Homotopical approach to quantum contextuality

Cihan Okay¹

The University of British Columbia

May 2019

¹joint with Robert Raussendorf arXiv:1905.03822

 $^{^2\}mbox{Mermin}, \ \mbox{``Hidden variables and the two theorems of John Bell''.}$

L: set of labels

 $\mathcal{M}:$ cover of contexts

Incidence graph³ \mathcal{G}

$$V(\mathcal{G}) = \mathcal{M}, \quad E(\mathcal{G}) = L$$

³Arkhipov, "Extending and characterizing quantum magic games".

Arkhipov's theorem

Theorem

An arrangement⁴ is magic if and only if its incidence graph is non-planar.

 $^{^4\}mathsf{Each}$ observable (eigenvalues $\pm 1)$ belongs to exactly two contexts.

Arkhipov's theorem

Our goal is to generalize one direction:

Theorem

An arrangement is magic only if its incidence graph is non-planar.

Quantum realization

Let $d \geq 2$ and $\tau : \mathcal{M} \to \mathbb{Z}_d$ be a function.

A quantum realization is a function

 $T: L \to U(n)$

such that

- each operator satisfies $(T_a)^d = I$,
- ▶ in each context the operators $\{T_a | a \in C\}$ pairwise commute,
- for each context $C \in \mathcal{M}$ the operators satisfy the constraint

$$\prod_{a \in C} T_a^{\pm 1} = \omega^{\tau(C)} \quad \text{where } \omega = e^{2\pi i/d}$$

Classical realization

A classical realization is a function

$$c: L \to \mathbb{Z}_d$$

such that for each context

$$\prod_{a\in C} \omega^{\pm c(a)} = \omega^{\tau(C)}.$$

This is a quantum realization with $T_a = \omega^{c(a)}$.

Magic arrangements

Definition

An arrangement is called *magic* if it is quantum realizable (for some τ) but not classically realizable.

Magic arrangements: $K_{3,3}$ and K_5

⁵Okay et al., "Topological proofs of contextuality in qunatum mechanics".

Chain complex

• Define a chain complex C_*

$$\mathbb{Z}_d[\mathcal{M}] \xrightarrow{\partial} \mathbb{Z}_d[L] \xrightarrow{0} \mathbb{Z}_d$$
 where $\partial[C] = \sum_{a \in C} \pm[a]$

There is an associated cochain complex \mathcal{C}^\ast

$$\mathbb{Z}_d \stackrel{0}{\longrightarrow} (\mathbb{Z}_d)^L \stackrel{d}{\longrightarrow} (\mathbb{Z}_d)^{\mathcal{M}}$$
 where $df(C) = \sum_{a \in C} \pm f(a)$

 (L, \mathcal{M}, τ) is classically realizable $\Leftrightarrow [\tau] = 0$ in $H^2(\mathcal{C})$.

Topological realization

A topological realization is a connected cell complex X such that

$$\blacktriangleright X^1 = L \text{ and } X^2 = \mathcal{M},$$

▶ attaching maps $\phi_C : \partial D^2 \to X^1$

 $\prod_{a_i}^{\tilde{n}} T_{a_i}^{\pm 1} \sim I \right)$

Path operators

• Let p be a path in X traversing a sequence of edges $a_1^{\epsilon(a_1)}, \dots, a_k^{\epsilon(a_k)}$ where $\epsilon(a_i) = \pm 1$.

We define a *path operator*

$$T_p = \prod_{i=1}^k T_{a_i}^{\epsilon(a_i)}.$$

If p consists of a single vertex then $T_p = I$.

Basic properties:

$$T_{p \cdot q} = T_p T_q$$

$$T_{p^{-1}} = T_p^{-1}$$

Combinatorial complexes⁶

- $f: X \to Y$ is called combinatorial if
 - Every 1-cell of X is either mapped onto a 1-cell of Y or collapsed to a 0-cell,
 - Every 2-cell of X is either mapped onto a 2-cell of Y or it is a product cell* that is collapsed to a 1-cell or 0-cell.
- A cell complex is called combinatorial if the attaching map of every cell is combinatorial.

⁶Bogley et al., "Two-dimensional homotopy and combinatorial group theory".

Key observation

Lemma

For a combinatorial map $g: D^2 \to X$ we have

$$T_{g(\partial D^2)} = \omega^{g^* \tau(D^2)}.$$

$$X_2 Z_2 X_2 Z_2 = -1$$

Key observation

Lemma

For a combinatorial map $g: D^2 \to X$ we have

$$T_{g(\partial D^2)} = \omega^{g^* \tau(D^2)}.$$

$$X_2 Z_2 X_2 Z_2 = -1$$

Main result

Theorem

An arrangement is magic only if there exists a topological realization with non-trivial fundamental group.

Comparison to Arkhipov's result

Suppose that d = 2 and each observable belongs exactly to two contexts.

Embed the intersection graph into a closed surface

$$\mathcal{G} \to \Sigma_g$$

• We can take $X = \Sigma_g$ with the dual cell structure

 $\pi_1(X) = 1 \iff g = 0$ (*G* is planar)

Idea of the proof

Show that if τ admits a quantum realization then $[\tau] = 0$.

► By Hurewicz theorem⁷

$$X\simeq S^2\vee\cdots\vee S^2$$

This decomposes cohomology

$$H^2(X) \cong H^2(S^2) \oplus \cdots \oplus H^2(S^2)$$

⁷Hatcher, *Algebraic topology*.

Idea of the proof

• Let
$$h: S^2 \to X$$
 be a map. Show that $h^*\tau(S^2) = 0$.

• h is homotopic⁸ to a combinatorial map

$$\Phi: D^2 \to X$$

such that
$$\Phi(\partial D^2) \simeq *$$
 in X^1 .

Thus there is another combinatorial map

$$ar{\Phi}:D^2 o X^1\subset X$$

such that $\overline{\Phi}(\partial D^2) = \Phi(\partial D^2).$

 $^8\mathsf{Fundamental sequence 0} \to \pi_2(X) \to \pi_2(X,X^1) \overset{\partial}{\longrightarrow} \pi_1(X^1) \to \pi_1(X) \to 1$

Idea of the proof

Homotopy invariance of cohomology

$$h^* au = \Phi^* au \quad (h \sim \Phi)$$

Apply the key lemma

$$\omega^{\Phi^*\tau(D^2)} = T_{\partial\Phi(D^2)} = T_{\partial\bar{\Phi}(D^2)} = \omega^{\bar{\Phi}^*\tau(D^2)} = I.$$

Torus vs Projective plane

$$a_{1} = e_{1}$$

$$a_{2} = e_{2} \cdot e_{9}^{-1}$$

$$a_{3} = e_{3} \cdot e_{8}^{-1} \cdot e_{9}^{-1}$$

$$a_{4} = e_{4}$$

$$a_{5} = e_{5} \cdot e_{9}^{-1}$$

$$a_{6} = e_{6} \cdot e_{8}^{-1} \cdot e_{9}^{-1}$$

$$a_{7} = e_{9} \cdot e_{8} \cdot e_{7}.$$

$$\begin{aligned} a_1 &= e_1 \cdot e_2 \cdot e_9^{-1} \\ a_3 &= e_9 \cdot e_2^{-1} \cdot e_3 \cdot e_8^{-1} \cdot e_9^{-1} \\ a_4 &= e_9 \cdot e_2^{-1} \cdot e_4 \\ a_5 &= e_9 \cdot e_2^{-1} \cdot e_5 \cdot e_9^{-1} \\ a_6 &= e_9 \cdot e_2^{-1} \cdot e_6 \cdot e_8^{-1} \cdot e_9^{-1} \\ a_7 &= e_9 \cdot e_8 \cdot e_7. \end{aligned}$$

Torus vs Projective plane

$$\begin{split} & T_1 T_2 = \omega^{\tau_1} \\ & T_2^{-1} T_3 = \omega^{\tau_2} \\ & T_4 T_7^{-1} T_3^{-1} = \omega^{\tau_3} \\ & T_5^{-1} T_4^{-1} = \omega^{\tau_4} \\ & T_5 T_6^{-1} = \omega^{\tau_5} \\ & T_6 T_7 T_1^{-1} = \omega^{\tau_6} . \end{split}$$

$$\begin{split} T_1 &= \omega^{\tau_1} \\ T_3 &= \omega^{\tau_2} \\ T_4 \, T_7^{-1} \, T_3^{-1} &= \omega^{\tau_3} \\ T_4 \, T_5^{-1} &= \omega^{\tau_4} \\ T_5 \, T_6^{-1} &= \omega^{\tau_5} \\ T_6 \, T_7 \, T_1 &= \omega^{\tau_6} \, . \end{split}$$

Torus vs Projective plane

$$egin{aligned} [T_1,T_4] &= \omega^{\sum_{i=1}^6 au_i} \ \pi_1(T) &= \mathbb{Z} imes \mathbb{Z} \end{aligned}$$

$$(T_4)^2 = \omega^{-\tau_1 + \sum_{i=2}^6 \tau_i}$$

 $\pi_1(\mathbb{R}P^2) = \mathbb{Z}_2$

Projective representation

• Sending p to T_p gives a group homomorphism

$$T:\pi_1(X) o U(n)/\langle \omega
angle$$

Theorem

If an arrangement has a topological realization X such that $\pi_1(X)$ is a finite group whose order is coprime to d then the arrangement is non-magic.

For more arXiv:1905.03822...