in I \right\},\,$$

in which some, but not necessarily all random variables are jointly distributed.

 \blacksquare A coupling of $\mathcal R$ is an identically indexed set of random variables

$$S = \{S_{\alpha} : \alpha \in I\}$$

such that,

 $\mathsf{JD}\left(S\right),$

and, for any $J \subseteq I$,

 $\mathsf{JD}\left(\{\mathcal{R}_{\alpha}: \alpha \in J\}\right) \Longrightarrow \{S_{\alpha}: \alpha \in I\} \sim \left(\mathcal{R}_{\alpha}: \alpha \in J\right).$

Consider an indexed set of random variables

$$\mathcal{R} = \left\{ R_{\alpha} : \alpha \in I \right\},\,$$

in which some, but not necessarily all random variables are jointly distributed.

 \blacksquare A coupling of $\mathcal R$ is an identically indexed set of random variables

$$S = \{S_{\alpha} : \alpha \in I\}$$

such that,

 $\mathsf{JD}\left(S\right),$

and, for any $J \subseteq I$,

$$\mathsf{JD}\left(\{\mathcal{R}_{\alpha}: \alpha \in J\}\right) \Longrightarrow \{S_{\alpha}: \alpha \in I\} \sim \left(\mathcal{R}_{\alpha}: \alpha \in J\right).$$

In particular, for any $\alpha \in I$,

$$R_{\alpha} \sim S_{\alpha}.$$

Agglutination property of JD relation

Agglutination property of JD relation

If $\mathbb{A} \cap \mathbb{B} \neq \emptyset$, then $JD(\mathbb{A}) \& JD(\mathbb{B}) \Longrightarrow JD(\mathbb{A} \cup \mathbb{B})$

Bunches — contexts

Connections — contents

System of random variables

Terminology: (in)consistently connected system

Coupling for connections (multimaximal)

Multimaximal couplings: for any two variables in each connection, the probability of them being equal is maximal possible

Coupling for connections (multimaximal)

With all variables dichotomous,

the multimaximal couplings exists and is unique for every connection

Overall coupling: for bunches and for connection couplings

Overall coupling, respecting bunches and connection couplings: iff such a coupling exists, the system is noncontextual.

A system as a probability vector

	R_2^1	R_3^1			$p^1\left(R_i^1 = \pm 1: i = 2, 3\right)$
R_{1}^{2}	R_{2}^{2}		R_{4}^{2}	$ R_{5}^{2} $	$p^2 \left(R_i^2 = \pm 1 : i = 1, 2, 4, 5 \right)$
R_{1}^{3}	R_{2}^{3}	R_{3}^{3}	R_{4}^{3}		$p^3 \left(R_i^3 = \pm 1 : i = 1, 2, 3, 4 \right)$
R_{1}^{4}	R_{2}^{4}			R_5^4	$p^4 \left(R_i^4 = \pm 1 : i = 1, 2, 5 \right)$

$$\mathbf{p}_{(bunch)}^{*} = \left(\mathbf{p}^{1}, \mathbf{p}^{2}, \mathbf{p}^{3}, \mathbf{p}^{4}\right)^{\top}$$

A system as a probability vector

$$\mathbf{p}_{(connect)}^* = (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_5)^\top$$

A system as a probability vector

$$\mathbf{p}_{(full)}^* = \left(\begin{array}{c} \mathbf{p}_{(bunch)}^* \\ \mathbf{p}_{(connect)}^* \end{array}\right)$$

$$\mathbf{p}_{(full)}^{*} = \begin{pmatrix} \mathbf{p}_{(bunch)}^{*} \\ \mathbf{p}_{(connect)}^{*} \end{pmatrix} \longleftrightarrow \begin{pmatrix} \mathbf{p}_{low}^{*} \\ \mathbf{p}_{bunch}^{*} \\ \mathbf{p}_{connect}^{*} \end{pmatrix} = p_{reduced}^{*}$$

$$\mathbf{p}_{(full)}^{*} = \begin{pmatrix} \mathbf{p}_{(bunch)}^{*} \\ \mathbf{p}_{(connect)}^{*} \end{pmatrix} \longleftrightarrow \begin{pmatrix} \mathbf{p}_{low}^{*} \\ \mathbf{p}_{bunch}^{*} \\ \mathbf{p}_{connect}^{*} \end{pmatrix} = \mathbf{p}_{reduced}^{*}$$

$$\mathbf{p}_{connect} \text{ is vector of connection marginals} \text{ of order } >1$$

$$e.g., \Pr\left[V_{2}^{1} = V_{2}^{2} = V_{2}^{3} = 1\right],$$
where V is the multimaximal coupling

Overall coupling's distribution: probability vector

	R_2^1	R_3^1			c^1			S_2^1	S_{3}^{1}			c^1
R_{1}^{2}	R_{2}^{2}		R_{4}^{2}	R_{5}^{2}	c^2		S_{1}^{2}	S_{2}^{2}		S_{4}^{2}	S_{5}^{2}	c^2
R_1^3	R_{2}^{3}	R_{3}^{3}	R_{4}^{3}		c^3	\longrightarrow	S_1^3	S_{2}^{3}	S_{3}^{3}	S_{4}^{3}		c^{3}
R_{1}^{4}	R_{2}^{4}			R_{5}^{4}	c^4		S_1^4	S_{2}^{4}			S_{5}^{4}	c^4
q_1	q_2	q_3	q_4	q_5	\mathcal{R}]	q_1	q_2	q_3	q_4	q_5	S

Overall coupling's distribution: probability vector

$$\mathbf{x} = \Pr\left(S_q^c = \pm 1 : q \prec c\right).$$

Measures of contextuality: Preamble

Fact

A system is noncontextual iff

$$\left(egin{array}{c} \mathbf{M_{low}} \\ \mathbf{M_{bunch}} \\ \mathbf{M_{connect}} \end{array}
ight) \mathbf{x} = \left(egin{array}{c} \mathbf{p_{low}^*} \\ \mathbf{p_{bunch}^*} \\ \mathbf{p_{connect}^*} \end{array}
ight),$$

where \mathbf{x} is vector of probabilities for all possible values of a coupling S.

 $\begin{array}{c} \label{eq:plow} \blacksquare \ \mbox{Consider all} \left(\begin{array}{c} \mathbf{p}_{low} \\ \mathbf{p}_{bunch} \\ \mathbf{p}_{connect} \end{array} \right) \ \mbox{that can be obtained as} \\ \left(\begin{array}{c} \mathbf{p}_{low} \\ \mathbf{p}_{bunch} \\ \mathbf{p}_{connect} \end{array} \right) = \left(\begin{array}{c} \mathbf{M}_{low} \\ \mathbf{M}_{bunch} \\ \mathbf{M}_{connect} \end{array} \right) \mathbf{x}, \end{array}$

under the constraint that

$$\mathbf{p_{low}} = \mathbf{p}^*_{low}$$

and one of the two,

$$\mathbf{p}_{\mathbf{bunch}} = \mathbf{p}_{\mathbf{bunch}}^*$$
 or $\mathbf{p}_{\mathbf{connect}} = \mathbf{p}_{\mathbf{connect}}^*$.

See how close the remaining (free to vary) part can get to the observed/computed one.

 $\begin{array}{c} \label{eq:plow} \blacksquare \ \mbox{Consider all} \left(\begin{array}{c} \mathbf{p}_{low} \\ \mathbf{p}_{bunch} \\ \mathbf{p}_{connect} \end{array} \right) \ \mbox{that can be obtained as} \\ \left(\begin{array}{c} \mathbf{p}_{low} \\ \mathbf{p}_{bunch} \\ \mathbf{p}_{connect} \end{array} \right) = \left(\begin{array}{c} \mathbf{M}_{low} \\ \mathbf{M}_{bunch} \\ \mathbf{M}_{connect} \end{array} \right) \mathbf{x}, \end{array}$

under the constraint that

$$\mathbf{p_{low}} = \mathbf{p^*_{low}}$$

and one of the two,

$$\mathbf{p}_{\mathbf{bunch}} = \mathbf{p}^*_{\mathbf{bunch}} \implies \mathbf{p}_{\mathbf{connect}} \rightsquigarrow \mathbf{p}^*_{\mathbf{connect}}.$$

See how close the remaining (free to vary) part can get to the observed/computed one.

 $\begin{array}{c} \label{eq:plow} \blacksquare \ \mbox{Consider all} \left(\begin{array}{c} \mathbf{p}_{low} \\ \mathbf{p}_{bunch} \\ \mathbf{p}_{connect} \end{array} \right) \mbox{that can be obtained as} \\ \left(\begin{array}{c} \mathbf{p}_{low} \\ \mathbf{p}_{bunch} \\ \mathbf{p}_{connect} \end{array} \right) = \left(\begin{array}{c} \mathbf{M}_{low} \\ \mathbf{M}_{bunch} \\ \mathbf{M}_{connect} \end{array} \right) \mathbf{x}, \end{array}$

under the constraint that

$$\mathbf{p_{low}} = \mathbf{p^*_{low}}$$

and one of the two,

$$\mathbf{p}_{\mathbf{bunch}} \rightsquigarrow \mathbf{p}^*_{\mathbf{bunch}} \quad \Leftarrow \quad \mathbf{p}_{\mathbf{connect}} = \mathbf{p}^*_{\mathbf{connect}}.$$

See how close the remaining (free to vary) part can get to the observed/computed one.

■ Consider some class Y of vectors that includes all probability distributions x as a proper subset, and such that

$$\left(egin{array}{c} \mathbf{M_{low}} \\ \mathbf{M_{bunch}} \\ \mathbf{M_{connect}} \end{array}
ight) \mathbf{y} = \left(egin{array}{c} \mathbf{p}^*_{low} \\ \mathbf{p}^*_{bunch} \\ \mathbf{p}^*_{connect} \end{array}
ight)$$

always has a solution in $\mathbf{y} \in \mathbb{Y}$.

■ Consider some class Y of vectors that includes all probability distributions x as a proper subset, and such that

$$\left(egin{array}{c} \mathbf{M_{low}} \\ \mathbf{M_{bunch}} \\ \mathbf{M_{connect}} \end{array}
ight) \mathbf{y} = \left(egin{array}{c} \mathbf{p}^*_{low} \\ \mathbf{p}^*_{bunch} \\ \mathbf{p}^*_{connect} \end{array}
ight)$$

always has a solution in $\mathbf{y} \in \mathbb{Y}$.

2 See how close such a y can get to the set of proper vectors x.

A measure of contextuality (type I) extendable into a measure of noncontextuality

Noncontextuality polytope

$$\mathbb{P} = \left\{ \mathbf{p}_{\mathsf{bunch}} \colon \mathbf{p}_{\mathbf{bunch}} = \mathbf{M}_{\mathbf{bunch}} \mathbf{x} \mid \left(\begin{array}{c} \mathbf{M}_{\mathbf{low}} \\ \mathbf{M}_{\mathbf{connect}} \end{array} \right) \mathbf{x} = \left(\begin{array}{c} \mathbf{p}_{\mathbf{low}}^* \\ \mathbf{p}_{\mathbf{connect}}^* \end{array} \right), \mathbf{x} \ge 0$$

Contextuality: L₁-distance between contextual p^{*}_{bunch} (outside) and ℙ.
 Noncontextuality: L₁-distance between noncontextual p^{*}_{bunch} (inside) and surface of ℙ.

A measure of contextuality (type I) extendable into a measure of noncontextuality

C

$$\begin{split} & \left[\begin{matrix} \text{find} & \text{minimizing} & \text{subject to} \\ \mathbf{x} & \mathbf{1} \cdot \mathbf{d} & -\mathbf{d} \leq \mathbf{p}^*_{\mathbf{bunch}} - \mathbf{M}_{\mathbf{bunch}} \mathbf{x} \leq \mathbf{d} \\ & \mathbf{x}, \mathbf{d} \geq 0 \\ & \mathbf{M}_{\mathbf{low}} \mathbf{x} = \mathbf{p}^*_{\mathbf{low}} \\ & \mathbf{M}_{\mathbf{connect}} \mathbf{x} = \mathbf{p}^*_{\mathbf{connect}} \\ \end{matrix} \right] \\ & \mathsf{NT}_2 = \left\| \mathbf{p}^* - \mathbf{M} \mathbf{x}^* \right\|, \mathsf{NCNT}_2 = \min_{i=1,\dots,K} \left\{ \min \left(d^{*+}_i, d^{*-}_i \right) \right\} \end{split}$$

$$\begin{array}{lll} \mbox{find} & \mbox{maximizing} & \mbox{subject to} \\ d_i^+, d_i^-, \mathbf{x} & d_i^+ & \mbox{p}_{\mathbf{b}}^* + d_i^+ \mathbf{e}_i = \mathbf{M}_{\mathbf{bunch}} \mathbf{x} \\ \mathbf{p}_{\mathbf{b}}^* - d_i^- \mathbf{e}_i = \mathbf{M}_{\mathbf{bunch}} \mathbf{x} \\ d_i^+, d_i^-, \mathbf{x} \ge 0 \\ \mathbf{M}_{\mathbf{low}} \mathbf{x} = \mathbf{p}_{\mathbf{low}}^* \\ \mathbf{M}_{\mathbf{connect}} \mathbf{x} = \mathbf{p}_{\mathbf{connect}}^* \end{array}$$

A measure of contextuality (type I) not extendable into a measure of noncontextuality

Feasibility polytope

$$\mathbb{F} = \left\{ \mathbf{p}_{\mathbf{connect}} : \mathbf{p}_{\mathbf{connect}} = \mathbf{M}_{\mathbf{connect}} \mathbf{x} \mid \left(\begin{array}{c} \mathbf{M}_{\mathbf{low}} \\ \mathbf{M}_{\mathbf{bunch}} \end{array} \right) \mathbf{x} = \left(\begin{array}{c} \mathbf{p}_{\mathbf{low}}^{*} \\ \mathbf{p}_{\mathbf{bunch}}^{*} \end{array} \right), \mathbf{x} \ge 0 \right\}$$

- Contextuality, CNT_1 : L_1 -distance between contextual $\mathbf{p}^*_{\text{connect}}$ (outside) and \mathbb{F} .
- 2 Noncontextuality: not defined, noncontextual vectors stick to the surface.

Type II measures of contextuality are not extendable into a measure of noncontextuality

$$\mathbb{P}_{\text{neg}} = \left\{ \mathbf{y} : \left(\begin{array}{c} \mathbf{M}_{\text{low}} \\ \mathbf{M}_{\text{bunch}} \\ \mathbf{M}_{\text{connect}} \end{array} \right) \mathbf{y} = \left(\begin{array}{c} \mathbf{p}_{\text{low}}^{*} \\ \mathbf{p}_{\text{bunch}}^{*} \\ \mathbf{p}_{\text{connect}}^{*} \end{array} \right) \right\}$$

1 Contextuality, CNT_3 : $\min_{\mathbf{y} \in \mathbb{Y}} (\mathbf{1} \cdot |\mathbf{y}|) - 1$.

2 Noncontextuality: not defined, noncontextual vectors correspond to $\min_{\mathbf{y} \in \mathbb{Y}} (\mathbf{1} \cdot |\mathbf{y}|) = 1.$

(Generalized) Contextual Fraction is a Type II-like measure

$$\mathbb{Z} = \{ \mathbf{z} : \mathbf{M}_{(full)} \mathbf{z} \le \mathbf{p}_{(full)}^*, \mathbf{z} \ge 0, \mathbf{1} \cdot \mathbf{z} \le 1 \}$$

- **1** Contextuality: $CNTF = 1 \max_{\mathbf{z} \in \mathbb{Z}} (\mathbf{1} \cdot \mathbf{z}).$
- 2 Noncontextuality: not defined, noncontextual vectors correspond to $\max_{\mathbf{z} \in \mathbb{Z}} (\mathbf{1} \cdot \mathbf{z}) = 1.$

Conclusion

 Measures of noncontextuality may be of interest, especially outside QM (but also in QM).

Conclusion

- Measures of noncontextuality may be of interest, especially outside QM (but also in QM).
- The extendability into a noncontextuality measure may be a selection criterion among otherwise reasonable measures of contextuality.

