Simulations between contextual resources

Samson Abramsky, Rui Soares Barbosa, Martti Karvonen, Shane Mansfield

Overview of the talk

- Main results
- Recap on background
- ► Free operations on empirical models. Free transformations.
- Simulations.
- Equivalence of the viewpoints
- ► No-cloning
- Further topics

- ► Intuitively, some correlations can be used to simulate others. For instance, Barret-Pironio showed that
 - Any two-outcome bipartite box can be simulated with PR boxes.
 - ► An explicit two-outcome three-partite box that cannot be simulated with PR boxes.
- ► We formalize this idea of "classically feasible simulations" in two ways:
 - In an algebraic theory of free operations
 - As a co-Kleisli category of a category of deterministic simulations.

Results

In the resulting category/resource theory,

- Contextual fraction is a monotone
- an empirical model is contextual iff it cannot be simulated from the trivial model
- an empirical model is logically ncontextual iff it cannot be simulated possibilistically from the trivial model
- an empirical model e is strongly contextual iff no model e' contained in the support of e can be simulated from the trivial model

Moreover, no-cloning holds: a simulation $e \to e \otimes e$ exists iff e is noncontextual.

Measurement scenarios

A measurement scenario $\mathbf{X} = \langle X, \Sigma, O \rangle$:

- X a finite set of measurements
- $ightharpoonup \Sigma$ is a simplicial complex on X, whose faces are called the measurement contexts.
- ▶ $O = (O_x)_{x \in X}$ specifies for each measurement $x \in X$ a finite non-empty set of possible outcomes O_x ;
- Note: X and each O_X finite.

Empirical models

A joint outcome for $\sigma \in \Sigma$ consists of an outcome for each $x \in \sigma$. An empirical model e over \mathbf{X} , consists of a distribution e_{σ} over joint outcomes for each $\sigma \in \Sigma$.

We assume (generalized) no-signalling, i.e. that marginal distributions are well-defined: for any $\sigma, \tau \in \Sigma$ with $\tau \subseteq \sigma$, it holds that

$$e_{ au} = e_{\sigma}|_{ au}$$

Can then formalize (logical/strong) contextuality.

Towards morphisms

► A bunch of mathematical objects has been defined, but what are the morphisms?

▶ Given $e: \langle X, \Sigma, O \rangle$ and $d: \langle Y, \Theta, P \rangle$, a morphism $d \to e$ is a way of transforming d to e using free operations.

Alternatively: a morphism $d \rightarrow e$ is a way of *simulating* e using d.

Free operations

We have

Zero model z: the unique empirical model on the empty measurement scenario

$$\langle \emptyset, \Delta_0 = \{\emptyset\}, () \rangle$$
.

Singleton model u: the unique empirical model on the one-outcome one measurement scenario

$$\langle \mathbf{1} = \{\star\}, \Delta_1 = \{\emptyset, \mathbf{1}\}, (\mathit{O}_{\star} = \mathbf{1}) \rangle$$
.

Probabilistic mixing: Given empirical models e and d in $\langle X, \Sigma, O \rangle$ and $\lambda \in [0,1]$, the model $e +_{\lambda} d : \langle X, \Sigma, O \rangle$ is given by the mixture $\lambda e + (1-\lambda)d$

Free operations

► Tensor: Let $e: \langle X, \Sigma, O \rangle$ and $d: \langle Y, \Theta, P \rangle$ be empirical models. Then

$$e \otimes d : \langle X \sqcup Y, \Sigma * \Theta, (O_x)_{x \in X} \cup (P_y)_{y \in Y} \rangle$$

represents running e and d independently and in parallel. Here $\Sigma * \Theta := \{ \sigma \cup \theta | \sigma \in \Sigma, \theta \in \Theta \}.$

► Coarse-graining: given $e: \langle X, \Sigma, O \rangle$ and a family of functions $h = (h_x : O_x \longrightarrow O'_x)_{x \in X}$, get a coarse-grained model

$$e/h: \langle X, \Sigma, O' \rangle$$

Measurement translation: given $e: \langle X, \Sigma, O \rangle$ and a simplicial map $f: \Sigma' \longrightarrow \Sigma$, the model $f^*e: \langle X', \Sigma', O \rangle$ is defined by pulling e back along the map f.

Free operations

Given a simplicial complex Σ and a face $\sigma \in \Sigma$, the link of σ in Σ is the subcomplex of Σ whose faces are

$$\mathsf{Ik}_{\sigma}\Sigma := \{ \tau \in \Sigma \mid \sigma \cap \tau = \emptyset, \sigma \cup \tau \in \Sigma \} \ .$$

Conditioning on a measurement: Give $e:\langle X, \Sigma, O \rangle$, $x \in X$ and a family of measurements $(y_o)_{o \in O_x}$ with $y_o \in \text{Vert}(\text{lk}_x \Sigma)$. Consider a new measurement $x?(y_o)_{o \in O_x}$, abbreviated x?y. Get

$$e[x?y]: \langle X \cup \{x?y\}, \Sigma[x?y], O[x?y \mapsto O_{x?y}] \rangle$$

that results from adding x?y to e.

Summary of operations

The operations generate terms

Terms
$$\ni t := a \in Var \mid z \mid u \mid f^*t \mid t/h$$

 $\mid t +_{\lambda} t \mid t \otimes t \mid t[x?y]$

typed by measurement scenarios.

Morphisms as free transformations

Proposition

A term without variables always represents a noncontextual empirical model. Conversely, every noncontextual empirical model can be represented by a term without variables.

Can d be transformed to e?

Formally: is there a typed term $a: \mathbf{Y} \vdash t: \mathbf{X}$ such that t[d/a] = e?

Morphisms as simulations

- Think of a measurement scenario as a concrete experimental setup, where for each measurement there is a grad student responsible for it.
- The grad student responsible for measuring $x \in X$, should have instructions which measurement $\pi(x) \in Y$ to use instead.
- ► Given a result for those measurements, should be able to determine the outcome to output.
- ▶ The outcome statistics should be identical to those of *e*.

Dependencies on multiple measurements and stochastic processing added as a comonadic effect.

Deterministic morphisms

Definition

Let $\mathbf{X} = \langle X, \Sigma, O \rangle$ and $\mathbf{Y} = \langle Y, \Theta, P \rangle$ be measurement scenarios.

A deterministic morphism $\langle \pi, h \rangle \colon \mathbf{Y} \longrightarrow \mathbf{X}$ consists of:

- ▶ a simplicial map $\pi: \Sigma \longrightarrow \Theta$;
- ▶ a natural transformation $h: \mathcal{E}_P \circ \pi \longrightarrow \mathcal{E}_O$; equivalently, a family of maps $h_x: P_{\pi(x)} \longrightarrow O_x$ for each $x \in X$.

Let $e \colon \mathbf{X}$ and $d \colon \mathbf{Y}$ be empirical models. A *deterministic simulation* $\langle \pi, h \rangle \colon d \longrightarrow e$ is a deterministic morphism $\langle \pi, h \rangle \colon \mathbf{Y} \longrightarrow \mathbf{X}$ that takes d to e.

Example simulation

If
$$h = (h_x : O_x \longrightarrow O'_x)_{x \in X}$$
, can coarse-grain e to get e/h .

There is a deterministic simulation $e \rightarrow e/h$:

If you need to measure $x \in X$ for e/h, just measure $x \in X$ in the experiment e and apply h to the outcome.

Beyond deterministic maps

 Deterministic morphisms aren't enough: a deterministic model can't simulate (deterministically) a coinflip

Need classical (shared) correlations

Moreover, to simulate $x \in X$ one might want to run a whole measurement protocol on $\langle Y, \Theta, P \rangle$.

Measurement protocols

Definition

Let $\mathbf{X} = \langle X, \Sigma, O \rangle$ be a measurement scenario. We define recursively the *measurement protocol completion MP(X)* of X by

$$MP(\mathbf{X}) ::= \emptyset \mid (x, f)$$

where $x \in X$ and $f: O_x \to \mathsf{MP}(\mathsf{Ik}_x \Sigma)$.

 $MP(\mathbf{X})$ can be given the structure of a measurement scenario, and if $e: \langle X, \Sigma, O \rangle$, can extend it to $MP(e): MP(\mathbf{X})$

General simulations

Definition

Given empirical models e and d, a simulation of e by d is a deterministic simulation $\mathsf{MP}(d \otimes c) \to e$ for some noncontextual model c.

We denote the existence of a simulation of e by d as $d \rightsquigarrow e$, read "d simulates e".

Theorem

MP defines a comonoidal comonad on the category of empirical models.

Roughly: comultiplication MP(\mathbf{X}) \to MP $^2(\mathbf{X})$ by "flattening", unit MP(\mathbf{X}) \to \mathbf{X} , and MP(\mathbf{X} \otimes \mathbf{Y}) \to MP(\mathbf{X}) \otimes MP(\mathbf{Y})

The viewpoints agree

Theorem

Let $e: \mathbf{X}$ and $d: \mathbf{Y}$ be empirical models. Then $d \leadsto e$ if and only if there is a typed term $a: \mathbf{Y} \vdash t: \mathbf{X}$ such that $t[d/a] \simeq e$.

Proof.

(Sketch) If $d \rightsquigarrow e$, then e can be obtained from MP($d \otimes x$) by a combination of a coarse-graining and a measurement translation. There is a term representing x and MP can be built by repeated controlled measurements.

For the other direction, build a simulation $d \to t[d/a]$ inductively on the structure of t.

No-cloning

Theorem (No-cloning)

 $e \rightsquigarrow e \otimes e$ if and only if e is noncontextual.

Further questions

- ▶ Study the preorder induced by $d \rightsquigarrow e$.
- ▶ What can you simulate with arbitrarily many copies of *d*?
- ► The same for possibilistic empirical models. Connections to CSPs.
- Changing the free class of "free" models allows for more general simulations. What can be said about e.g. quantum simulations? Does the no-cloning result generalize?
- Comparison with other approaches to contextuality.

Further questions 2

- Multipartite non-locality
- Graded structure on the comonad?
- ► MBQC?
- ► Generating all empirical models?
- ▶ Bell inequalities?

Summary

- Intraconversions of contextual resources formalized in terms of
 - free operations
 - simulations
- ► These viewpoints agree and capture known examples
- ► A no-cloning result
- Several avenues for further work