Causal Model-Based Contextuality

Matt Jones University of Colorado

Overview

- Extending contextuality to inconsistently connected systems
- Multimaximal couplings of contextuality-by-default (CbD; Dzhafarov & Kujala, 2017)
 - Physical interpretation? Implications for theory?
- Probabilistic causal models (Cavalcanti, 2018) Generalizes original hidden-variables approach (Bell, 1964; Fine, 1982; Einstein, Podolsky, & Rosen, 1935; Kochen & Specker, 1967)
- Prove equivalence of 3 definitions of extended contextuality, including CbD's

Setup (adapted from Kujala et al., 2015)

- Measurement system $M = \{M_q^c : q \prec c\}$
 - Observables (contents) $Q = \{q\}$
 - Contexts $C = \{c\}$
 - Outcome space \mathcal{O}_q for each q (assumed finite)
 - Measurements M_q^c for $q \prec c$
 - Distributions μ_c on $\prod_{q \prec c} \mathcal{O}_q$ for $M^c = \{M_q^c : q \prec c\}$
- Standard contextuality
 - Consistently connected: $M_q^c \sim M_q^{c'}$ for all c, c' > q
 - No global distribution on $\prod_{q \in Q} \mathcal{O}_q$ compatible with all μ_c

Contextuality with Inconsistent Connectedness

- Motivation (Kujala et al., 2015; Dzhafarov & Kujala, 2015, 2016)
 - Difficult to avoid in experimental practice
 - Generally present in finite samples
 - Essential to certain systems of interest
- CbD approach (Kujala et al., 2015; Dzhafarov & Kujala, 2016, 2017)
 - Influence of context beyond direct influence
 - M_q^c , $M_q^{c'}$ differ more than mandated by their distributions
 - No-conspiracy principle (Cervantes & Dzhafarov, 2018): Direct influences do not cancel out in empirical distributions

Present Contribution

- Define direct influence within probabilistic causal models
 - Theory-dependent, distinct from inconsistent connectedness
- Formalize no-conspiracy principle
 - No **crossed influences**: Opposite direct influences for different latent states of system
- Prove equivalence of three forms of contextuality (formalizing 1 & 2)
 - 1. Modeling full system requires more direct influence than modeling each observable
 - 2. Modeling system requires violating no-conspiracy principle
 - 3. CbD definition based on multimaximal couplings
 - All reduce to standard contextuality for consistently connected systems

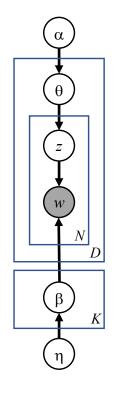
Probabilistic Causal Models

 Powerful tool from statistics, machine learning, psychology (Jordan, 1999; Pearl, 2000; Tenenbaum et al., 2011)

 $\mathcal{X} = \{X_i\} \quad \forall i, Pa(X_i) \subset \mathcal{X}$

 $\Pr[\mathcal{X}] = \prod_{i} \Pr[X_i | Pa(X_i)]$

- Acyclic directed graph, $X_j \in Pa(X_i)$
- Joint distribution factors into causal dependencies
- Includes observed and latent (hidden) variables
- Natural extension of hidden-variables models
 - Valuable framework for studying contextuality (Cavalcanti, 2018)

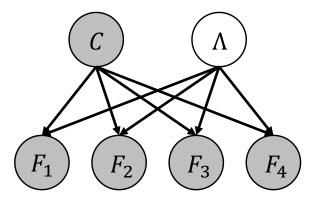


LDA: Blei, Ng, & Jordan (2003)

Canonical Causal Models

- Context, latent state, and observables
 - $\mathcal{M} = (C, \Lambda, \{F_q\})$
 - $Pa(\Lambda) = Pa(C) = \emptyset$
 - $Pa(F_q) = \{C, \Lambda\}$
 - C treated as index variable
- Deterministic observables (Fine, 1982)
 - $F_q(c,\lambda) \in \mathcal{O}_q$
 - No loss of expressive power: push stochasticity into $\boldsymbol{\Lambda}$
- Model \mathcal{M} for a system M (cf. couplings in CbD; Kujala et al., 2015)

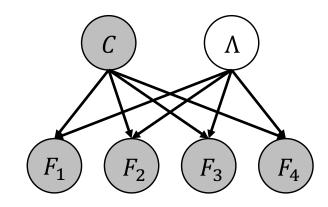
•
$$\Pr[\{F_q: q \prec c\} | C = c] = \mu_c \text{ for all } c$$

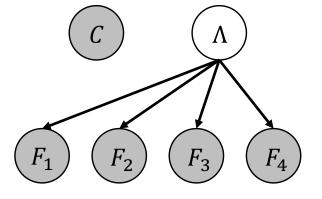


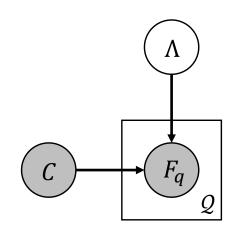
Canonical Causal Models

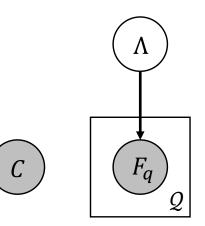
General

Context-free









Canonical Causal Models and Standard Contextuality

- **Proposition 1**. For any measurement system M, there exists a canonical causal model \mathcal{M} that is a model for M.
- **Proposition 2 (Fine, 1982)**. A consistently connected measurement system is noncontextual iff there exists a context-free model of that system.
- **Proposition 3**. A measurement system M is consistently connected iff there exist context-free models for the single-observable subsystems $M_q = \{M_q^c : q \prec c\}$ for all q.

Direct Influence in Causal Models

• **Direct influence:** Given \mathcal{M} , q, and $\{c, c'\} > q$:

$$\Delta_{c,c'}(F_q) = \Pr[\{\lambda: F_q(\lambda, c) \neq F_q(\lambda, c')\}]$$

- Probability of latent state for which context change affects measurement outcome
- Crossed influences

$$\Pr[\{\lambda: F_q(\lambda, c) = \nu, F_q(\lambda, c') \neq \nu\}] > 0$$

$$\Pr[\{\lambda: F_q(\lambda, c) \neq \nu, F_q(\lambda, c') = \nu\}] > 0$$

- Aligned model
 - No crossed influences, for any $q, v \in \mathcal{O}_q, \{c, c'\} > q$
 - Formalizes Cervantes & Dzhafarov's (2018) no-conspiracy principle

Example: Popescu-Rohrlich Box M \mathcal{M}

$$\Pr[M_q^c = 1] \quad A_1 \quad B_1 \quad A_2 \quad B_2$$

$$c_{11} \quad \frac{1/2}{2} \quad \frac{1/2}{2}$$

$$c_{21} \quad \frac{1/2}{2} \quad \frac{1/2}{2}$$

$$c_{22} \quad \frac{1/2}{2} \quad \frac{1/2}{2} \quad \frac{1/2}{2}$$

$$c_{12} \quad \frac{1/2}{2} \quad \frac{1/2}{2}$$

$$\Pr\left[M_{q}^{c} = M_{q'}^{c}\right] \begin{array}{c} q' \\ B_{1} & B_{2} \\ A_{1} & 1 & 0 \\ q & A_{2} & 1 & 1 \end{array}\right]$$

$$\lambda_{1} \quad \lambda_{2}$$

$$\Pr[\Lambda = \lambda] \quad \boxed{\frac{1/2}{2} \quad \frac{1/2}{2}}$$

$$F_{A_{1}}(c_{11}, \lambda) \quad 1 \quad -1$$

$$F_{A_{1}}(c_{12}, \lambda) \quad 1 \quad -1$$

$$F_{B_{1}}(c_{11}, \lambda) \quad 1 \quad -1$$

$$F_{B_{1}}(c_{21}, \lambda) \quad 1 \quad -1$$

$$F_{A_{2}}(c_{21}, \lambda) \quad -1 \quad 1$$

$$F_{A_{2}}(c_{22}, \lambda) \quad -1 \quad 1$$

$$F_{B_{2}}(c_{12}, \lambda) \quad -1 \quad 1$$

$$F_{B_{2}}(c_{22}, \lambda) \quad -1 \quad 1$$

Model-based Contextuality

- M-contextuality
 - Given any model \mathcal{M} for M, there exist $c, c' \succ q$ such that $\Delta_{c,c'}(F_q)$ is greater than necessary
- M-noncontextuality
 - \mathcal{M} simultaneously minimizes $\Delta_{c,c'}(F_q)$ for all c, c' > q
- Formalizes 2nd notion of extended contextuality
 - Modeling full system requires more direct influence than modeling each observable

Model-based Contextuality

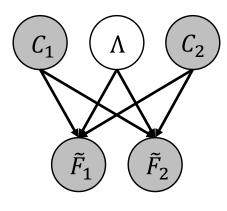
- **Theorem 1**. If *M* is consistently connected, then *M* is M-contextual iff it is contextual
 - Follows from Propositions 2 and 3
- **Proposition 4**. Given M and $q \prec c, c'$, the minimum direct influence over all models \mathcal{M} for M is:

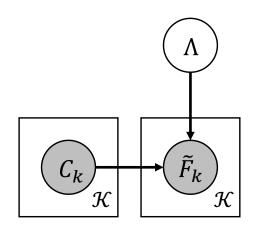
$$\min_{\mathcal{M}} \Delta_{c,c'}(F_q) = 1 - \sum_{v \in \mathcal{O}_q} \min\{\Pr[M_q^c = v], \Pr[M_q^{c'} = v]\}$$

- **Theorem 2**. For any *M*, *M* is M-noncontextual iff it admits an aligned model
 - M-contextual iff all models contain crossed influences
 - Crossed influence implies $\Delta_{c,c'}(F_q)$ can be reduced

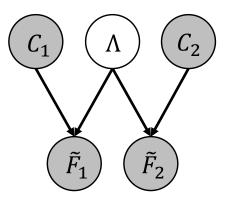
Partitionable Systems

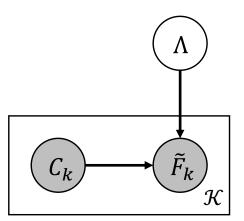
Signaling





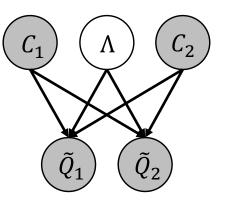
No Signaling



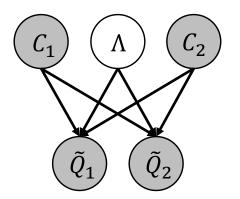


Partitionable Systems

- Partitionable system
 - Observers: $\mathcal{K} = \{k\}$
 - Partition of observables: $Q = \bigsqcup_k Q_k$
 - Factoring of contexts: $c = (c_k: k \in \mathcal{K}), c_k \in Q_k$
- Partitioned model
 - $\widetilde{\mathcal{M}} = (\{C_k\}, \Lambda, \{\widetilde{F}_k\})$
 - $\tilde{F}_k(\lambda, c) = F_{c_k}(\lambda, c)$
- Signaling
 - $\widetilde{\Delta}_{c,c'}(\widetilde{F}_k) = \Pr[\{\lambda: \widetilde{F}_k(\lambda, c) \neq \widetilde{F}_k(\lambda, c')\}] = \Delta_{c,c'}(F_{c_k})$ for $c_k = c'_k$



Partitionable Systems



- Parallel results:
- Any partitionable system admits a partitioned model
- A consistently connected system is noncontextual iff it admits a model with no signaling, $\tilde{F}_k(\lambda, c) = \tilde{F}_k(\lambda, c_k)$
- *M* is M-noncontextual iff a model $\widetilde{\mathcal{M}}$ minimizes $\widetilde{\Delta}_{c,c'}(\widetilde{F}_k)$ for all k, c, c' ($c_k = c'_k$)
- M is M-noncontextual iff it admits a model $\widetilde{\mathcal{M}}$ without crossed signals

M-contextuality and CbD-contextuality

- Probabilistic coupling (Kujala et al., 2015; Thorisson, 2000)
 - Jointly distributed $\{S_q^c: q \prec c\}$ with $S^c \sim M^c$ for all c
- Multimaximal coupling (Dzhafarov & Kujala, 2017)
 - Simultaneously maximizes $\Pr[S_q^c = S_q^{c'}]$ for all $q \prec c, c'$
- CbD-contextuality: Non-existence of multimaximal coupling
- **Theorem 3**. M-contextuality is equivalent to CbDcontextuality
 - Translation between models and couplings satisfying $\Delta_{c,c'}(F_q) = \Pr[S_q^c \neq S_q^{c'}]$
- **Theorem 4**. A system is CbD-noncontextual iff it admits an aligned model

A Challenge with Many-Valued Observables

• Cannot always simultaneously minimize all direct influences for a single observable, if not binary (Dzhafarov & Kujala, 2017):

- M-contextual and CbD contextual
- Remains so if dichotomized
- Violates intuition that contextuality has to do with what measurements are or are not made

A Challenge with Many-Valued Observables

• Single measure of direct influence for each observable?

•
$$\Delta(F_q|C) = \frac{1}{2} \sum_{c,c' > q} \Delta_{c,c'}(F_q)$$

- Violates intuition of monotonicity
- Definition of contextuality satisfying all of these axioms?
 - Monotonicity (Dzhafarov & Kujala, 2017): Subsytems of any noncontextual system are noncontextual
 - **Coarse-graining** (Dzhafarov & Kujala, 2017): Relabeling values of an observable in a non-contextual system, $\mathcal{O} \rightarrow \mathcal{O}'$, yields a noncontextual system
 - **Completeness**: A system with only one observable, or with all observables measured in every context, is noncontextual

Conclusions

- Extends hidden-variable approaches (Cavalcanti, 2018)
- Physical/theoretical interpretation of CbD-contextuality
 - Formalizes Cervantes & Dzhafarov's no-conspiracy principle
- Value in translation, beyond specific definitions
 - Might facilitate solution to problem of complete systems
- Naturally suited for real (finite) datasets
 - $\{M_q^{c,i}: q \prec c, i \leq n_c\}$ numbers, not random variables
 - Standard model evaluation and inferential statistics
- Distinction between inconsistent connectedness and direct influence
 - Empirical vs. theoretical
 - Atmanspacher & Filk (2019): non-communicating signaling
 - Inescapable: contextuality only meaningful with some exclusions on direct influence (e.g. spacelike separation)