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Overview

• Extending contextuality to inconsistently connected systems
• Multimaximal couplings of contextuality-by-default

(CbD; Dzhafarov & Kujala, 2017)
• Physical interpretation? Implications for theory?

• Probabilistic causal models (Cavalcanti, 2018)
Generalizes original hidden-variables approach (Bell, 1964; 
Fine, 1982; Einstein, Podolsky, & Rosen, 1935; Kochen & Specker, 1967)

• Prove equivalence of 3 definitions of extended 
contextuality, including CbD’s



Setup (adapted from Kujala et al., 2015)

• Measurement system ! = !#$: & ≺ (
• Observables (contents) ) = &
• Contexts * = (
• Outcome space +# for each & (assumed finite)
• Measurements !#$ for & ≺ (
• Distributions ,$ on ∏#≺$ +# for !$ = !#$: & ≺ (

• Standard contextuality
• Consistently connected:!#$ ∼ !#$

/ for all (, (1 ≻ &
• No global distribution on ∏#∈) +# compatible with all ,$



Contextuality with Inconsistent 
Connectedness 

• Motivation (Kujala et al., 2015; Dzhafarov & Kujala, 2015, 2016)
• Difficult to avoid in experimental practice
• Generally present in finite samples
• Essential to certain systems of interest

• CbD approach (Kujala et al., 2015; Dzhafarov & Kujala, 2016, 2017)
• Influence of context beyond direct influence
• !"#, !"#

$ differ more than mandated by their distributions
• No-conspiracy principle (Cervantes & Dzhafarov, 2018): Direct

influences do not cancel out in empirical distributions



Present Contribution

• Define direct influence within probabilistic causal models

• Theory-dependent, distinct from inconsistent connectedness

• Formalize no-conspiracy principle

• No crossed influences: Opposite direct influences for different 

latent states of system

• Prove equivalence of three forms of contextuality (formalizing 1 & 2)

1. Modeling full system requires more direct influence than 

modeling each observable

2. Modeling system requires violating no-conspiracy principle

3. CbD definition based on multimaximal couplings

• All reduce to standard contextuality for consistently connected 

systems



Probabilistic Causal Models 

• Powerful tool from statistics, machine learning, 
psychology (Jordan, 1999; Pearl, 2000; Tenenbaum et al., 2011)

! = #$ ∀&, () #$ ⊂ !
Pr ! = ∏$ Pr #$ () #$
• Acyclic directed graph, #. ∈ () #$
• Joint distribution factors into causal dependencies
• Includes observed and latent (hidden) variables

• Natural extension of hidden-variables models
• Valuable framework for studying contextuality 

(Cavalcanti, 2018)
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Canonical Causal Models 

• Context, latent state, and observables
• ℳ = #, Λ, &'
• () Λ = () # = ∅
• () &' = #, Λ
• # treated as index variable

• Deterministic observables (Fine, 1982)
• &' +, , ∈ .'
• No loss of expressive power: push stochasticity into Λ

• Model ℳ for a system / (cf. couplings in CbD; Kujala et al., 2015)

• Pr &': 3 ≺ + # = + = 56 for all +
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Canonical Causal Models 
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Canonical Causal Models and 
Standard Contextuality
• Proposition 1. For any measurement system !, there exists 

a canonical causal model ℳ that is a model for !. 

• Proposition 2 (Fine, 1982). A consistently connected
measurement system is noncontextual iff there exists a 
context-free model of that system.

• Proposition 3. A measurement system M is consistently 
connected iff there exist context-free models for the single-
observable subsystems !# = !#%: ' ≺ ) for all '. 



Direct Influence in Causal Models

• Direct influence: Given ℳ, ", and #, #% ≻ ":

Δ(,() *+ = Pr /: *+ /, # ≠ *+ /, #′
• Probability of latent state for which context change 

affects measurement outcome

• Crossed influences
Pr /: *+ /, # = 3, *+ /, #% ≠ 3 > 0
Pr /: *+ /, # ≠ 3, *+ /, #% = 3 > 0

• Aligned model
• No crossed influences, for any ", 3 ∈ 7+, #, #′ ≻ "
• Formalizes Cervantes & Dzhafarov’s (2018) 

no-conspiracy principle



Example: Popescu-Rohrlich Box

Pr #$% = 1 () *) (+ *+
,)) ½ ½
,+) ½ ½
,++ ½ ½
,)+ ½ ½

Pr #$% = #$-
% ./

*) *+

. () 1 0
(+ 1 1

0) 0+
Pr Λ = 0 ½ ½
234(,)), 0) 1 -1

234(,)+, 0) 1 -1

284(,)), 0) 1 -1

284(,+), 0) -1 1

239(,+), 0) -1 1

239(,++, 0) -1 1

289(,)+, 0) -1 1

289(,++, 0) -1 1

Δ%44,%94 284 = 1

# ℳ

Δ%44,%49 234 = 0

Δ%94,%99 239 = 0

Δ%49,%99 289 = 0



Model-based Contextuality 

• M-contextuality
• Given any modelℳ for ", there exist #, #% ≻ ' such 

that Δ),)* +, is greater than necessary
• M-noncontextuality
• ℳ simultaneously minimizes Δ),)* +, for all #, #% ≻ '

• Formalizes 2nd notion of extended contextuality
• Modeling full system requires more direct influence than 

modeling each observable



Model-based Contextuality 

• Theorem 1. If ! is consistently connected, then ! is 
M-contextual iff it is contextual
• Follows from Propositions 2 and 3

• Proposition 4. Given ! and " ≺ $, $&, the minimum direct 
influence over all models ℳ for ! is:

minℳ Δ,,,- ./ = 1 − 3
4∈67

min Pr !/, = : , Pr !/,
- = :

• Theorem 2. For any !, ! is M-noncontextual iff it admits an 
aligned model
• M-contextual iff all models contain crossed influences
• Crossed influence implies Δ,,,- ./ can be reduced



Partitionable Systems
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Partitionable Systems

• Partitionable system
• Observers: ! = #
• Partition of observables: $ = ⨆&$&
• Factoring of contexts: ' = '&: # ∈ ! , '& ∈ $&

• Partitioned model
• *ℳ = ,& , Λ, /0&
• /0& 1, ' = 023 1, '

• Signaling
• *Δ2,25 /0& = Pr 1: /0& 1, ' ≠ /0& 1, '9 = Δ2,25 023

for '& = '&9
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Partitionable Systems

• Parallel results:
• Any partitionable system admits a partitioned model
• A consistently connected system is noncontextual iff it 

admits a model with no signaling, !"# $, & = !"# $, &#
• ( is M-noncontextual iff a model )ℳ minimizes )Δ,,,- !"#

for all ., &, &/ (&# = &#/ )
• ( is M-noncontextual iff it admits a model )ℳ without 

crossed signals
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M-contextuality and 
CbD-contextuality
• Probabilistic coupling (Kujala et al., 2015; Thorisson, 2000)

• Jointly distributed !"#: % ≺ ' with !# ∼ )# for all '
• Multimaximal coupling (Dzhafarov & Kujala, 2017)

• Simultaneously maximizes Pr !"# = !"#- for all % ≺ ', '/
• CbD-contextuality: Non-existence of multimaximal coupling

• Theorem 3. M-contextuality is equivalent to CbD-
contextuality
• Translation between models and couplings satisfying 
Δ#,#- 1" = Pr !"# ≠ !"#-

• Theorem 4. A system is CbD-noncontextual iff it admits an 
aligned model 



A Challenge with Many-Valued 
Observables
• Cannot always simultaneously minimize all direct influences 

for a single observable, if not binary (Dzhafarov & Kujala, 2017):

• M-contextual and CbD contextual
• Remains so if dichotomized

• Violates intuition that contextuality has to do with what 
measurements are or are not made 

! = 1 ! = 2 ! = 3
&'' 0 ½ ½
&'( ½ 0 ½
&') ½ ½ 0



A Challenge with Many-Valued 
Observables
• Single measure of direct influence for each observable?

• Δ "# $ = &
' ∑),)+≻# Δ),)+ "#

• Violates intuition of monotonicity
• Definition of contextuality satisfying all of these axioms?

• Monotonicity (Dzhafarov & Kujala, 2017): Subsytems of any 
noncontextual system are noncontextual

• Coarse-graining (Dzhafarov & Kujala, 2017): Relabeling values of 
an observable in a non-contextual system, - → -/, yields a 
noncontextual system

• Completeness: A system with only one observable, or with all 
observables measured in every context, is noncontextual



Conclusions
• Extends hidden-variable approaches (Cavalcanti, 2018)

• Physical/theoretical interpretation of CbD-contextuality
• Formalizes Cervantes & Dzhafarov’s no-conspiracy principle

• Value in translation, beyond specific definitions
• Might facilitate solution to problem of complete systems

• Naturally suited for real (finite) datasets
• !"

#,%: ' ≺ ), * ≤ ,# – numbers, not random variables
• Standard model evaluation and inferential statistics

• Distinction between inconsistent connectedness and direct influence
• Empirical vs. theoretical
• Atmanspacher & Filk (2019): non-communicating signaling
• Inescapable: contextuality only meaningful with some exclusions on

direct influence (e.g. spacelike separation)


