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OUTLINE
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➤ Conclusions



KOCHEN-SPECKER THEOREM
➤ Impossible to find a deterministic non-contextual assignment to 

measurement outcomes (for d > 2) 

➤ Usually consider a set S of vectors: 

➤ Assignment f: S → {0,1} also called a {0,1}-colouring of S obeys 

➤ KS proofs: finite sets of vectors that do not admit any {0,1}-colouring.

Outcome probs only take values 0 or 1

Assignment to projectors independent of the context

Gadget structures in proofs of the Kochen-Specker theorem

Ravishankar Ramanathan,1 Monika Rosicka,2 Karol Horodecki,3

Stefano Pironio,1 Micha l Horodecki,2 and Pawe l Horodecki4

1Laboratoire d’Information Quantique, Université Libre de Bruxelles, Belgium
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The Kochen-Specker theorem is a fundamental result in quantum foundations that has spawned
massive interest since its inception. We show that within every Kochen-Specker graph, there exist
interesting subgraphs which we term 01-gadgets, that capture the essential contradiction necessary
to prove the Kochen-Specker theorem, i.e,. every Kochen-Specker graph contains a 01-gadget and
from every 01-gadget one can construct a proof of the Kochen-Specker theorem. Moreover, we show
that the 01-gadgets form a fundamental primitive that can be used to formulate state-independent
and state-dependent statistical Kochen-Specker arguments as well as to give simple constructive
proofs of an “extended” Kochen-Specker theorem first considered by Pitowsky in [22].

I. INTRODUCTION

According to the quantum formalism, a projective
measurement M is described by a set M = {V1, . . . , Vm}

of projectors Vi that are orthogonal, ViVj = �ijVi, and
sum to the identity,

P
i Vi = I. Each Vi corresponds to

a possible outcome i of the measurement M and deter-
mines the probability of this outcome when measuring a
state | i through the formula Pr (i | M) = h |Vi| i.

If two physically distinct measurements M =
{V1, . . . , Vm} and M 0 = {V 0

1 , . . . , V
0

m0} share a common
projector, i.e., Vi = V 0

i0 = V for some outcome i of M
and i0 of M 0, it then follows that

Pr (i | M) = Pr (i
0
| M 0) = h |V | i . (1)

In other words, though quantum measurements are de-
fined by sets of projectors, the outcome probabilities
of these measurements are determined by the individ-

ual projectors alone, independently of the broader set –
or the context – to which they belong. We say that the
probability assignment is non-contextual.

The Kocken-Specker (KS) theorem [1] is a cornerstone
result in the foundations of quantum mechanics, estab-
lishing that, in Hilbert spaces of dimension greater than
two, it is not possible to find a deterministic outcome
assignment that is non-contextual. Deterministic means
that all outcome probabilities should take only the val-
ues 0 or 1. Non-contextual means, as above, that these
probabilities are not directly assigned to the measure-
ments themselves, but to the individual projectors from
which they are composed, independently of the context
to which the projectors belong. More formally, the KS
theorem establishes that it is not possible to find a rule
f such that

Prf (i | M) = Prf (i
0
| M 0) = f(V ) 2 {0, 1} , (2)

which would provide a deterministic analogue of a quan-
tum state.

The most common way to prove the KS theorem in-
volves a set S = {V1, . . . , Vn} of rank-one projectors. We
can represent these projectors by the vectors (strictly
speaking, the rays) onto which they project and thus
view S as a set of vectors S = {|v1i, . . . , |vni} ⇢ Cd.
Consider an assignment f : S ! {0, 1} that associates to
each |vii in S a probability f(|vii) 2 {0, 1}. To interpret
the f(|vii) as valid measurement outcome probabilities,
they should satisfy the two following conditions:

•
P

|vi2O
f(|vi)  1 for every set O ✓ S of

mutually orthogonal vectors;

•
P

|vi2B
f(|vi) = 1 for every set B ✓ S of d

mutually orthogonal vectors.

(3)

The first condition is required because if a set of vectors
are mutually orthogonal, they may be part of the same
measurement, but then their corresponding probabilities
must sum at most to 1. The second condition follows
from the fact that if d vectors are mutually orthogonal
in Cd, they form a complete basis, and then their cor-
responding probabilities must exactly sum to one. Note
that the first condition implies in particular that any two
vectors |v1i and |v2i in S that are orthogonal cannot both
be assigned the value 1 by f .
We call any assignment f : S ! {0, 1} satisfying the

above two conditions, a {0, 1}-coloring of S. The Kocken-
Specker theorem states that if d � 3, there exist sets of
vectors that are not {0, 1}-colorable, thus establishing the
impossibility of a non-contextual deterministic outcome
assignment. We call such {0, 1}-uncolorable sets, KS sets.
In their original proof, Kochen and Specker describe a set
S of 117 vectors in Cd dimension d = 3 [1]. The minimal
KS set contains 18 vectors in dimension d = 4 [18, 20].

In this paper, we identify within KS sets interesting
subsets which we term 01-gadgets. Such 01-gadgets are
{0, 1}-colorable and thus do not represent by themselves
KS sets. However, they do not admit arbitrary {0, 1}-
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S. Kochen and E. P. Specker. “The problem of hidden variables in quantum mechanics”. Journal of Mathematics and 
Mechanics 17, 59 (1967).



ORTHOGONALITY GRAPHS
➤ Orthogonality graph: Represent each vector        by a vertex vi of the graph. 

Connect any two vertices v1 and v2 by an edge if                  . 

➤ Graph is {0,1}-colorable if there exists an assignment f: V(G) → {0,1} that obeys 

➤ KS: exist finite vector sets S such that their ort. graphs GS are not {0,1}-colorable.

2

coloring: in any {0, 1}-coloring of a 01-gadget, there ex-
ist two non-orthogonal vectors |v1i and |v2i that cannot
both be assigned the color 1. We show that such 01-
gadgets form the essence of the KS contradiction, in the
sense that every KS set contains a 01-gadget and from
every 01-gadget one can construct a KS set.

Besides being useful in the construction of KS sets,
we show that 01-gadgets also form a fundamental primi-
tive in constructing statistical KS arguments à la Clifton
[17] and state-independent non-contextuality inequali-
ties as introduced in [25]. Moreover, we show that
an “extended” Kochen-Specker theorem considered by
Pitowsky [22] and Abbott et al. [2, 3] can be easily proven
using an extension of the notion of 01-gadgets. We give
simple constructive proofs of these di↵erent results.

Certain 01-gadgets have already been studied previ-
ously in the literature, as they possess other interesting
properties. In particular, 01-gadgets were also used in
[15] to show that the problem of checking whether cer-
tain families of graphs (which represent natural candi-
dates for KS sets) are {0, 1}-colorable is NP-complete, a
result which we refine in the present paper.

This paper is organized as follows. In section II, we in-
troduce some notation and elementary concepts, in par-
ticular the representation of KS sets as graphs. In sec-
tion III, we define the notion of 01-gadgets and establish
their relation to KS sets. In section IV, we give several
constructions of 01-gadgets and associated KS sets. In
section V, we show how 01-gadgets can be used to con-
struct statistical KS arguments. In section VI, we also
show a simple constructive proof of the extended Kochen-
Specker theorem of Pitowsky [22] and Abbott et al. [3]
using a notion of extended 01-gadgets which we intro-
duce. In section VII, we show that 01-gadgets can be
used to establish the NP-completeness of {0, 1}-coloring
of the family of graphs relevant for KS proofs. We finish
by a general discussion and conclusion in section IX.

II. PRELIMINARIES

Much of the reasoning involving KS sets is usually car-
ried out using a graph representation of KS sets defined
below. We thus start by reminding some basic graph-
theoretic definitions.

Graphs. Throughout the paper, we will deal with sim-
ple undirected finite graphs G, i.e., finite graphs without
loops, multi-edges or directed edges. We denote V (G)
the vertices of G and E(G) the edges of G. If two ver-
tices v1, v2 are connected by an edge, we say that they
are adjacent, and write v1 ⇠ v2.

A subgraphH of G (denotedH < G) is a graph formed
from a subset of vertices and edges of G, i.e., V (H) ✓

V (G) and E(H) ✓ E(G). An induced subgraph K of
G (denoted K C G) is a subgraph that includes all the
edges in G whose endpoints belong to the vertex subset
V (K) ✓ V (G), i.e., E(K) ✓ E(G) with (v1, v2) 2 E(K)
i↵ (v1, v2) 2 E(G) for all v1, v2 2 V (K).

A clique in the graph G is a subset of vertices Q ⇢

V (G) such that every pair of vertices in Q is connected
by an edge, i.e., 8v1, v2 2 Q we have v1 ⇠ v2. A maximal
clique in G is a clique that is not a subset of a larger
clique in G. A maximum clique in G is a clique that is
of maximum size in G. The clique number !(G) of G is
the cardinality of a maximum clique in G.
Orthogonality graphs. The use of graphs in the con-

text of the KS theorem comes from the fact that it is
convenient to represent the orthogonality relations in a
KS set S by a graph GS , known as its orthogonality
graph [6, 7]. In such a graph, each vector |vii in S is
represented by a vertex vi of GS and two vertices v1, v2
of GS are connected by an edge if the associated vectors
|v1i, |v2i are orthogonal, i.e. v1 ⇠ v2 if hv1|v2i = 0 (for
instance the graph in Fig. 1 is the orthogonality graph of
the set of vectors given by eq. (5)).
It follows that in an orthogonality graph GS , a clique

corresponds to a set of mutually orthogonal vectors in S.
If S ⇢ Cd contains a basis set of d orthogonal vectors,
then the maximum clique in GS is of size !(GS) = d.
Coloring of graphs. The problem of {0, 1}-coloring S

thus translates into the problem of coloring the vertices of
its orthogonality graph GS such that vertices connected
by an edge cannot both be assigned the color 1 and maxi-
mum cliques have exactly one vertex of color 1. Formally,
we say that an arbitrary graph G is {0, 1}-colorable if
there exists an assignment f : V (G) ! {0, 1} such that

•
P

v2Q f(v)  1 for every clique Q ⇢ V (G);

•
P

v2Qmax
f(v) = 1 for every maximum

clique Qmax ⇢ V (G).

(4)

The KS theorem is then equivalent to the statement that
there exist for any d � 3, finite sets of vectors S ⇢ Cd

(the KS sets) such that their orthogonality graph GS is
not {0, 1}-colorable. Deciding if a given graphG admits a
{0, 1}-coloring is NP-complete [15]. Note that any graph
G that is not {0, 1}-colorable must contain at least two
cliques of maximum size !(G). Indeed, if a graph G
contains a single clique of maximum size it always admits
a {0, 1}-coloring consisting in assigning the value 0 to all
its vertices, except for one vertex in the maximum clique
that is assigned the value 1.

Orthogonal representations. For a given graph G, an
orthogonal representation S of G in dimension d is a set
of non-zero vectors S = {|vii} in Cd obeying the orthog-
onality conditions imposed by the edges of the graph,
i.e., v1 ⇠ v2 ) hv1|v2i = 0 [28]. We denote by d(G) the
minimum dimension of an orthogonal representation of
G and we say that G has dimension d(G). Obviously,
d(G) � !(G). A faithful orthogonal representation of
G is given by a set of vectors S = {|vii} that in addi-
tion obey the condition that non-adjacent vertices are as-
signed non-orthogonal vectors, i.e., v1 ⇠ v2 , hv1|v2i =
0 and that distinct vertices are assigned di↵erent vec-
tors, i.e., v1 6= v2 , |v1i 6= |v2i. We denote by d⇤(G) the
minimum dimension of such a faithful orthogonal repre-
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coloring: in any {0, 1}-coloring of a 01-gadget, there ex-
ist two non-orthogonal vectors |v1i and |v2i that cannot
both be assigned the color 1. We show that such 01-
gadgets form the essence of the KS contradiction, in the
sense that every KS set contains a 01-gadget and from
every 01-gadget one can construct a KS set.

Besides being useful in the construction of KS sets,
we show that 01-gadgets also form a fundamental primi-
tive in constructing statistical KS arguments à la Clifton
[17] and state-independent non-contextuality inequali-
ties as introduced in [25]. Moreover, we show that
an “extended” Kochen-Specker theorem considered by
Pitowsky [22] and Abbott et al. [2, 3] can be easily proven
using an extension of the notion of 01-gadgets. We give
simple constructive proofs of these di↵erent results.

Certain 01-gadgets have already been studied previ-
ously in the literature, as they possess other interesting
properties. In particular, 01-gadgets were also used in
[15] to show that the problem of checking whether cer-
tain families of graphs (which represent natural candi-
dates for KS sets) are {0, 1}-colorable is NP-complete, a
result which we refine in the present paper.

This paper is organized as follows. In section II, we in-
troduce some notation and elementary concepts, in par-
ticular the representation of KS sets as graphs. In sec-
tion III, we define the notion of 01-gadgets and establish
their relation to KS sets. In section IV, we give several
constructions of 01-gadgets and associated KS sets. In
section V, we show how 01-gadgets can be used to con-
struct statistical KS arguments. In section VI, we also
show a simple constructive proof of the extended Kochen-
Specker theorem of Pitowsky [22] and Abbott et al. [3]
using a notion of extended 01-gadgets which we intro-
duce. In section VII, we show that 01-gadgets can be
used to establish the NP-completeness of {0, 1}-coloring
of the family of graphs relevant for KS proofs. We finish
by a general discussion and conclusion in section IX.
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there exists an assignment f : V (G) ! {0, 1} such that

•
P

v2Q f(v)  1 for every clique Q ⇢ V (G);

•
P

v2Qmax
f(v) = 1 for every maximum

clique Qmax ⇢ V (G).

(4)

The KS theorem is then equivalent to the statement that
there exist for any d � 3, finite sets of vectors S ⇢ Cd

(the KS sets) such that their orthogonality graph GS is
not {0, 1}-colorable. Deciding if a given graphG admits a
{0, 1}-coloring is NP-complete [15]. Note that any graph
G that is not {0, 1}-colorable must contain at least two
cliques of maximum size !(G). Indeed, if a graph G
contains a single clique of maximum size it always admits
a {0, 1}-coloring consisting in assigning the value 0 to all
its vertices, except for one vertex in the maximum clique
that is assigned the value 1.

Orthogonal representations. For a given graph G, an
orthogonal representation S of G in dimension d is a set
of non-zero vectors S = {|vii} in Cd obeying the orthog-
onality conditions imposed by the edges of the graph,
i.e., v1 ⇠ v2 ) hv1|v2i = 0 [28]. We denote by d(G) the
minimum dimension of an orthogonal representation of
G and we say that G has dimension d(G). Obviously,
d(G) � !(G). A faithful orthogonal representation of
G is given by a set of vectors S = {|vii} that in addi-
tion obey the condition that non-adjacent vertices are as-
signed non-orthogonal vectors, i.e., v1 ⇠ v2 , hv1|v2i =
0 and that distinct vertices are assigned di↵erent vec-
tors, i.e., v1 6= v2 , |v1i 6= |v2i. We denote by d⇤(G) the
minimum dimension of such a faithful orthogonal repre-
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coloring: in any {0, 1}-coloring of a 01-gadget, there ex-
ist two non-orthogonal vectors |v1i and |v2i that cannot
both be assigned the color 1. We show that such 01-
gadgets form the essence of the KS contradiction, in the
sense that every KS set contains a 01-gadget and from
every 01-gadget one can construct a KS set.

Besides being useful in the construction of KS sets,
we show that 01-gadgets also form a fundamental primi-
tive in constructing statistical KS arguments à la Clifton
[17] and state-independent non-contextuality inequali-
ties as introduced in [25]. Moreover, we show that
an “extended” Kochen-Specker theorem considered by
Pitowsky [22] and Abbott et al. [2, 3] can be easily proven
using an extension of the notion of 01-gadgets. We give
simple constructive proofs of these di↵erent results.

Certain 01-gadgets have already been studied previ-
ously in the literature, as they possess other interesting
properties. In particular, 01-gadgets were also used in
[15] to show that the problem of checking whether cer-
tain families of graphs (which represent natural candi-
dates for KS sets) are {0, 1}-colorable is NP-complete, a
result which we refine in the present paper.

This paper is organized as follows. In section II, we in-
troduce some notation and elementary concepts, in par-
ticular the representation of KS sets as graphs. In sec-
tion III, we define the notion of 01-gadgets and establish
their relation to KS sets. In section IV, we give several
constructions of 01-gadgets and associated KS sets. In
section V, we show how 01-gadgets can be used to con-
struct statistical KS arguments. In section VI, we also
show a simple constructive proof of the extended Kochen-
Specker theorem of Pitowsky [22] and Abbott et al. [3]
using a notion of extended 01-gadgets which we intro-
duce. In section VII, we show that 01-gadgets can be
used to establish the NP-completeness of {0, 1}-coloring
of the family of graphs relevant for KS proofs. We finish
by a general discussion and conclusion in section IX.

II. PRELIMINARIES

Much of the reasoning involving KS sets is usually car-
ried out using a graph representation of KS sets defined
below. We thus start by reminding some basic graph-
theoretic definitions.

Graphs. Throughout the paper, we will deal with sim-
ple undirected finite graphs G, i.e., finite graphs without
loops, multi-edges or directed edges. We denote V (G)
the vertices of G and E(G) the edges of G. If two ver-
tices v1, v2 are connected by an edge, we say that they
are adjacent, and write v1 ⇠ v2.

A subgraphH of G (denotedH < G) is a graph formed
from a subset of vertices and edges of G, i.e., V (H) ✓

V (G) and E(H) ✓ E(G). An induced subgraph K of
G (denoted K C G) is a subgraph that includes all the
edges in G whose endpoints belong to the vertex subset
V (K) ✓ V (G), i.e., E(K) ✓ E(G) with (v1, v2) 2 E(K)
i↵ (v1, v2) 2 E(G) for all v1, v2 2 V (K).

A clique in the graph G is a subset of vertices Q ⇢

V (G) such that every pair of vertices in Q is connected
by an edge, i.e., 8v1, v2 2 Q we have v1 ⇠ v2. A maximal
clique in G is a clique that is not a subset of a larger
clique in G. A maximum clique in G is a clique that is
of maximum size in G. The clique number !(G) of G is
the cardinality of a maximum clique in G.
Orthogonality graphs. The use of graphs in the con-

text of the KS theorem comes from the fact that it is
convenient to represent the orthogonality relations in a
KS set S by a graph GS , known as its orthogonality
graph [6, 7]. In such a graph, each vector |vii in S is
represented by a vertex vi of GS and two vertices v1, v2
of GS are connected by an edge if the associated vectors
|v1i, |v2i are orthogonal, i.e. v1 ⇠ v2 if hv1|v2i = 0 (for
instance the graph in Fig. 1 is the orthogonality graph of
the set of vectors given by eq. (5)).
It follows that in an orthogonality graph GS , a clique

corresponds to a set of mutually orthogonal vectors in S.
If S ⇢ Cd contains a basis set of d orthogonal vectors,
then the maximum clique in GS is of size !(GS) = d.
Coloring of graphs. The problem of {0, 1}-coloring S

thus translates into the problem of coloring the vertices of
its orthogonality graph GS such that vertices connected
by an edge cannot both be assigned the color 1 and maxi-
mum cliques have exactly one vertex of color 1. Formally,
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FIG. 1: The 8-vertex “Clifton” graph that was used by
Kochen and Specker in their construction of the 117 vector
KS set. The two distinguished vertices are u1 and u8.

FIG. 2: A 16 vertex coloring gadget (also a 101-gadget) that
is a subgraph of the 18 vertex Kochen-Specker graph in di-
mension d = 4 found by Cabello et al. [18]. The 9 edge colors
denote 9 cliques in the graph, with the maximum clique be-
ing of size !(G) = 4. The distinguished vertices u1, u6 are
denoted by black circles.

one at a time, an induced subgraph Gcrit that is vertex-
critical. By vertex-critical, we mean that (i) Gcrit is not
{0, 1}-colorable, but (ii) any subgraph obtained from it
by deleting a supplementary vertex does admit a {0, 1}-
coloring. Observe that in the process of constructing
Gcrit we are able to preserve the maximum clique size,
i.e., !(Gcrit) = !(GKS). This is because we are able to
delete vertices from all but two maximum cliques, sim-
ply because at least two maximum cliques must exist in
a graph that is not {0, 1}-colorable. Observe also that
Gcrit is itself a KS graph, since the faithful orthogonal

representation of GKS in dimension d = !(G KS) pro-
vides an orthogonal representation of Gcrit in the same
dimension.
We consider three cases: (i) there exists a vertex in

Gcrit that belongs to a single maximum clique, (ii) all
vertices in Gcrit belong to at least two maximum cliques,
and there exists a vertex that belong to exactly two max-
imum cliques; (iii), all vertices in Gcrit belong to at least
three maximum cliques. In the first two cases, which hap-
pens to be the case encountered in all known KS graphs,
we will be able to prove that the 01-gadget appears as an
induced subgraph while in the third case, the 01-gadget
appears as a subgraph that may not necessarily be in-
duced.
In case (i), let v be one of the vertices having the prop-

erty that it belongs to a single maximum clique. We de-
note this clique Q1 ⇢ Gcrit

S
. Deleting v leads to a graph

Gcrit \ v that is {0, 1}-colorable by definition. However,
observe that in any coloring f of Gcrit \ v, all the ver-
tices in Q1 \ v are assigned the value 0 by f . This is
because, if one of these vertices were assigned value 1,
then one could obtain a valid coloring of Gcrit from f by
defining f(v) = 0. Choose a vertex v1 2 Q1 \ v and any
other non-adjacent vertex v2 2 Gcrit \ v. Then Gcrit \ v is
the required 01-gadget with v1, v2 playing the role of the
distinguished vertices.

In case (ii), let v be one of the vertices having the
property that it belongs to exactly two maximum cliques,
which we denote Q1, Q2 ⇢ Gcrit. Again, deleting v leads
to a graph Gcrit \ v that is {0, 1}-colorable. However,
in any coloring f of Gcrit \ v, it cannot be that a value
f(v1) = 1 and a value f(v2) = 1 are simultaneously as-
signed to a vertex v1 2 Q1 \ v and a vertex v2 2 Q2 \ v.
This is again because if there was such a coloring f , then
one could obtain a valid coloring for Gcrit by defining
f(v) = 0, in contradiction with the criticality of Gcrit.
Choose v1 2 Q1 \ v and v2 2 Q2 \ v such that v1 and v2
are not adjacent. Two such vertices must exist. Indeed,
if all vertices Q1\v where adjacent to all vertices of Q2\v,
then the maximum clique size would be strictly greater
than !(Gcrit). Therefore, we have that Gcrit \ v is the
required 01-gadget with v1, v2 the distinguished vertices.

Finally, we consider the case (iii) where each vertex in
Gcrit belongs to at least three maximum cliques. In this
case, we cannot proceed as above where we remove a cer-
tain vertex v and pick vertices from two maximal cliques
containing v, because we can no longer guarantee that
these two vertices cannot simultaneously be assigned the
value 1 (we can only guarantee that a certain t-uple of
vertices, each one picked from the t maximum cliques to
which v belongs, cannot all simultaneously be assigned
the value 1). Instead, we proceed as follows. We start
by deleting edges of Gcrit one at a time, to construct a
new graph G0

crit that is edge-critical. By edge-critical, we
mean, similarly to the construction above, that G0

crit is
not {0, 1}-colorable, but any graph obtained from it by
deleting a supplementary edge (and thus also by deleting
a supplementary vertex) does admit a {0, 1}-coloring. As
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cannot be assigned value 1 in any {0,1}-coloring   

➤ Define a 01-gadget as any set of vectors with this property, i.e.
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sentation of G and we say that G has faithful dimension
d⇤(G).

Given a graph G of dimension d(G), the orthogonal-
ity graph GS of the minimal orthogonal representation
S of G has faithful dimension d⇤(GS) = d(G). The
graph GS can be seen as obtained from G by adding
edges (between vertices that are non-adjacent in G, but
corresponding to vectors in S that are nevertheless or-
thogonal) and by identifying certain vertices (those that
correspond to identical vectors in S). We say that GS is
the faithful version of G.

KS graphs. While the non-{0, 1}-colorability of a set
S translates into the non-{0, 1}-colorability of its orthog-
onality graph GS , the non-{0, 1}-colorability of an arbi-
trary graph G translates into the non-{0, 1}-colorability
of one of its orthogonal representations only if this rep-
resentation has the minimal dimension d(G) = !(G). In-
deed, it is only under this condition that the require-
ment that

P
v2Qmax

f(v) = 1 in the definition of the
{0, 1}-coloring of the graph G gives rise to the corre-
sponding requirement that

P
v2Qmax

f(|vi) = 1 for its
orthogonal representation (if the dimension d is larger
than !(G) = |Qmax|, the |Qmax| < d mutually orthogo-
nal vectors {|vi : v 2 Qmax} in Cd do not form a basis).

If a graph G is not {0, 1}-colorable and has dimen-
sion d(G) = !(G), it thus follows that its minimal or-
thogonal representation S forms a KS set. If in addition
d⇤(G) = !(G), we say that G is a KS graph (this last con-
dition can always be obtained by considering the faithful
version of G, i.e., the orthogonality graph GS of its min-
imal orthogonal representation S).

The problem of finding KS sets can thus be reduced to
the problem of finding KS graphs. But as we have no-
ticed above, deciding if a graph is {0, 1}-colorable is NP-
complete. In addition, while finding an orthogonal rep-
resentation for a given graph can be expressed as finding
a solution to a system of polynomial equations, e�cient
numerical methods for finding such representations are
still lacking. Thus, finding KS sets in arbitrary dimen-
sions is a di�cult problem towards which a huge amount
of e↵ort has been expended [21]. In particular, “records”
of minimal Kochen-Specker systems in di↵erent dimen-
sions have been studied [18], the minimal KS system in
dimension four is the 18-vector system due to Cabello et
al. [18, 20] while lower bounds on the size of minimal KS
systems in other dimensions have also been established.

III. 01-GADGETS AND THE
KOCHEN-SPECKER THEOREM

We now introduce the notion of 01-gadgets that play
a crucial role in constructions of KS sets.

Definition 1. A 01-gadget in dimension d is a {0, 1}-
colorable set Sgad ⇢ Cd

of vectors containing two distin-

guished vectors |v1i and |v2i that are non-orthogonal, but

for which f(|v1i)+ f(|v2i)  1 in every {0, 1}-coloring f
of Sgad.

In other words, while a 01-gadget Sgad admits a {0, 1}-
coloring, in any such coloring the two distinguished non-
orthogonal vertices cannot both be assigned the value 1
(as if they were actually orthogonal). We can give an
equivalent, alternative definition of a gadget as a graph.

Definition 2. A 01-gadget in dimension d is a {0, 1}-
colorable graph Ggad with faithful dimension d⇤(Ggad) =
!(Ggad) = d and with two distinguished non-adjacent

vertices v1 ⌧ v2 such that f(v1) + f(v2)  1 in every

{0, 1}-coloring f of Ggad.

In the following when we refer to a 01-gadget, we freely
alternate between the equivalent set or graph definitions.

An example of a 01-gadget in dimension 3 is given by
the following set of 8 vectors in C3:

|u1i =
1
p
3
(�1, 1, 1), |u2i =

1
p
2
(1, 1, 0),

|u3i =
1
p
2
(0, 1,�1), |u4i = (0, 0, 1),

|u5i = (1, 0, 0), |u6i =
1
p
2
(1,�1, 0),

|u7i =
1
p
2
(0, 1, 1), |u8i =

1
p
3
(1, 1, 1), (5)

where the two distinguished vectors are |v1i = |u1i and
|v2i = |u8i. Its orthogonality graph is represented in
Fig. 1. It is easily seen from this graph representation
that the vertices u1 and u8 cannot both be assigned
the value 1, as this then necessarily leads to the adja-
cent vertices u4 and u5 to be both assigned the value
1, in contradiction with the {0, 1}-coloring rules. This
graph was identified by Clifton, following work by Stairs
[17, 26], and used by him to construct statistical proofs
of the Kochen-Specker theorem. We will refer to it as
the Clifton gadget GClif. The Clifton gadget and similar
gadgets were termed “definite prediction sets” in [21].
We identify the role played by 01-gadgets in the con-

struction of Kochen-Specker sets via the following theo-
rem.

Theorem 1. For any Kochen-Specker graph GKS, there

exists a subgraph Ggad < GKS with !(Ggad) = !(GKS)
that is a 01-gadget. Moreover, given a 01-gadget Ggad,

one can construct a KS graph GKS with !(GKS) =
!(Ggad).

The demonstration of our theorem is constructive, it
allows to build a 01-gadget from a KS graph and con-
versely. The 01-gadget in the original 117-vector proof
by Kochen-Specker is the Clifton graph in Fig. 1. A
16-vertex 01-gadget in dimension 4 that is an induced
subgraph of the 18-vertex KS graph introduced in [18] is
represented in Fig. 2.

Proof. We start by showing the first part of the Theo-
rem: that one can construct a 01-gadget Ggad from any
KS graph GKS. Given GKS, which by definition is not
{0, 1}-colorable, we first construct, by deleting vertices
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FIG. 1: The 8-vertex “Clifton” graph that was used by
Kochen and Specker in their construction of the 117 vector
KS set. The two distinguished vertices are u1 and u8.

FIG. 2: A 16 vertex coloring gadget (also a 101-gadget) that
is a subgraph of the 18 vertex Kochen-Specker graph in di-
mension d = 4 found by Cabello et al. [18]. The 9 edge colors
denote 9 cliques in the graph, with the maximum clique be-
ing of size !(G) = 4. The distinguished vertices u1, u6 are
denoted by black circles.

one at a time, an induced subgraph Gcrit that is vertex-
critical. By vertex-critical, we mean that (i) Gcrit is not
{0, 1}-colorable, but (ii) any subgraph obtained from it
by deleting a supplementary vertex does admit a {0, 1}-
coloring. Observe that in the process of constructing
Gcrit we are able to preserve the maximum clique size,
i.e., !(Gcrit) = !(GKS). This is because we are able to
delete vertices from all but two maximum cliques, sim-
ply because at least two maximum cliques must exist in
a graph that is not {0, 1}-colorable. Observe also that
Gcrit is itself a KS graph, since the faithful orthogonal
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sentation of G and we say that G has faithful dimension
d⇤(G).

Given a graph G of dimension d(G), the orthogonal-
ity graph GS of the minimal orthogonal representation
S of G has faithful dimension d⇤(GS) = d(G). The
graph GS can be seen as obtained from G by adding
edges (between vertices that are non-adjacent in G, but
corresponding to vectors in S that are nevertheless or-
thogonal) and by identifying certain vertices (those that
correspond to identical vectors in S). We say that GS is
the faithful version of G.

KS graphs. While the non-{0, 1}-colorability of a set
S translates into the non-{0, 1}-colorability of its orthog-
onality graph GS , the non-{0, 1}-colorability of an arbi-
trary graph G translates into the non-{0, 1}-colorability
of one of its orthogonal representations only if this rep-
resentation has the minimal dimension d(G) = !(G). In-
deed, it is only under this condition that the require-
ment that

P
v2Qmax

f(v) = 1 in the definition of the
{0, 1}-coloring of the graph G gives rise to the corre-
sponding requirement that

P
v2Qmax

f(|vi) = 1 for its
orthogonal representation (if the dimension d is larger
than !(G) = |Qmax|, the |Qmax| < d mutually orthogo-
nal vectors {|vi : v 2 Qmax} in Cd do not form a basis).

If a graph G is not {0, 1}-colorable and has dimen-
sion d(G) = !(G), it thus follows that its minimal or-
thogonal representation S forms a KS set. If in addition
d⇤(G) = !(G), we say that G is a KS graph (this last con-
dition can always be obtained by considering the faithful
version of G, i.e., the orthogonality graph GS of its min-
imal orthogonal representation S).

The problem of finding KS sets can thus be reduced to
the problem of finding KS graphs. But as we have no-
ticed above, deciding if a graph is {0, 1}-colorable is NP-
complete. In addition, while finding an orthogonal rep-
resentation for a given graph can be expressed as finding
a solution to a system of polynomial equations, e�cient
numerical methods for finding such representations are
still lacking. Thus, finding KS sets in arbitrary dimen-
sions is a di�cult problem towards which a huge amount
of e↵ort has been expended [21]. In particular, “records”
of minimal Kochen-Specker systems in di↵erent dimen-
sions have been studied [18], the minimal KS system in
dimension four is the 18-vector system due to Cabello et
al. [18, 20] while lower bounds on the size of minimal KS
systems in other dimensions have also been established.

III. 01-GADGETS AND THE
KOCHEN-SPECKER THEOREM

We now introduce the notion of 01-gadgets that play
a crucial role in constructions of KS sets.

Definition 1. A 01-gadget in dimension d is a {0, 1}-
colorable set Sgad ⇢ Cd

of vectors containing two distin-

guished vectors |v1i and |v2i that are non-orthogonal, but

for which f(|v1i)+ f(|v2i)  1 in every {0, 1}-coloring f
of Sgad.

In other words, while a 01-gadget Sgad admits a {0, 1}-
coloring, in any such coloring the two distinguished non-
orthogonal vertices cannot both be assigned the value 1
(as if they were actually orthogonal). We can give an
equivalent, alternative definition of a gadget as a graph.

Definition 2. A 01-gadget in dimension d is a {0, 1}-
colorable graph Ggad with faithful dimension d⇤(Ggad) =
!(Ggad) = d and with two distinguished non-adjacent

vertices v1 ⌧ v2 such that f(v1) + f(v2)  1 in every

{0, 1}-coloring f of Ggad.

In the following when we refer to a 01-gadget, we freely
alternate between the equivalent set or graph definitions.

An example of a 01-gadget in dimension 3 is given by
the following set of 8 vectors in C3:

|u1i =
1
p
3
(�1, 1, 1), |u2i =

1
p
2
(1, 1, 0),

|u3i =
1
p
2
(0, 1,�1), |u4i = (0, 0, 1),

|u5i = (1, 0, 0), |u6i =
1
p
2
(1,�1, 0),

|u7i =
1
p
2
(0, 1, 1), |u8i =

1
p
3
(1, 1, 1), (5)

where the two distinguished vectors are |v1i = |u1i and
|v2i = |u8i. Its orthogonality graph is represented in
Fig. 1. It is easily seen from this graph representation
that the vertices u1 and u8 cannot both be assigned
the value 1, as this then necessarily leads to the adja-
cent vertices u4 and u5 to be both assigned the value
1, in contradiction with the {0, 1}-coloring rules. This
graph was identified by Clifton, following work by Stairs
[17, 26], and used by him to construct statistical proofs
of the Kochen-Specker theorem. We will refer to it as
the Clifton gadget GClif. The Clifton gadget and similar
gadgets were termed “definite prediction sets” in [21].
We identify the role played by 01-gadgets in the con-

struction of Kochen-Specker sets via the following theo-
rem.

Theorem 1. For any Kochen-Specker graph GKS, there

exists a subgraph Ggad < GKS with !(Ggad) = !(GKS)
that is a 01-gadget. Moreover, given a 01-gadget Ggad,

one can construct a KS graph GKS with !(GKS) =
!(Ggad).

The demonstration of our theorem is constructive, it
allows to build a 01-gadget from a KS graph and con-
versely. The 01-gadget in the original 117-vector proof
by Kochen-Specker is the Clifton graph in Fig. 1. A
16-vertex 01-gadget in dimension 4 that is an induced
subgraph of the 18-vertex KS graph introduced in [18] is
represented in Fig. 2.

Proof. We start by showing the first part of the Theo-
rem: that one can construct a 01-gadget Ggad from any
KS graph GKS. Given GKS, which by definition is not
{0, 1}-colorable, we first construct, by deleting vertices
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represented in Fig. 2.

Proof. We start by showing the first part of the Theo-
rem: that one can construct a 01-gadget Ggad from any
KS graph GKS. Given GKS, which by definition is not
{0, 1}-colorable, we first construct, by deleting vertices

R. R., M. Rosicka, K. Horodecki, S. Pironio, M. Horodecki and P. Horodecki. “Gadget structures in proofs of the Kochen-
Specker theorem”. arXiv: 1807.00113. Accepted in Quantum.



CONSTRUCTING KS PROOFS USING 01-GADGETS
➤ Suppose we have constructed a 01-gadget between any two given vectors. 

➤ We may then construct multiple new KS proofs using several graph frustrations as 
in the figure below 8
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KS2

(A) (B)
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FIG. 4: Graphs with the dashed edges denoting 01-gadgets.
(a) In any {0, 1}-coloring of the graph G0, the central vertex
is necessarily assigned value 0. (b) Three copies of G0 with
the central vertices forming a basis in C3 so that the resulting
graph GKS1 forms a Kochen-Specker proof. (c) Another proof
of the KS theorem GKS2 is obtained by connecting every pair
of vectors in two bases by a 01-gadget.

crucial role in these is played by the repeating unit G0

shown in Fig. 4 (a). This unit is given by a set of basis
vectors {|u1i, |u2i, |u3i} all connected via appropriate 01-
gadgets to a central vector |v1i. In any {0, 1}-coloring f
of G0, one of the three basis vectors must be assigned
the value 1, so that we necessarily have f(|v1i) = 0. In
other words, G0 is a graph in which a particular vector
necessarily takes value 0 in any {0, 1}-coloring. Note that
this property is also shown by the graph in Fig. 3

Note that from G0, one can also construct an or-
thogonality graph G1 in which a particular vector nec-
essarily takes values 1 in any {0, 1}-coloring. Indeed,
consider two copies of G0 with the respective central
vectors |v1i and |v2i orthogonal to each other, so that
f(|v1i) = f(|v2i) = 0. Then, in any {0, 1}-coloring of the
resulting graph G1, the third basis vector |v3i ? |v1i, |v2i
necessarily obeys f(|v3i) = 1.

In Fig. 4 (b), a KS proof in C3 is based on the unit
G0, repeated three times with a basis set of central vec-
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coloring, all these three basis vectors are assigned value
0 leading to a KS contradiction. In Fig. 4 (c), the con-
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{|v1i, |v2i, |v3i} with an appropriate 01-gadget connect-
ing every pair |uii, |vji for i, j = 1, 2, 3. So that assign-
ing value 1 to any of the vectors in one basis, necessarily
implies that all of the vectors in the other basis are as-
signed value 0, leading to a contradiction. Furthermore,
the construction can be readily extended to derive KS
graphs using any frustrated graph.

V. STATISTICAL KS ARGUMENTS BASED ON
01-GADGETS

The KS theorem can be seen as a proof that no non-
contextual deterministic hidden-variable interpretation
of quantum theory is possible. In a deterministic hidden-
variable model, we aim to reproduce the quantum prob-
abilities

Pr (i|M) =
X

�

q (�)f�(i|M) (14)

in term of hidden-variables �, where a distribution q (�)
over the hidden-variables is associated to each quantum
state | i, and where for each �, the model predicts with
certainty that one of the outcomes i will occur for each
measurement M , i.e., the hidden measurement outcome
probabilities f�(i|M) satisfy f�(i|M) 2 {0, 1}. Further-
more, the model is non-contextual if, as in the quantum
case, the probabilistic assignment to the outcome i of
the (projective) measurement M , only depends on the
corresponding projector Vi, independently of the wider
context provided by the full description of the measure-
ment M = {V1, V2, . . . , Vn}. In other words in a non-
contextual deterministic hidden-variable, we aim to write
for every projector V :

h |V | i =
X

�

q (�)f�(V ) , (15)

where f�(V ) 2 {0, 1}. Obviously, we should also require
for consistency that

P
i2O

f(Vi)  1 for any set O of
mutually orthogonal projectors, with equality when the
projectors in O sum to the identity.

No-go theorems against such models, i.e., “proofs of
contextuality” , are usually obtained by considering a fi-
nite set S = {|v1i, . . . , |vni} ⇢ Cd of rank-one projectors
Vi, represented as vectors through Vi = |viihvi|. Special-
izing to this case, a non-contextual hidden variable model
should satisfy for each |vii in S and each | i in Cd,

|h |vii|
2 =

X

�

q (�)f�(|vii) , (16)

where the f� : S ! {0, 1} are {0, 1}-colorings of S.
At least three types of no-go theorems, from strongest

to weakest, against such non-contextual hidden-variable
models can be constructed.
The first types correspond to Kochen-Specker theo-

rems. They establish that for certain sets S, it is not pos-
sible to consistently define {0, 1}-colorings f� of S, even
before attempting to use them to reproduce the quantum
probabilities. This is what we have discussed until now.
In the second type of proofs, a {0, 1}-coloring of S is

not excluded. But it can be shown that for any such
coloring f� of S, a certain inequality

P
i cif�(|vii) 

c0 must necessarily be satisfied, while in the quantum
case, it happens that

P
i ci|viihvi| > c0I. In other

words, though it is possible to find a {0, 1} assignment



CONSTRUCTING MINIMAL 01-GADGETS
➤ Qn: Construct minimal 01-gadgets between any two given vectors  

➤ Our candidate solution: uses 43 vectors. 7

Theorem 2. Let |v1i and |v2i be any two distinct non-

orthogonal vectors in Cd
with d � 3. Then there exists

a 01-gadget in dimension d with |v1i and |v2i being the

two distinguished vertices.

While the existence of such a construction can be antic-
ipated from the Kochen-Specker construction from The-
orem 1, we give a construction with much fewer vectors
based on the 43-vertex graph of Fig. 3.

Proof. The construction is based on the 43-vertex graph
G of Fig. 3. We first show the construction for C3, and
then straightforwardly extend it to Cd for d > 3. Suppose
thus that we are given |v1i, |v2i 2 C3. We consider two
cases: (i) 0 < |hv1|v2i| 

1
p
2
and (ii) 1

p
2
< |hv1|v2i|  1.

Case (i): 0 < |hv1|v2i| 
1
p
2
. Suppose without

loss of generality that |v1i = (1, 0, 0)T and |v2i =
1

p
1+x2 (x, 1, 0)

T with 0 < x  1. In this case, the in-

duced subgraph Gind of G consisting of the vertex set
V (Gind) = {1, . . . , 22} and E(Gind) = {(ui, uj) : 1 

i, j  22, (ui, uj) 2 E(G)} will su�ce to construct the
gadget with u1 and u22 the two distinguished vertices,
corresponding to |v1i and |v2i. First, it is easily veri-
fied from the graph that in any {0, 1}-coloring f , f(u1)
and f(u22) cannot both be assigned the value 1. It thus
only remains to provide an orthogonal representation of
the graph Gind. Such a representation is given by the
following set of (non-normalized) vectors:

|u1i = (1, 0, 0)T ; |u2i = (0, 1,�1)T ; |u3i = (0, 1, 0)T ;

|u4i = (0, y, 1)T ; |u5i = (2x, 1, 1)T ; |u6i = (�1, 0, 2x)T ;

|u7i = (�2x, 0,�1)T ; |u8i = (x, 1,�2x2)T ;

|u9i = (2x3, 2x2, 1 + x2)T ;

|u10i = (�(1 + x2), 0, 2x3)T ;

|u11i = (2x3, 0, 1 + x2)T ;

|u12i = (x(1 + x2), 1 + x2,�2x4)T ;

|u13i = (2x5, 2x4, (1 + x2)2)T ;

|u14i = (�(1 + x2)2, 0, 2x5)T ;

|u15i = (2x5, 0, (1 + x2)2)T ;

|u16i = (x(1 + x2)2, (1 + x2)2,�2x6)T ;

|u17i = (2x7, 2x6, (1 + x2)3)T ;

|u18i = (�x(1 + y2),�1, y)T ;

|u19i = (1,�x,�x)T ; |u20i = (1,�x, 0)T ;

|u21i = (1,�x, xy)T ; |u22i = (x, 1, 0)T ; (12)

with

y =
(1 + x2)3 +

p
(1 + x2)6 � 16x14(1 + x2)

4x8
. (13)

It is easily verified that this set of vectors satisfy all the
orthogonality relations encoded by the induced subgraph
Gind we are considering.

Case (ii): 1
p
2
< |hv1|v2i|  1. Suppose without loss

of generality that |v1i = (1, 0, 0)T and |v2i = (1 + x, 1�

FIG. 3: The 43 vertex 01-gadget used in the proof of Theo-
rem 2.

x, 0)T /
p
2 + 2x2 with 0 < x  1. In this case, we con-

sider the entire 43-vertex graph G from Fig. 3, with u1

and u42 the two distinguished vertices, corresponding to
|v1i and |v2i. Again, it is easily seen that in any {0, 1}-
coloring f , f(u1) and f(u42) cannot both be assigned the
value 1. It thus only remains to provide an orthogonal
representation of the graph G.
The graph G can be seen as being composed from (i)

the induced subgraph Gind with vertices u1, . . . , u22 con-
sidered above, (ii) an isomorphic subgraph G0

ind with ver-
tices u0

1 = u20, u0
2 = u23, . . . , u0

22 = u42, (iii) the vertex
u43 connected to u1, u20, u22, u42.
The first 22 vectors u1, . . . , u22 of Gind are chosen as

above with x = 1 and y = 2 +
p
2. The 22 vectors

u0
1, . . . , u

0
22 of G0

ind are also obtained from the above
solution, but with 0 < x  1 a free parameter, and
after applying first a unitary U that maps (1, 0, 0) to
(1,�1, 0)/

p
2 and (0, 1, 0) to (1, 1, 0)

p
2 and leave invari-

ant (0, 0, 1). We thus have |u1i = |v1i = (1, 0, 0)T and
|u42i = |v2i = (1 + x, 1� x, 0)T /

p
2 + 2x2 as assumed.

By construction, the orthogonality relations of the sub-
graphs Gind and G0

ind are satisfied. We also have that the
vectors common to the two subgraphs are indeed iden-
tical, namely |u20i = (1,�1, 0)T and |u22i = (1, 1, 0)T .
Furthemore, choosing |u43i = (0, 0, 1)T , we also have that
|u43i is orthogonal to |u1i, |u20i, |u22i, and |u42i as re-
quired.
This completes the construction of the gadget for C3.

Now, one may simply consider the same set of vectors
as being embedded in any Cd (with additional vectors
(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.) to con-
struct a gadget in this dimension. ut

Theorem 2 allows to construct new KS graphs than
the one given in the proof of Theorem 1. Some of such
constructions in dimension 3 are shown in Fig. 4. A
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STATISTICAL PROOFS OF THE KS THEOREM (A LA YU-OH)
➤ Yu & Oh proposed an alternative proof of the KS Theorem without the use of KS 

vector sets! 

➤ The 13-vector Yu-Oh set is {0,1}-colorable but admits a state-independent non-
contextuality inequality. 

2

independent test of quantum contextuality for an indi-
visible system practical.

How can we exclude non-contextual HV models for QM
or prove the quantum contextuality? Obviously the an-
swer depends on what kinds of quantum mechanical pre-
dictions we want the HV model to reproduce. For ex-
ample if we only want the predictions on non-sequential
measurements, i.e., correlations not included, to be re-
produced, then a non-contextual HV model does exist
according to Kochen and Specker [2]. Because of this
toy model Kochen and Specker imposed a rather strong
constraint on the HV models as a way out [2]: the al-
gebraic structure of compatible observables must be pre-
served. Especially the value assigned to the product or
the sum of two compatible observables must be equal to
the product or the sum of the values assigned to these
two compatible observables, which will be referred to as
the product rule and the sum rule respectively. As we
shall see later this constraint can be lifted if we consider
sequential measurements.

As a result of the product rule the value assigned to
the product of two orthogonal rays, normalized rank-1
projections, which are compatible, must be zero. As a
result of the sum rule there is one and only one ray that
is assigned to value 1 among all the rays in a complete
orthonormal basis since the identity is always assigned
to value 1. Thus in every non-contextual HV model pre-
serving the partial algebraic structure of compatible ob-
servables there exists a KS value assignment to all rays
in the corresponding Hilbert space satisfying:

1. The value {0, 1} assigned to a ray is independent
of which bases it finds itself in;

2. One and only one ray is assigned to value 1 among
all the rays in a complete orthonormal basis.

The first condition reflects the non-contextuality and the
second condition arises from the requirement that the al-
gebraic structure of compatible observables be preserved.
For a Hilbert space of a dimension greater than 2 there
always exists a finite set of rays to which the KS value as-
signment is impossible. For qutrits, a state-independent
proof originally involves 117 rays [2] and the number is
reduced to 33 by Peres [19] and Schütte as reported by
K. Svozil in 1994 and pointed out by Bub [20]. The
best KS proof known so far is given by Conway and
Kochen [21] with 31 rays. For 4-state systems the best
state-independent proof is due to Cabello, Estebaranz,
and Garćıa-Alcaine [22] with 18 rays, the smallest state-
independent KS proof known so far.

To warm up let us present a state-independent proof
of KS theorem for qutrit using only 13 rays. In a given
basis {|0⟩, |1⟩, |2⟩} we shall represent a qutrit ray r̂ =
|r⟩⟨r|/⟨r|r⟩ by a triple r = (a, b, c) such that |r⟩ = a|0⟩+
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We propose a state-independent test for hidden variables (HVs) in spin-1 systems, or qutrits, via
an inequality that involves only 13 dichotomic observables. In particular, our inequality is obeyed
by all non-contextual HV models and is violated by all qutrit states, whose nonclassical nature can
thus be revealed comprehensively. Especially, our inequality provides a state-independent proof of
Kochen-Specker theorem with 13 rays and in comparison the world record is the 31-ray proof by
Conway and Kochen for qutrits and Cabello’s 18-ray proof for 4-level systems. Also our inequality
rules out those non-contextual HV models that do not preserve the algebraic structure of compatible
observables.

The predictions of quantum mechanics are probabilis-
tic and hidden variable (HV) models are intended to ex-
plain why a certain outcome appears in each run of a
measurement a possible choice. However, any HV model
that reproduces all the quantum mechanical predictions
on a system with three or more distinguishable states
is necessarily contextual: the outcome of a measurement
depends on which set of compatible measurements might
be performed alongside. This is exactly the content of
Kochen-Specker (KS) theorem [1], independently discov-
ered by Bell [2]. The quantum contextuality was initially
revealed via some logical contradictions and now it be-
comes experimentally testable via some inequalities [3–5],
referred to as KS inequalities here, that are satisfied by
all non-contextual HV models.

KS inequalities reveal the nonclassical nature of sin-
gle systems demanding neither entanglement nor space-
like separation. Since local realism is one special form
of non-contextuality Bell inequalities [6] can be regarded
as a special kind of KS inequalities. Various experiments
[7–13] have been done to test directly the quantum con-
textuality on different systems. State-independent viola-
tions are found for composite systems or for two or more
degrees of freedom. However for the simplest system ca-
pable of exhibiting contextuality, a qutrit, the quantum
contextuality is tested only in a state-dependent fashion
[13]. This is because the state-independent KS inequali-
ties for qutrit arising from existing KS proofs involve too
many observables, e.g. the best KS proof known involves
31 observables, to be tested practically.

In this Letter we shall fill the gap by proposing a state-
independent KS inequality with only 13 dichotomic ob-
servables, referred to as the magic-cube inequality, to test
the HVs for qutrit. Our inequality not only provides
a state-independent proof of KS theorem with 13 rays,
comparatively the best proof involves 31 rays, but also
rules out any non-contextual HV models that may not
preserve the algebraic structure of compatible observ-
ables. The state-independent violations of our inequality
reveal comprehensively the nonclassical nature of a single
quantum system.
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FIG. 1: The graph ∆13 = (V,Γ) whose vertices are repre-
sented by 13 hollow dots and edges are represented by either
straight lines or curves. The element of the adjacency matri
is nonzero, i.e. Γuv = 1, if and only if two vertices u, v
are connected.

Recently Klyachko, Can, Binicioglu, and Shumovskya
[3] propose a simple KS inequality, called pentagram in-
equality since it is based on the graph of a pentagon, to
test HVs for qutrits with only 5 dichotomic observables.
Being derived by assuming non-contextuality only, the
pentagram inequality is valid for all non-contextual HV
models and its violation has been verified in a recent ex-
periment [13]. However the pentagram inequality, as well
as other KS inequalities derivable from graphs [11], are
state-dependent.
Our inequality is based on the graph∆13 on 13 vertices

as shown in Fig.1. Let , h , z with = 1 3,
, and = 0 3 be its vertex set and Γ be its

adjacency matrix, which is a 13 13 symmetric matrix
with vanishing diagonal and Γuv = 1 if two vertices u, v

are connected and Γuv = 0 otherwise. For arbitrary
13 variables 1 with it holds

:=
u,v

uv (1)

which can be directly verified with the help of a laptop
by exhausting all 213 possibilities or be proved as follows.

FIG. 2: The orthogonality relationships among those 13 rays
in Eq.(1) determine a graph∆13 with 13 vertices (hollow dots)
representing those 13 rays and edges, straight or curved, link-
ing two rays that are orthogonal.

b|1⟩+ c|2⟩. Consider the following 13 rays

y−1 = (0, 1,−1) h1 = (−1, 1, 1) z1 = (1, 0, 0)
y−2 = (1, 0,−1) h2 = (1,−1, 1) z2 = (0, 1, 0)
y−3 = (1,−1, 0) h3 = (1, 1,−1) z3 = (0, 0, 1)
y+1 = (0, 1, 1) h0 = (1, 1, 1)
y+2 = (1, 0, 1)
y+3 = (1, 1, 0)

(1)

that are determined by 26 points on the surface of a 3×3
magic cube as illustrated in Fig.1. If we regard those 13
rays as 13 vertices and link two vertices if and only if the
corresponding rays are orthogonal, then we obtain the
orthogonality graph ∆13 as shown in Fig.2. Obviously a
given set of rays determines uniquely the orthogonality
graph and usually not vice versa. However those 13 rays
are determined uniquely by the orthogonality relation-
ships specified by the graph ∆13 up to a global unitary
transformation.
In fact without loss of generality we can choose zk as in

Eq.(1) since they form a basis. Because {zk, y
±
k } are mu-

tually orthogonal for each k = 1, 2, 3 there exist nonzero
t1, t2, t3 such that y+1 = (0, t1, 1) and y−1 = (0,−1, t∗1),
y+2 = (1, 0, t2) and y−2 = (t∗2, 0,−1), y+3 = (t3, 1, 0) and
y−3 = (−1, t∗3, 0). As a result we have h1 = (−t∗2, t1, 1),
h2 = (1,−t∗3, t2), and h3 = (t3, 1,−t∗1). Since hk is
orthogonal to y+k−1 for k = 1, 2, 3 we have t∗1 = t2t3,
t∗2 = t1t3, and t∗3 = t1t2 from which it follows that |tk| = 1
and t1t2t3 = 1, i.e., tk = ei(θk+1−θk+2) for some real θk.
Finally we obtain h0 = (eiθ1 , eiθ2 , eiθ3) which is orthogo-
nal to y−1,2,3. The diagonal unitary transformation taking
h0 to (1, 1, 1) leaves zk unchanged so that the standard
form of 13 rays in Eq.(1) is obtained.
The KS value assignments to the 13-ray set are pos-

sible, i.e., no logical contradiction can be extracted by
considering conditions 1 and 2 only. However in any pos-
sible KS value assignment there is at most one ray among
{ĥα|α = 0, 1, 2, 3} that can be assigned to value 1. Sup-

2

independent test of quantum contextuality for an indi-
visible system practical.
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plain why a certain outcome appears in each run of a
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that reproduces all the quantum mechanical predictions
on a system with three or more distinguishable states
is necessarily contextual: the outcome of a measurement
depends on which set of compatible measurements might
be performed alongside. This is exactly the content of
Kochen-Specker (KS) theorem [1], independently discov-
ered by Bell [2]. The quantum contextuality was initially
revealed via some logical contradictions and now it be-
comes experimentally testable via some inequalities [3–5],
referred to as KS inequalities here, that are satisfied by
all non-contextual HV models.

KS inequalities reveal the nonclassical nature of sin-
gle systems demanding neither entanglement nor space-
like separation. Since local realism is one special form
of non-contextuality Bell inequalities [6] can be regarded
as a special kind of KS inequalities. Various experiments
[7–13] have been done to test directly the quantum con-
textuality on different systems. State-independent viola-
tions are found for composite systems or for two or more
degrees of freedom. However for the simplest system ca-
pable of exhibiting contextuality, a qutrit, the quantum
contextuality is tested only in a state-dependent fashion
[13]. This is because the state-independent KS inequali-
ties for qutrit arising from existing KS proofs involve too
many observables, e.g. the best KS proof known involves
31 observables, to be tested practically.

In this Letter we shall fill the gap by proposing a state-
independent KS inequality with only 13 dichotomic ob-
servables, referred to as the magic-cube inequality, to test
the HVs for qutrit. Our inequality not only provides
a state-independent proof of KS theorem with 13 rays,
comparatively the best proof involves 31 rays, but also
rules out any non-contextual HV models that may not
preserve the algebraic structure of compatible observ-
ables. The state-independent violations of our inequality
reveal comprehensively the nonclassical nature of a single
quantum system.
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[3] propose a simple KS inequality, called pentagram in-
equality since it is based on the graph of a pentagon, to
test HVs for qutrits with only 5 dichotomic observables.
Being derived by assuming non-contextuality only, the
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models and its violation has been verified in a recent ex-
periment [13]. However the pentagram inequality, as well
as other KS inequalities derivable from graphs [11], are
state-dependent.
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ing two rays that are orthogonal.
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that are determined by 26 points on the surface of a 3×3
magic cube as illustrated in Fig.1. If we regard those 13
rays as 13 vertices and link two vertices if and only if the
corresponding rays are orthogonal, then we obtain the
orthogonality graph ∆13 as shown in Fig.2. Obviously a
given set of rays determines uniquely the orthogonality
graph and usually not vice versa. However those 13 rays
are determined uniquely by the orthogonality relation-
ships specified by the graph ∆13 up to a global unitary
transformation.
In fact without loss of generality we can choose zk as in

Eq.(1) since they form a basis. Because {zk, y
±
k } are mu-

tually orthogonal for each k = 1, 2, 3 there exist nonzero
t1, t2, t3 such that y+1 = (0, t1, 1) and y−1 = (0,−1, t∗1),
y+2 = (1, 0, t2) and y−2 = (t∗2, 0,−1), y+3 = (t3, 1, 0) and
y−3 = (−1, t∗3, 0). As a result we have h1 = (−t∗2, t1, 1),
h2 = (1,−t∗3, t2), and h3 = (t3, 1,−t∗1). Since hk is
orthogonal to y+k−1 for k = 1, 2, 3 we have t∗1 = t2t3,
t∗2 = t1t3, and t∗3 = t1t2 from which it follows that |tk| = 1
and t1t2t3 = 1, i.e., tk = ei(θk+1−θk+2) for some real θk.
Finally we obtain h0 = (eiθ1 , eiθ2 , eiθ3) which is orthogo-
nal to y−1,2,3. The diagonal unitary transformation taking
h0 to (1, 1, 1) leaves zk unchanged so that the standard
form of 13 rays in Eq.(1) is obtained.
The KS value assignments to the 13-ray set are pos-

sible, i.e., no logical contradiction can be extracted by
considering conditions 1 and 2 only. However in any pos-
sible KS value assignment there is at most one ray among
{ĥα|α = 0, 1, 2, 3} that can be assigned to value 1. Sup-
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CONSTRUCTING STATISTICAL KS PROOFS USING 01-GADGETS
➤ How to construct new (and minimal) statistical KS proofs using 01-gadgets? 

➤ First, note  

➤ Consider the set of d+1 vertices of the regular d-simplex in Rd with additionally 
01-gadgets connecting every pair of them (this is possible from Theorem 2) 

➤ Then, this set of vectors admits the following state-independent NC inequality 

➤ While the simplex is minimal, any set of vectors such that                        for all       
can be used in the construction.                  
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f�(|vii) to each projector |viihvi| in S that is compati-
ble with the orthogonality relations among such projec-
tors, any such assignment fails to reproduce some more
complex relation of the type

P
i ci|viihvi| > c0I satis-

fied by these projectors. This immediately implies a
contradiction with eq. (16), since in the quantum case
we have for any | i,

P
i ci|h |vii|

2 > c0, while ac-
cording to a non-contextual hidden variable model, we
would have

P
i ci|h |vii|

2 =
P
� q (�) [

P
i cif�(|vii)] P

� q| i(�)c0  c0. Such no-go theorems are referred
to as “statistical state-independent” KS arguments and
were introduced by Yu and Oh [25].

Finally, for certain sets S, it is possible to find valid
{0, 1}-colorings that do not lead to any type of contradic-
tions of the second type above. However, it is not pos-
sible to take mixtures of such colorings, as in eq. (16),
to reproduce the predictions of certain quantum states
| i. Such no-go theorems are referred to as “statistical
state-dependent” KS arguments and were introduced by
Clifton in [17].

While we have seen in the previous section how proofs
of the KS theorem can be constructed using 01-gadgets,
in this section we show how to use them to build statisti-
cal state-independent and state-dependent KS arguments

A. State-independent KS arguments

In [25], Yu and Oh introduced a set of 13 vectors in C3

that provides a state-independent proof of contextuality,
despite not being a KS set. We show how using Theo-
rem 2, it is possible to construct other state-independent
proofs of contextuality based on 01-gadgets. To do this,
we make use of the following lemma.

Lemma 3. Let |uii, for i = 1, . . . , d + 1 be the unit

vectors denoting the vertices of a d-dimensional simplex

embedded in Rd
. Then

d+1X

i=1

|uiihui| =
d+ 1

d
I. (17)

Proof. Since |uii form the vertices of the d-simplex, we
have hui|uji = �

1
d for any i 6= j 2 {1, . . . , d+1}. It then

follows
 

d+1X

i=1

hui|

!0

@
d+1X

j=1

|uii

1

A = (d+ 1) + d(d+ 1)

✓
�
1

d

◆
= 0,

so that

O :=
d+1X

i=1

|uiihui| = �

d+1X

i 6=j=1

|uiihuj | (18)

This then implies that

O2 = O �
1

d

d+1X

i 6=j=1

|uiihuj | =
d+ 1

d
O. (19)

Moreover, O is invertible, since span({|uii}
d+1
i=1 ) = Rd so

that we obtain O = d+1
d I. ut

Now, state-independent KS arguments for Cd are
straightforwardly constructed as follows. For every pair
of vectors |uii, |uji of the d-simplex, consider a 01-gadget
Sij with |uii, |uji the distinguished vertices. Since |uii

and |uji are non-orthogonals, such gadgets exists, as
implied by Theorem 2. The resulting set of vectors
S = [ijSij exhibits state-independent contextuality. In-
deed, by the property of the 01-gadgets, only one of the
vectors |uii for i = 1, . . . , d+1 can be assigned the value
1 in any {0, 1}-coloring of S. It thus follows that

d+1X

i=1

f(|uii)  1, . (20)

On the other hand, from Lemma 3, every state | i from

Cd achieves the value
Pd+1

i=1 |h |uii|
2 = d+1

d > 1.
While we have used the d+1 vertices of a d-simplex in

the construction above, we observe that any set {|uii} of
vectors in Cd such that

P
i |h |uii|

2 > 1 for all | i 2 Cd

can be utilized in the construction, although such a set
clearly needs to contain at least d+ 1 vectors.

B. State-dependent KS arguments

The relation between state-dependent KS arguments
and 01-gadgets is even more direct than in the above
construction. Actually, the first state-dependent KS ar-
gument introduced by Clifton in [17] was precisely based
on the set of vectors (5) forming the Clifton gadget Ggad.
His argument was as follows. In every non-contextual
hidden-variable model attempting to replicate the quan-
tum probabilities associated to the projectors of the
Clifton gadget, we should have |h |u1i|

2 + |h |u8i|
2 =P

� q (�) (f�(|u1i) + f�(|u8i))  1, by the gadget prop-
erty. However, if we take | i = |u1i, we find that accord-
ing to the quantum predictions |hu1|u1i|

2 + |hu1|u8i|
2 =

1+ |hu1|u8i|
2 > 1 since |hu1|u8i|

2 > 0 as |u1i and |u8i are
non-orthogonal. Other state-dependent proofs based on
inequalities have since been developed, with the smallest
involving five vectors [4].
Obviously, the argument used by Clifton for the par-

ticular set of vectors he introduced, immediately carries
over to any 01-gadget. Thus every 01-gadget serves as a
proof of state-dependent contextuality.
Note that it was realized in [13] that a class of graphs,

known as perfect graphs, define a class of graphs that
cannot serve as proofs of (even state-dependent) con-
textuality. That is, for any orthogonal representation
{|vji} ⇢ Cd of a perfect graph and for any pure state
| i 2 Cd, the outcome probabilities |h |vji|2 admit a
non-contextual hidden variable model of the form (16).
Since a non-contextual hidden variable model is not pos-
sible for a 01-gadget, we deduce that no perfect graph
is a 01-gadget. Perfect graphs are a well-known class of
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The relation between state-dependent KS arguments
and 01-gadgets is even more direct than in the above
construction. Actually, the first state-dependent KS ar-
gument introduced by Clifton in [17] was precisely based
on the set of vectors (5) forming the Clifton gadget Ggad.
His argument was as follows. In every non-contextual
hidden-variable model attempting to replicate the quan-
tum probabilities associated to the projectors of the
Clifton gadget, we should have |h |u1i|

2 + |h |u8i|
2 =P

� q (�) (f�(|u1i) + f�(|u8i))  1, by the gadget prop-
erty. However, if we take | i = |u1i, we find that accord-
ing to the quantum predictions |hu1|u1i|

2 + |hu1|u8i|
2 =

1+ |hu1|u8i|
2 > 1 since |hu1|u8i|

2 > 0 as |u1i and |u8i are
non-orthogonal. Other state-dependent proofs based on
inequalities have since been developed, with the smallest
involving five vectors [4].
Obviously, the argument used by Clifton for the par-

ticular set of vectors he introduced, immediately carries
over to any 01-gadget. Thus every 01-gadget serves as a
proof of state-dependent contextuality.
Note that it was realized in [13] that a class of graphs,

known as perfect graphs, define a class of graphs that
cannot serve as proofs of (even state-dependent) con-
textuality. That is, for any orthogonal representation
{|vji} ⇢ Cd of a perfect graph and for any pure state
| i 2 Cd, the outcome probabilities |h |vji|2 admit a
non-contextual hidden variable model of the form (16).
Since a non-contextual hidden variable model is not pos-
sible for a 01-gadget, we deduce that no perfect graph
is a 01-gadget. Perfect graphs are a well-known class of
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f�(|vii) to each projector |viihvi| in S that is compati-
ble with the orthogonality relations among such projec-
tors, any such assignment fails to reproduce some more
complex relation of the type

P
i ci|viihvi| > c0I satis-

fied by these projectors. This immediately implies a
contradiction with eq. (16), since in the quantum case
we have for any | i,

P
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2 > c0, while ac-
cording to a non-contextual hidden variable model, we
would have

P
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� q (�) [

P
i cif�(|vii)] P

� q| i(�)c0  c0. Such no-go theorems are referred
to as “statistical state-independent” KS arguments and
were introduced by Yu and Oh [25].

Finally, for certain sets S, it is possible to find valid
{0, 1}-colorings that do not lead to any type of contradic-
tions of the second type above. However, it is not pos-
sible to take mixtures of such colorings, as in eq. (16),
to reproduce the predictions of certain quantum states
| i. Such no-go theorems are referred to as “statistical
state-dependent” KS arguments and were introduced by
Clifton in [17].

While we have seen in the previous section how proofs
of the KS theorem can be constructed using 01-gadgets,
in this section we show how to use them to build statisti-
cal state-independent and state-dependent KS arguments

A. State-independent KS arguments

In [25], Yu and Oh introduced a set of 13 vectors in C3

that provides a state-independent proof of contextuality,
despite not being a KS set. We show how using Theo-
rem 2, it is possible to construct other state-independent
proofs of contextuality based on 01-gadgets. To do this,
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Lemma 3. Let |uii, for i = 1, . . . , d + 1 be the unit

vectors denoting the vertices of a d-dimensional simplex

embedded in Rd
. Then
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I. (17)
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�
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d I. ut
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graphs which by the strong perfect graph theorem [31]
can be characterized as those graphs that do not contain
odd cycles and anti-cycles of length greater than three as
induced subgraphs.

Finally, remark that the argument due to Clifton pre-
sented above works not only for the state | i = |u1i, but
for any state | i 2 C3 which obeys |h |u1i|

2+|h |u8i|
2 >

1. More generally, we now present a 01-gadget which
serves to prove state-dependent contextuality for all but
a measure zero set of states in C3.

This construction is based on the gadget G of Fig. 3
with the 43 vector orthogonal representation presented
in the proof of Theorem 2. Note that if we take x = 1
in this representation, then the two distinguished vectors
|u1i and |u42i actually coincide and are both equal to
(1, 0, 0) (i.e., the two distinguished vertices u1 and u42

should actually be identified). Therefore in any {0, 1}-
coloring f of G, 2f(|u1i) = f(|u1i) + f(|u42i)  1, i.e.
the vector |v1i is assigned value 0. This implies that
G witnesses state-dependent contextuality of all states
in C3 but for a measure zero set of states | i that are
orthogonal to |v1i = (1, 0, 0).

The construction that we just described is based on 42
vectors. It is actually possible to find a slightly smaller
construction based on the following 40 vectors:

|u1i = (1,�1, 0)T ; |u2i = (1, 1, 1)T ;

|u3i = (1, 1, 0)T ; |u4i = (1, 1, b)T ;

|u5i = (�2, 1, 1)T ; |u6i = (1,�1, 3)T ;

|u7i = (3,�3,�2)T ; |u8i = (2, 0, 3)T ;

|u9i = (�3, 0, 2)T ; |u10i = (�2, 2,�3)T ;

|u11i = (3,�3,�4)T ; |u12i = (4, 0, 3)T ;

|u13i = (�3, 0, 4)T ; |u14i = (�4, 4,�3)T ;

|u15i = (3,�3,�8)T ; |u16i = (8, 0, 3)T ;

|u17i = (�3, 0, 8)T ; |u18i = (�8, 4 +
p
7,�3)T ;

|u19i = (0, 1,�1)T ; |u20i = (0, 1, 0)T ;

|u21i = (0,�3 + 8b,�16� 3b)T ; |u22i = (1, 0, 0)T ;

|u23i = (1, 0,�1)T ; |u24i = (2�
p
2, 0, 1)T ;

|u25i = (1,�2, 1)T ; |u26i = (0, 1, 2)T ;

|u27i = (0, 2,�1)T ; |u28i = (1,�1,�2)T ;

|u29i = (1,�1, 1)T ; |u30i = (0, 1, 1)T ;

|u31i = (0, 1,�1)T ; |u32i = (�1, 1, 1)T ;

|u33i = (�1, 1,�2)T ; |u34i = (0, 2, 1)T ;

|u35i = (0, 1,�2)T ; |u36i = (2,�2,�1)T ;

|u37i = (1,�1, 4)T ; |u38i = (�2�
p
2, 6�

p
2, 2)T ;

|u39i = |u2i; |u40i = |u3i; |u41i = (1, 1,�2 +
p
2)T ;

|u42i = |u1i; |u43i = (0, 0, 1)T ;

with b = �4+
p
7

3 , and where we have the following iden-
tities |u1i = |u42i, |u2i = |u39i, |u3i = |u40i. It can
be verified that the graph in Fig. 3 where we identify
the vertices u1 and u42, u2 and u39, u3 and u40, is the
orthogonality graph of these 40 vectors. These 40 vec-

tors thus form a 01-gadget, where as above the vector
|u1i = (1,�1, 0) can only be assigned the value 0, im-
plying that it can serve as a state-dependent contextual-
ity proof for any vector in C3 that is not orthogonal to
(1,�1, 0). We leave it as an open question whether this
set of 40 vectors is the minimal set with this property.

VI. PROOFS OF THE EXTENDED
KOCHEN-SPECKER THEOREM USING

01-GADGETS

In this section, we consider a stronger variant of the
KS theorem due to Pitowsky [22] and Hrushovski and
Pitowsky [23]. While the KS theorem is concerned with
{0, 1}-colorings where all projectors (or vectors) in a
given set S must be assigned a value in {0, 1}, we con-
sider here more general assignments where any real value
in [0, 1] is allowed to the members of S. Specifically,
given a set of vectors S = {|v1i, . . . , |vni} ⇢ Cd, we say
that f : S ! [0, 1] is a [0, 1]-assignment if f satisfies
the same rules (3) as it does for {0, 1}-colorings. Both
{0, 1}-colorings and [0, 1]-assignments can be interpreted
as assigning a probability to the projectors corresponding
to each of the elements of S. But while the assignment
is constrained to be deterministic in the case of {0, 1}-
colorings since these probabilities can only take the values
0 or 1, the probabilistic assignment may be completely
general (hence non-deterministic) for [0, 1]-assignments.
In particular, for any given quantum state | i, the Born
rule f(|vii) = |h |vii|2 defines a valid [0, 1]-assignment.

Hrushovski and Pitowsky [23], following earlier work
by Pitowsky in [22], proved the following theorem, which
they call the “logical indeterminacy principle”.

Theorem 3 ([23]). Let |v1i and |v2i be two non-

orthogonal vectors in Cd
with d � 3. Then there is a

finite set of vectors S ⇢ Cd
with |v1i, |v2i 2 S such that

for any [0, 1]-assignment, it holds that f(|v1i), f(|v2i) 2
{0, 1} if and only if f(|v1i) = f(|v2i) = 0.

Thus for any two non-orthogonal vectors |v1i and |v2i,
at least one of the probabilities associated to the vectors
|v1i or |v2i must be strictly between zero and one, unless
they are both equal to zero. A corollary of this result, ob-
served in [3, 8, 9] is that if f(|v1i) = 1 (this should, for in-
stance, necessarily be the case if we attempt to reproduce
the quantum probabilities for measurements performed
on the state | i = |v1i), then f(|v2i) 6= 0, 1, showing
that one can localise the “value-indefiniteness” of quan-
tum observables that the KS theorem implies. Theorem 3
therefore provides a stronger variant of the KS theorem,
and we will refer to it as the extended KS theorem.

The proof of Theorem 3 given in [23] was obtained as a
corollary of Gleason’s theorem [24]. A more explicit con-
structive proof was given by Abbott, Calude and Svozil
[3, 9], where they also noted that significantly none of
the known KS sets serves to prove Theorem 3. Note that
an earlier proof of the extended KS theorem was also
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they are both equal to zero. A corollary of this result, ob-
served in [3, 8, 9] is that if f(|v1i) = 1 (this should, for in-
stance, necessarily be the case if we attempt to reproduce
the quantum probabilities for measurements performed
on the state | i = |v1i), then f(|v2i) 6= 0, 1, showing
that one can localise the “value-indefiniteness” of quan-
tum observables that the KS theorem implies. Theorem 3
therefore provides a stronger variant of the KS theorem,
and we will refer to it as the extended KS theorem.

The proof of Theorem 3 given in [23] was obtained as a
corollary of Gleason’s theorem [24]. A more explicit con-
structive proof was given by Abbott, Calude and Svozil
[3, 9], where they also noted that significantly none of
the known KS sets serves to prove Theorem 3. Note that
an earlier proof of the extended KS theorem was also

➤ Pitowsky introduced an “Extended Kochen-Specker Theorem” that he termed the 
“Logical Indeterminacy Principle”. 

➤ The principle concerns arbitrary [0,1]-prob. assignments rather than {0,1}-
colorings 

➤                        is a [0,1]-assignment satisfying the KS rules. For example, the Born 
rule                          is a valid [0,1]-assignment.  

➤ For any two non-orthogonal vectors, in any [0,1]-assignment at least one of the 
probabilities must be strictly between 0 and 1, unless they are both 0.  
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Finally, remark that the argument due to Clifton pre-
sented above works not only for the state | i = |u1i, but
for any state | i 2 C3 which obeys |h |u1i|
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2 >

1. More generally, we now present a 01-gadget which
serves to prove state-dependent contextuality for all but
a measure zero set of states in C3.

This construction is based on the gadget G of Fig. 3
with the 43 vector orthogonal representation presented
in the proof of Theorem 2. Note that if we take x = 1
in this representation, then the two distinguished vectors
|u1i and |u42i actually coincide and are both equal to
(1, 0, 0) (i.e., the two distinguished vertices u1 and u42

should actually be identified). Therefore in any {0, 1}-
coloring f of G, 2f(|u1i) = f(|u1i) + f(|u42i)  1, i.e.
the vector |v1i is assigned value 0. This implies that
G witnesses state-dependent contextuality of all states
in C3 but for a measure zero set of states | i that are
orthogonal to |v1i = (1, 0, 0).

The construction that we just described is based on 42
vectors. It is actually possible to find a slightly smaller
construction based on the following 40 vectors:

|u1i = (1,�1, 0)T ; |u2i = (1, 1, 1)T ;
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|u17i = (�3, 0, 8)T ; |u18i = (�8, 4 +
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7,�3)T ;

|u19i = (0, 1,�1)T ; |u20i = (0, 1, 0)T ;

|u21i = (0,�3 + 8b,�16� 3b)T ; |u22i = (1, 0, 0)T ;

|u23i = (1, 0,�1)T ; |u24i = (2�
p
2, 0, 1)T ;

|u25i = (1,�2, 1)T ; |u26i = (0, 1, 2)T ;

|u27i = (0, 2,�1)T ; |u28i = (1,�1,�2)T ;

|u29i = (1,�1, 1)T ; |u30i = (0, 1, 1)T ;

|u31i = (0, 1,�1)T ; |u32i = (�1, 1, 1)T ;

|u33i = (�1, 1,�2)T ; |u34i = (0, 2, 1)T ;

|u35i = (0, 1,�2)T ; |u36i = (2,�2,�1)T ;
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|u39i = |u2i; |u40i = |u3i; |u41i = (1, 1,�2 +
p
2)T ;

|u42i = |u1i; |u43i = (0, 0, 1)T ;

with b = �4+
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3 , and where we have the following iden-
tities |u1i = |u42i, |u2i = |u39i, |u3i = |u40i. It can
be verified that the graph in Fig. 3 where we identify
the vertices u1 and u42, u2 and u39, u3 and u40, is the
orthogonality graph of these 40 vectors. These 40 vec-

tors thus form a 01-gadget, where as above the vector
|u1i = (1,�1, 0) can only be assigned the value 0, im-
plying that it can serve as a state-dependent contextual-
ity proof for any vector in C3 that is not orthogonal to
(1,�1, 0). We leave it as an open question whether this
set of 40 vectors is the minimal set with this property.

VI. PROOFS OF THE EXTENDED
KOCHEN-SPECKER THEOREM USING

01-GADGETS

In this section, we consider a stronger variant of the
KS theorem due to Pitowsky [22] and Hrushovski and
Pitowsky [23]. While the KS theorem is concerned with
{0, 1}-colorings where all projectors (or vectors) in a
given set S must be assigned a value in {0, 1}, we con-
sider here more general assignments where any real value
in [0, 1] is allowed to the members of S. Specifically,
given a set of vectors S = {|v1i, . . . , |vni} ⇢ Cd, we say
that f : S ! [0, 1] is a [0, 1]-assignment if f satisfies
the same rules (3) as it does for {0, 1}-colorings. Both
{0, 1}-colorings and [0, 1]-assignments can be interpreted
as assigning a probability to the projectors corresponding
to each of the elements of S. But while the assignment
is constrained to be deterministic in the case of {0, 1}-
colorings since these probabilities can only take the values
0 or 1, the probabilistic assignment may be completely
general (hence non-deterministic) for [0, 1]-assignments.
In particular, for any given quantum state | i, the Born
rule f(|vii) = |h |vii|2 defines a valid [0, 1]-assignment.

Hrushovski and Pitowsky [23], following earlier work
by Pitowsky in [22], proved the following theorem, which
they call the “logical indeterminacy principle”.

Theorem 3 ([23]). Let |v1i and |v2i be two non-

orthogonal vectors in Cd
with d � 3. Then there is a

finite set of vectors S ⇢ Cd
with |v1i, |v2i 2 S such that

for any [0, 1]-assignment, it holds that f(|v1i), f(|v2i) 2
{0, 1} if and only if f(|v1i) = f(|v2i) = 0.

Thus for any two non-orthogonal vectors |v1i and |v2i,
at least one of the probabilities associated to the vectors
|v1i or |v2i must be strictly between zero and one, unless
they are both equal to zero. A corollary of this result, ob-
served in [3, 8, 9] is that if f(|v1i) = 1 (this should, for in-
stance, necessarily be the case if we attempt to reproduce
the quantum probabilities for measurements performed
on the state | i = |v1i), then f(|v2i) 6= 0, 1, showing
that one can localise the “value-indefiniteness” of quan-
tum observables that the KS theorem implies. Theorem 3
therefore provides a stronger variant of the KS theorem,
and we will refer to it as the extended KS theorem.

The proof of Theorem 3 given in [23] was obtained as a
corollary of Gleason’s theorem [24]. A more explicit con-
structive proof was given by Abbott, Calude and Svozil
[3, 9], where they also noted that significantly none of
the known KS sets serves to prove Theorem 3. Note that
an earlier proof of the extended KS theorem was also
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given set S must be assigned a value in {0, 1}, we con-
sider here more general assignments where any real value
in [0, 1] is allowed to the members of S. Specifically,
given a set of vectors S = {|v1i, . . . , |vni} ⇢ Cd, we say
that f : S ! [0, 1] is a [0, 1]-assignment if f satisfies
the same rules (3) as it does for {0, 1}-colorings. Both
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is constrained to be deterministic in the case of {0, 1}-
colorings since these probabilities can only take the values
0 or 1, the probabilistic assignment may be completely
general (hence non-deterministic) for [0, 1]-assignments.
In particular, for any given quantum state | i, the Born
rule f(|vii) = |h |vii|2 defines a valid [0, 1]-assignment.

Hrushovski and Pitowsky [23], following earlier work
by Pitowsky in [22], proved the following theorem, which
they call the “logical indeterminacy principle”.

Theorem 3 ([23]). Let |v1i and |v2i be two non-
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with d � 3. Then there is a
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with |v1i, |v2i 2 S such that
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{0, 1} if and only if f(|v1i) = f(|v2i) = 0.

Thus for any two non-orthogonal vectors |v1i and |v2i,
at least one of the probabilities associated to the vectors
|v1i or |v2i must be strictly between zero and one, unless
they are both equal to zero. A corollary of this result, ob-
served in [3, 8, 9] is that if f(|v1i) = 1 (this should, for in-
stance, necessarily be the case if we attempt to reproduce
the quantum probabilities for measurements performed
on the state | i = |v1i), then f(|v2i) 6= 0, 1, showing
that one can localise the “value-indefiniteness” of quan-
tum observables that the KS theorem implies. Theorem 3
therefore provides a stronger variant of the KS theorem,
and we will refer to it as the extended KS theorem.

The proof of Theorem 3 given in [23] was obtained as a
corollary of Gleason’s theorem [24]. A more explicit con-
structive proof was given by Abbott, Calude and Svozil
[3, 9], where they also noted that significantly none of
the known KS sets serves to prove Theorem 3. Note that
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I. Pitowsky. “Infinite and finite Gleason’s theorems and the logic of indeterminacy”. Journal of Mathematical Physics 39, 218 (1998). 

A. Abbott, C. S. Calude and K. Svozil. “A variant of the Kochen-Specker theorem localising value-indefiniteness”. J. Math. Phys. 56, 102201 (2015).



LOCALISING VALUE INDEFINITENESS

➤ Corollary: if                 then                       showing that one can localise the value-
indefiniteness of quantum observables. 

➤ Important for an application of contextuality in  randomness generation. 

➤ The                      is a good hash function.  

➤ Outcome v2 is random in any general probabilistic theory. 
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be verified that the graph in Fig. 3 where we identify
the vertices u1 and u42, u2 and u39, u3 and u40, is the
orthogonality graph of these 40 vectors. These 40 vec-

tors thus form a 01-gadget, where as above the vector
|u1i = (1,�1, 0) can only be assigned the value 0, im-
plying that it can serve as a state-dependent contextual-
ity proof for any vector in C3 that is not orthogonal to
(1,�1, 0). We leave it as an open question whether this
set of 40 vectors is the minimal set with this property.

VI. PROOFS OF THE EXTENDED
KOCHEN-SPECKER THEOREM USING

01-GADGETS

In this section, we consider a stronger variant of the
KS theorem due to Pitowsky [22] and Hrushovski and
Pitowsky [23]. While the KS theorem is concerned with
{0, 1}-colorings where all projectors (or vectors) in a
given set S must be assigned a value in {0, 1}, we con-
sider here more general assignments where any real value
in [0, 1] is allowed to the members of S. Specifically,
given a set of vectors S = {|v1i, . . . , |vni} ⇢ Cd, we say
that f : S ! [0, 1] is a [0, 1]-assignment if f satisfies
the same rules (3) as it does for {0, 1}-colorings. Both
{0, 1}-colorings and [0, 1]-assignments can be interpreted
as assigning a probability to the projectors corresponding
to each of the elements of S. But while the assignment
is constrained to be deterministic in the case of {0, 1}-
colorings since these probabilities can only take the values
0 or 1, the probabilistic assignment may be completely
general (hence non-deterministic) for [0, 1]-assignments.
In particular, for any given quantum state | i, the Born
rule f(|vii) = |h |vii|2 defines a valid [0, 1]-assignment.

Hrushovski and Pitowsky [23], following earlier work
by Pitowsky in [22], proved the following theorem, which
they call the “logical indeterminacy principle”.

Theorem 3 ([23]). Let |v1i and |v2i be two non-

orthogonal vectors in Cd
with d � 3. Then there is a

finite set of vectors S ⇢ Cd
with |v1i, |v2i 2 S such that

for any [0, 1]-assignment, it holds that f(|v1i), f(|v2i) 2
{0, 1} if and only if f(|v1i) = f(|v2i) = 0.

Thus for any two non-orthogonal vectors |v1i and |v2i,
at least one of the probabilities associated to the vectors
|v1i or |v2i must be strictly between zero and one, unless
they are both equal to zero. A corollary of this result, ob-
served in [3, 8, 9] is that if f(|v1i) = 1 (this should, for in-
stance, necessarily be the case if we attempt to reproduce
the quantum probabilities for measurements performed
on the state | i = |v1i), then f(|v2i) 6= 0, 1, showing
that one can localise the “value-indefiniteness” of quan-
tum observables that the KS theorem implies. Theorem 3
therefore provides a stronger variant of the KS theorem,
and we will refer to it as the extended KS theorem.

The proof of Theorem 3 given in [23] was obtained as a
corollary of Gleason’s theorem [24]. A more explicit con-
structive proof was given by Abbott, Calude and Svozil
[3, 9], where they also noted that significantly none of
the known KS sets serves to prove Theorem 3. Note that
an earlier proof of the extended KS theorem was also
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graphs which by the strong perfect graph theorem [31]
can be characterized as those graphs that do not contain
odd cycles and anti-cycles of length greater than three as
induced subgraphs.
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a measure zero set of states in C3.
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EXTENDED 01-GADGETS
➤ To provide constructive proofs of the extended KS theorem, we will need special 

kind of gadgets that we term ‘extended 01-gadgets’. 

➤ Recall the definition of 01-gadgets 

➤ Extended 01-gadgets are generalisations of 01-gadgets with {0,1}-coloring replaced 
by [0,1]-assignment and                              replaced by   

➤ For example, the bug is both a 01-gadget and an extended 01-gadget.
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given in [22]. All these existing proofs of the extended
KS theorem involve complicated constructions with no
systematic procedure for obtaining the requisite sets of
vectors. In this subsection, we will provide a simple sys-
tematic method for obtaining in a constructive way these
extended KS sets.

In order to prove the extended KS theorem, we need
gadgets of a special kind, which are defined as usual 01-
gadgets apart from the fact that the condition that the
two distinguished vertices cannot both be assigned the
value 1 in any {0, 1}-colorings should also hold for any
[0, 1]-assignments. That is, we simply replace ‘{0, 1}-
coloring’ by ‘[0, 1]-assignment’ and f(|v1i) + f(|v2i)  1
by f(|v1i) + f(|v2i) < 2 in Definition 1, and similarly
for Definition 2. We call such new gadgets ‘extended
01-gadgets’. It is easily verified that the Clifton gadget
in Fig. 1 and the 16-vertex gadget in Fig. 2 obey this
additional restriction.

Our first aim will be to construct such extended
01-gadgets for any two given non-orthogonal vectors
|v1i, |v2i 2 Cd for d � 3. This is the content of the
following Theorem, which generalizes Theorem 2.

Theorem 4. Let |v1i and |v2i be any two distinct non-

orthogonal vectors in Cd
with d � 3. Then there exists

an extended 01-gadget in dimension d with |v1i and |v2i
being the two distinguished vertices.

Proof. We begin with the construction for d = 3 and
generalize it to higher dimensions naturally. The con-
struction is an iterative procedure based on the Clifton
gadget GClif given in Fig. 1.

Firstly, as stated previously, it is readily seen that
GClif is actually an extended 01-gadget with u1, u8 the
two distinguished vertices, i.e., any [0, 1]-assignment f :
V (GClif) ! [0, 1] cannot be such that f(u1) = f(u8) = 1.
Further, it is known that the R3 realization of GClif

given by (5) achieves the (minimal possible) separation
of ✓1 = arccos |hu1|u8i| = arccos 1/3 between the two end
vertices [19].

We now describe a nesting procedure that at each step
decreases the angle between the vectors corresponding to
the two outer vertices. The procedure works as follows.
Replace the edge (u4, u5) in GClif by G0

Clif, a copy of
GClif where we identify u0

1 = u4 and u0
8 = u5. The new

graph thus obtained has 14 vertices and 21 edges. The
operation has the property that in any [0, 1]-assignment
f , an assignment of value 1 to the two outer vertices of
the new graph (i.e. u1, u8) leads to a similar assignment
to the two outer vertices of the inner copy of GClif (i.e.
u0
1, u

0
8) thereby giving rise to a contradiction. In other

words, the newly constructed graph is once again an ex-
tended 01-gadget. This procedure can be repeated an
arbitrary number of times, as illustrated in Fig. 5, lead-
ing to an extended 01-gadget formed from k nested Clif-
ford graphs G1

Clif, G
2
Clif, G

2
Clif, . . . , G

k
Clif where G1

Clif cor-
responds to the most inner graph and Gk

Clif to the most
outer graph. We now show that the total graph at the k-
th iteration is an orthogonality graph where the overlap
|hu(k)

1 |u(k)
8 i| between the two outer vertices uk

1 , u
k
8 can be

chosen to take any value in [0, k
k+2 ], thus spanning any

possible value in [0, 1[ for k su�ciently large. Setting

|v1i = |u(k)
1 i and |v2i = |u(k)

8 i with k depending on the
overlap of the given vectors |hv1|v2i|, then gives the re-
quired gadget and proves the Theorem.
Suppose that at the k-th step of the iteration, the vec-

tors representing the two outer vertices of the “inner”
gadget from the k � 1-th step are

|u(k)
4 i = |u(k�1)

1 i = (1, 0, 0),

|u(k)
5 i = |u(k�1)

8 i =
1p

1 + x2
k

(xk, 1, 0), (21)

without loss of generality, so that the overlap between

these vectors is |hu(k)
4 |u(k)

5 i| = xkp
1+x2

k

, where for sim-

plicity of the construction we take xk 2 R+
0 . The re-

maining vectors then in general have the following (non-
normalized) orthogonal representation in R3

|u(k)
8 i = (ak, bk, ck), |u(k)

6 i = (0,�ck, bk),

|u(k)
7 i = (ck,�ckxk,�ak + bkxk), |u(k)

2 i = (0, bk, ck),

|u(k)
3 i = (�ak + bkxk, akxk � bkx

2
k,�ck � ckx

2
k),

|u1i = (�bkck � akckxk,�akck + bkckxk, akbk � b2kxk),

(22)

with ak, bk, ck 2 R. This gives an overlap of

|hu(k)
1 |u(k)

8 i| =
|� akck(bk + akxk)|p

(a2k + b2k + c2k)(c
2
k(bk + akxk)2 + b2k(ak � bkxk)2 + (akck � bkckxk)2)

. (23)

A direct optimization of this expression with respect to
the parameters ak, bk, ck gives the choice bk = 1, ck = 1,
ak = xk+

p
1 + x2

k. So that the overlap between the two

outer vertices at the k-th step of the iteration is given by

|hu(k)
1 |u(k)

8 i| =
1

3 + 4xk(xk �
p

1 + x2
k)

=:
xk+1q
1 + x2

k+1

.(24)
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the new graph (i.e. u1, u8) leads to a similar assignment
to the two outer vertices of the inner copy of GClif (i.e.
u0
1, u

0
8) thereby giving rise to a contradiction. In other

words, the newly constructed graph is once again an ex-
tended 01-gadget. This procedure can be repeated an
arbitrary number of times, as illustrated in Fig. 5, lead-
ing to an extended 01-gadget formed from k nested Clif-
ford graphs G1

Clif, G
2
Clif, G

2
Clif, . . . , G

k
Clif where G1

Clif cor-
responds to the most inner graph and Gk

Clif to the most
outer graph. We now show that the total graph at the k-
th iteration is an orthogonality graph where the overlap
|hu(k)

1 |u(k)
8 i| between the two outer vertices uk

1 , u
k
8 can be

chosen to take any value in [0, k
k+2 ], thus spanning any

possible value in [0, 1[ for k su�ciently large. Setting

|v1i = |u(k)
1 i and |v2i = |u(k)

8 i with k depending on the
overlap of the given vectors |hv1|v2i|, then gives the re-
quired gadget and proves the Theorem.
Suppose that at the k-th step of the iteration, the vec-

tors representing the two outer vertices of the “inner”
gadget from the k � 1-th step are

|u(k)
4 i = |u(k�1)

1 i = (1, 0, 0),

|u(k)
5 i = |u(k�1)

8 i =
1p

1 + x2
k

(xk, 1, 0), (21)

without loss of generality, so that the overlap between

these vectors is |hu(k)
4 |u(k)

5 i| = xkp
1+x2

k

, where for sim-

plicity of the construction we take xk 2 R+
0 . The re-

maining vectors then in general have the following (non-
normalized) orthogonal representation in R3

|u(k)
8 i = (ak, bk, ck), |u(k)

6 i = (0,�ck, bk),

|u(k)
7 i = (ck,�ckxk,�ak + bkxk), |u(k)

2 i = (0, bk, ck),

|u(k)
3 i = (�ak + bkxk, akxk � bkx

2
k,�ck � ckx

2
k),

|u1i = (�bkck � akckxk,�akck + bkckxk, akbk � b2kxk),

(22)

with ak, bk, ck 2 R. This gives an overlap of

|hu(k)
1 |u(k)

8 i| =
|� akck(bk + akxk)|p

(a2k + b2k + c2k)(c
2
k(bk + akxk)2 + b2k(ak � bkxk)2 + (akck � bkckxk)2)

. (23)

A direct optimization of this expression with respect to
the parameters ak, bk, ck gives the choice bk = 1, ck = 1,
ak = xk+

p
1 + x2

k. So that the overlap between the two

outer vertices at the k-th step of the iteration is given by

|hu(k)
1 |u(k)

8 i| =
1

3 + 4xk(xk �
p

1 + x2
k)

=:
xk+1q
1 + x2

k+1

.(24)
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sentation of G and we say that G has faithful dimension
d⇤(G).

Given a graph G of dimension d(G), the orthogonal-
ity graph GS of the minimal orthogonal representation
S of G has faithful dimension d⇤(GS) = d(G). The
graph GS can be seen as obtained from G by adding
edges (between vertices that are non-adjacent in G, but
corresponding to vectors in S that are nevertheless or-
thogonal) and by identifying certain vertices (those that
correspond to identical vectors in S). We say that GS is
the faithful version of G.

KS graphs. While the non-{0, 1}-colorability of a set
S translates into the non-{0, 1}-colorability of its orthog-
onality graph GS , the non-{0, 1}-colorability of an arbi-
trary graph G translates into the non-{0, 1}-colorability
of one of its orthogonal representations only if this rep-
resentation has the minimal dimension d(G) = !(G). In-
deed, it is only under this condition that the require-
ment that

P
v2Qmax

f(v) = 1 in the definition of the
{0, 1}-coloring of the graph G gives rise to the corre-
sponding requirement that

P
v2Qmax

f(|vi) = 1 for its
orthogonal representation (if the dimension d is larger
than !(G) = |Qmax|, the |Qmax| < d mutually orthogo-
nal vectors {|vi : v 2 Qmax} in Cd do not form a basis).

If a graph G is not {0, 1}-colorable and has dimen-
sion d(G) = !(G), it thus follows that its minimal or-
thogonal representation S forms a KS set. If in addition
d⇤(G) = !(G), we say that G is a KS graph (this last con-
dition can always be obtained by considering the faithful
version of G, i.e., the orthogonality graph GS of its min-
imal orthogonal representation S).

The problem of finding KS sets can thus be reduced to
the problem of finding KS graphs. But as we have no-
ticed above, deciding if a graph is {0, 1}-colorable is NP-
complete. In addition, while finding an orthogonal rep-
resentation for a given graph can be expressed as finding
a solution to a system of polynomial equations, e�cient
numerical methods for finding such representations are
still lacking. Thus, finding KS sets in arbitrary dimen-
sions is a di�cult problem towards which a huge amount
of e↵ort has been expended [21]. In particular, “records”
of minimal Kochen-Specker systems in di↵erent dimen-
sions have been studied [18], the minimal KS system in
dimension four is the 18-vector system due to Cabello et
al. [18, 20] while lower bounds on the size of minimal KS
systems in other dimensions have also been established.

III. 01-GADGETS AND THE
KOCHEN-SPECKER THEOREM

We now introduce the notion of 01-gadgets that play
a crucial role in constructions of KS sets.

Definition 1. A 01-gadget in dimension d is a {0, 1}-
colorable set Sgad ⇢ Cd

of vectors containing two distin-

guished vectors |v1i and |v2i that are non-orthogonal, but

for which f(|v1i)+ f(|v2i)  1 in every {0, 1}-coloring f
of Sgad.

In other words, while a 01-gadget Sgad admits a {0, 1}-
coloring, in any such coloring the two distinguished non-
orthogonal vertices cannot both be assigned the value 1
(as if they were actually orthogonal). We can give an
equivalent, alternative definition of a gadget as a graph.

Definition 2. A 01-gadget in dimension d is a {0, 1}-
colorable graph Ggad with faithful dimension d⇤(Ggad) =
!(Ggad) = d and with two distinguished non-adjacent

vertices v1 ⌧ v2 such that f(v1) + f(v2)  1 in every

{0, 1}-coloring f of Ggad.

In the following when we refer to a 01-gadget, we freely
alternate between the equivalent set or graph definitions.

An example of a 01-gadget in dimension 3 is given by
the following set of 8 vectors in C3:

|u1i =
1
p
3
(�1, 1, 1), |u2i =

1
p
2
(1, 1, 0),

|u3i =
1
p
2
(0, 1,�1), |u4i = (0, 0, 1),

|u5i = (1, 0, 0), |u6i =
1
p
2
(1,�1, 0),

|u7i =
1
p
2
(0, 1, 1), |u8i =

1
p
3
(1, 1, 1), (5)

where the two distinguished vectors are |v1i = |u1i and
|v2i = |u8i. Its orthogonality graph is represented in
Fig. 1. It is easily seen from this graph representation
that the vertices u1 and u8 cannot both be assigned
the value 1, as this then necessarily leads to the adja-
cent vertices u4 and u5 to be both assigned the value
1, in contradiction with the {0, 1}-coloring rules. This
graph was identified by Clifton, following work by Stairs
[17, 26], and used by him to construct statistical proofs
of the Kochen-Specker theorem. We will refer to it as
the Clifton gadget GClif. The Clifton gadget and similar
gadgets were termed “definite prediction sets” in [21].
We identify the role played by 01-gadgets in the con-

struction of Kochen-Specker sets via the following theo-
rem.

Theorem 1. For any Kochen-Specker graph GKS, there

exists a subgraph Ggad < GKS with !(Ggad) = !(GKS)
that is a 01-gadget. Moreover, given a 01-gadget Ggad,

one can construct a KS graph GKS with !(GKS) =
!(Ggad).

The demonstration of our theorem is constructive, it
allows to build a 01-gadget from a KS graph and con-
versely. The 01-gadget in the original 117-vector proof
by Kochen-Specker is the Clifton graph in Fig. 1. A
16-vertex 01-gadget in dimension 4 that is an induced
subgraph of the 18-vertex KS graph introduced in [18] is
represented in Fig. 2.

Proof. We start by showing the first part of the Theo-
rem: that one can construct a 01-gadget Ggad from any
KS graph GKS. Given GKS, which by definition is not
{0, 1}-colorable, we first construct, by deleting vertices
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given in [22]. All these existing proofs of the extended
KS theorem involve complicated constructions with no
systematic procedure for obtaining the requisite sets of
vectors. In this subsection, we will provide a simple sys-
tematic method for obtaining in a constructive way these
extended KS sets.

In order to prove the extended KS theorem, we need
gadgets of a special kind, which are defined as usual 01-
gadgets apart from the fact that the condition that the
two distinguished vertices cannot both be assigned the
value 1 in any {0, 1}-colorings should also hold for any
[0, 1]-assignments. That is, we simply replace ‘{0, 1}-
coloring’ by ‘[0, 1]-assignment’ and f(|v1i) + f(|v2i)  1
by f(|v1i) + f(|v2i) < 2 in Definition 1, and similarly
for Definition 2. We call such new gadgets ‘extended
01-gadgets’. It is easily verified that the Clifton gadget
in Fig. 1 and the 16-vertex gadget in Fig. 2 obey this
additional restriction.

Our first aim will be to construct such extended
01-gadgets for any two given non-orthogonal vectors
|v1i, |v2i 2 Cd for d � 3. This is the content of the
following Theorem, which generalizes Theorem 2.

Theorem 4. Let |v1i and |v2i be any two distinct non-

orthogonal vectors in Cd
with d � 3. Then there exists

an extended 01-gadget in dimension d with |v1i and |v2i
being the two distinguished vertices.

Proof. We begin with the construction for d = 3 and
generalize it to higher dimensions naturally. The con-
struction is an iterative procedure based on the Clifton
gadget GClif given in Fig. 1.

Firstly, as stated previously, it is readily seen that
GClif is actually an extended 01-gadget with u1, u8 the
two distinguished vertices, i.e., any [0, 1]-assignment f :
V (GClif) ! [0, 1] cannot be such that f(u1) = f(u8) = 1.
Further, it is known that the R3 realization of GClif

given by (5) achieves the (minimal possible) separation
of ✓1 = arccos |hu1|u8i| = arccos 1/3 between the two end
vertices [19].

We now describe a nesting procedure that at each step
decreases the angle between the vectors corresponding to
the two outer vertices. The procedure works as follows.
Replace the edge (u4, u5) in GClif by G0

Clif, a copy of
GClif where we identify u0

1 = u4 and u0
8 = u5. The new

graph thus obtained has 14 vertices and 21 edges. The
operation has the property that in any [0, 1]-assignment
f , an assignment of value 1 to the two outer vertices of
the new graph (i.e. u1, u8) leads to a similar assignment
to the two outer vertices of the inner copy of GClif (i.e.
u0
1, u

0
8) thereby giving rise to a contradiction. In other

words, the newly constructed graph is once again an ex-
tended 01-gadget. This procedure can be repeated an
arbitrary number of times, as illustrated in Fig. 5, lead-
ing to an extended 01-gadget formed from k nested Clif-
ford graphs G1

Clif, G
2
Clif, G

2
Clif, . . . , G

k
Clif where G1

Clif cor-
responds to the most inner graph and Gk

Clif to the most
outer graph. We now show that the total graph at the k-
th iteration is an orthogonality graph where the overlap
|hu(k)

1 |u(k)
8 i| between the two outer vertices uk

1 , u
k
8 can be

chosen to take any value in [0, k
k+2 ], thus spanning any

possible value in [0, 1[ for k su�ciently large. Setting

|v1i = |u(k)
1 i and |v2i = |u(k)

8 i with k depending on the
overlap of the given vectors |hv1|v2i|, then gives the re-
quired gadget and proves the Theorem.
Suppose that at the k-th step of the iteration, the vec-

tors representing the two outer vertices of the “inner”
gadget from the k � 1-th step are

|u(k)
4 i = |u(k�1)

1 i = (1, 0, 0),

|u(k)
5 i = |u(k�1)

8 i =
1p

1 + x2
k

(xk, 1, 0), (21)

without loss of generality, so that the overlap between

these vectors is |hu(k)
4 |u(k)

5 i| = xkp
1+x2

k

, where for sim-

plicity of the construction we take xk 2 R+
0 . The re-

maining vectors then in general have the following (non-
normalized) orthogonal representation in R3

|u(k)
8 i = (ak, bk, ck), |u(k)

6 i = (0,�ck, bk),

|u(k)
7 i = (ck,�ckxk,�ak + bkxk), |u(k)

2 i = (0, bk, ck),

|u(k)
3 i = (�ak + bkxk, akxk � bkx

2
k,�ck � ckx

2
k),

|u1i = (�bkck � akckxk,�akck + bkckxk, akbk � b2kxk),

(22)

with ak, bk, ck 2 R. This gives an overlap of

|hu(k)
1 |u(k)

8 i| =
|� akck(bk + akxk)|p

(a2k + b2k + c2k)(c
2
k(bk + akxk)2 + b2k(ak � bkxk)2 + (akck � bkckxk)2)

. (23)

A direct optimization of this expression with respect to
the parameters ak, bk, ck gives the choice bk = 1, ck = 1,
ak = xk+

p
1 + x2

k. So that the overlap between the two

outer vertices at the k-th step of the iteration is given by

|hu(k)
1 |u(k)

8 i| =
1

3 + 4xk(xk �
p

1 + x2
k)

=:
xk+1q
1 + x2

k+1

.(24)
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With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1

2
p
2
, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
by xk+1p

1+x2
k+1

= k
k+2 , i.e., xk+1 = k

2
p
k+1

. Substituting in

Eq.24, we obtain xk+2p
1+x2

k+2

= k+1
k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,

p
1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:

|v3i = (0, x,�
p
1� x2)T ;

|v4i = (�(1� x2), x
p
1� x2, x2)T ;

|v5i = (x, (1� x2)
p
1� x2, x(1� x2))T ;

|v6i = (0, y,
p

1� y2)T ;

|v7i = (�
p

(1� x2)(1� y2), x
p

1� y2, xy)T ;

|v8i = (x, (1� y2)
p
1� x2, y

p
(1� x2)(1� y2))T ;

|v9i = (0, 1, 0)T ; |v10i = (�
p
1� x2, x, 0)T . (25)

The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;

|v9+4ti = (�x(1� x2),�(1� x2)
p
1� x2, x2t�1)T ;

|v10+4ti = (x2t, x2t�1
p

1� x2, 1� x2)T ; (26)

repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)

2(1� x2)(1� x2 + x4t�2)
,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit
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FIG. 6: An alternative construction of an extended 01-gadget
for which the two distinguished vertices v1 and v2 are such
that in the limit of large number t of the repeating unit of
four vectors, |hv1|v2i| can take any value in [0, 1[.

denote the orthogonality graph of the entire set of vectors
Gv1,v2

S
Gv1,v5

S
Gv2,v4

S
|v3i.

We have that in any assignment f : V (GPit) ! [0, 1]
for which f(v1), f(v2) 2 {0, 1}, if f(v1) = 1, f(v2) =
1, then we obtain a contradiction by the property of
the extended 01-gadget Gv1,v2 . On the other hand, if
f(v1) = 1, f(v2) = 0, then since |v1i ? |v3i we have
f(v3) = 0, and by the property of the extended 01-
gadget Gv1,v5 we have f(v5) = 0. This gives a contra-
diction since v2, v3, v5 form a maximum clique. Simi-
larly, if f(v1) = 0, f(v2) = 1, then since |v2i ? |v3i we
have f(v3) = 0, and by the property of the extended
01-gadget Gv2,v4 we have f(v4) = 0. This also gives
a contradiction since v1, v3, v4 form a maximum clique.
Therefore, we have any assignment f : V (GPit) ! [0, 1]
which obeys f(v1), f(v2) 2 {0, 1} also must necessarily
obey f(v1) = f(v2) = 0. This completes the proof.

ut

A. Discussion

Intuitively, with respect to any {0, 1} coloring, a 01-
gadget behaves like a ”virtual edge” between its two spe-
cial vertices, with this edge also obeying the rule that
at most one of its incident vertices may be assigned the
color 1. Moreover, in Theorem 2 we have shown that 01-
gadgets may be constructed with any two non-orthogonal
vectors as the special vertices. Starting from a given
set of vectors, this allows us to connect any two non-
orthogonal vectors by an appropriate 01-gadget, which
imposes additional constraints on the {0, 1}-colorings of
the resulting set of vectors. By appropriately adding

FIG. 7: A constructive proof of the extended Kochen-Specker
theorem 3 using the extended 01-gadgets. Given vectors
|v1i, |v2i 2 Cd, we obtain vector |v3i ? span(|v1i, |v2i) and
two other vectors |v4i, |v5i in the plane span(|v1i, |v2i) with
the orthogonality relations indicated in the left figure. Dashed
edges between two vertices indicate an extended 01-gadget
from Theorem 4 with the two vertices being distinguished.

such virtual edges, we are eventually able to obtain a
set of vectors that gives a Kochen-Specker contradiction.
Moreover, it turns out that the statistical proofs of the
Kochen-Specker theorem can also be interpreted in the
same manner. For instance, the famous Yu-Oh graph of
[25] can be interpreted as six 01-gadgets connecting the
vectors (1, 1, 1)T , (1, 1,�1)T , (1,�1, 1)T and (�1, 1, 1)T .
These four vectors thus form a ”virtual clique”, with the
property that in any {0, 1}-coloring of the Yu-Oh set, the
sum of the values attributed to these four vectors can-
not exceed one. On the other hand, any quantum state
has overlap with these four vectors summing to 4/3 pro-
viding a statistical contradiction. Similar considerations
also apply to the extended Kochen-Specker theorem of
Pitowsky by means of extended 01-gadgets.

VII. COMPUTATIONAL COMPLEXITY OF
{0, 1}-COLORINGS

Clearly, complete graphs of size d+ 1 cannot be faith-
fully realized in Cd, but there also exist certain other
graphs that cannot be faithfully realized in Cd. The well-
known example is the four-cycle (square) graph in C3,
this can be seen by the following simple argument. Sup-
pose a pair of vertices in opposite corners of the square
is assigned without loss of generality the vectors |0i and
↵|0i + �|1i, with ↵,� 2 C. Since these vectors span
a plane and the remaining pair of vertices are both re-
quired to be orthogonal to this plane, these latter vectors
are both equal up to a phase to |2i, contradicting the re-
quirement of faithfulness. There exist analogous graphs
that are not faithfully realizable in higher dimensions,
some of which are shown in Fig. 8.



CONSTRUCTING PROOFS OF THE EXTENDED KS THEOREM
➤ How to construct proofs of the extended KS theorem using extended 01-gadgets 

       orthogonal to       and in the plane 

        orthogonal to       and in the plane  

 Connect vectors using extended 01-gadgets as in the figure to obtain the proof13

FIG. 6: An alternative construction of an extended 01-gadget
for which the two distinguished vertices v1 and v2 are such
that in the limit of large number t of the repeating unit of
four vectors, |hv1|v2i| can take any value in [0, 1[.
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Gv1,v2

S
Gv1,v5

S
Gv2,v4

S
|v3i.

We have that in any assignment f : V (GPit) ! [0, 1]
for which f(v1), f(v2) 2 {0, 1}, if f(v1) = 1, f(v2) =
1, then we obtain a contradiction by the property of
the extended 01-gadget Gv1,v2 . On the other hand, if
f(v1) = 1, f(v2) = 0, then since |v1i ? |v3i we have
f(v3) = 0, and by the property of the extended 01-
gadget Gv1,v5 we have f(v5) = 0. This gives a contra-
diction since v2, v3, v5 form a maximum clique. Simi-
larly, if f(v1) = 0, f(v2) = 1, then since |v2i ? |v3i we
have f(v3) = 0, and by the property of the extended
01-gadget Gv2,v4 we have f(v4) = 0. This also gives
a contradiction since v1, v3, v4 form a maximum clique.
Therefore, we have any assignment f : V (GPit) ! [0, 1]
which obeys f(v1), f(v2) 2 {0, 1} also must necessarily
obey f(v1) = f(v2) = 0. This completes the proof.

ut

A. Discussion

Intuitively, with respect to any {0, 1} coloring, a 01-
gadget behaves like a ”virtual edge” between its two spe-
cial vertices, with this edge also obeying the rule that
at most one of its incident vertices may be assigned the
color 1. Moreover, in Theorem 2 we have shown that 01-
gadgets may be constructed with any two non-orthogonal
vectors as the special vertices. Starting from a given
set of vectors, this allows us to connect any two non-
orthogonal vectors by an appropriate 01-gadget, which
imposes additional constraints on the {0, 1}-colorings of
the resulting set of vectors. By appropriately adding
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FIG. 7: A constructive proof of the extended Kochen-Specker
theorem 3 using the extended 01-gadgets. Given vectors
|v1i, |v2i 2 Cd, we obtain vector |v3i ? span(|v1i, |v2i) and
two other vectors |v4i, |v5i in the plane span(|v1i, |v2i) with
the orthogonality relations indicated in the left figure. Dashed
edges between two vertices indicate an extended 01-gadget
from Theorem 4 with the two vertices being distinguished.

such virtual edges, we are eventually able to obtain a
set of vectors that gives a Kochen-Specker contradiction.
Moreover, it turns out that the statistical proofs of the
Kochen-Specker theorem can also be interpreted in the
same manner. For instance, the famous Yu-Oh graph of
[25] can be interpreted as six 01-gadgets connecting the
vectors (1, 1, 1)T , (1, 1,�1)T , (1,�1, 1)T and (�1, 1, 1)T .
These four vectors thus form a ”virtual clique”, with the
property that in any {0, 1}-coloring of the Yu-Oh set, the
sum of the values attributed to these four vectors can-
not exceed one. On the other hand, any quantum state
has overlap with these four vectors summing to 4/3 pro-
viding a statistical contradiction. Similar considerations
also apply to the extended Kochen-Specker theorem of
Pitowsky by means of extended 01-gadgets.

VII. COMPUTATIONAL COMPLEXITY OF
{0, 1}-COLORINGS

Clearly, complete graphs of size d+ 1 cannot be faith-
fully realized in Cd, but there also exist certain other
graphs that cannot be faithfully realized in Cd. The well-
known example is the four-cycle (square) graph in C3,
this can be seen by the following simple argument. Sup-
pose a pair of vertices in opposite corners of the square
is assigned without loss of generality the vectors |0i and
↵|0i + �|1i, with ↵,� 2 C. Since these vectors span
a plane and the remaining pair of vertices are both re-
quired to be orthogonal to this plane, these latter vectors
are both equal up to a phase to |2i, contradicting the re-
quirement of faithfulness. There exist analogous graphs
that are not faithfully realizable in higher dimensions,
some of which are shown in Fig. 8.

12

With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1

2
p
2
, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
by xk+1p

1+x2
k+1

= k
k+2 , i.e., xk+1 = k

2
p
k+1

. Substituting in

Eq.24, we obtain xk+2p
1+x2

k+2

= k+1
k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,

p
1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:

|v3i = (0, x,�
p
1� x2)T ;

|v4i = (�(1� x2), x
p
1� x2, x2)T ;

|v5i = (x, (1� x2)
p
1� x2, x(1� x2))T ;

|v6i = (0, y,
p

1� y2)T ;

|v7i = (�
p

(1� x2)(1� y2), x
p

1� y2, xy)T ;

|v8i = (x, (1� y2)
p
1� x2, y

p
(1� x2)(1� y2))T ;

|v9i = (0, 1, 0)T ; |v10i = (�
p
1� x2, x, 0)T . (25)

The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;

|v9+4ti = (�x(1� x2),�(1� x2)
p
1� x2, x2t�1)T ;

|v10+4ti = (x2t, x2t�1
p

1� x2, 1� x2)T ; (26)

repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)

2(1� x2)(1� x2 + x4t�2)
,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit
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With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1

2
p
2
, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
by xk+1p

1+x2
k+1

= k
k+2 , i.e., xk+1 = k

2
p
k+1

. Substituting in

Eq.24, we obtain xk+2p
1+x2

k+2

= k+1
k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,

p
1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:

|v3i = (0, x,�
p
1� x2)T ;

|v4i = (�(1� x2), x
p
1� x2, x2)T ;

|v5i = (x, (1� x2)
p
1� x2, x(1� x2))T ;

|v6i = (0, y,
p

1� y2)T ;

|v7i = (�
p

(1� x2)(1� y2), x
p

1� y2, xy)T ;

|v8i = (x, (1� y2)
p
1� x2, y

p
(1� x2)(1� y2))T ;

|v9i = (0, 1, 0)T ; |v10i = (�
p
1� x2, x, 0)T . (25)

The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;

|v9+4ti = (�x(1� x2),�(1� x2)
p
1� x2, x2t�1)T ;

|v10+4ti = (x2t, x2t�1
p

1� x2, 1� x2)T ; (26)

repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)

2(1� x2)(1� x2 + x4t�2)
,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit
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With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1

2
p
2
, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
by xk+1p

1+x2
k+1

= k
k+2 , i.e., xk+1 = k

2
p
k+1

. Substituting in

Eq.24, we obtain xk+2p
1+x2

k+2

= k+1
k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,

p
1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:

|v3i = (0, x,�
p
1� x2)T ;

|v4i = (�(1� x2), x
p
1� x2, x2)T ;

|v5i = (x, (1� x2)
p
1� x2, x(1� x2))T ;

|v6i = (0, y,
p

1� y2)T ;

|v7i = (�
p

(1� x2)(1� y2), x
p

1� y2, xy)T ;

|v8i = (x, (1� y2)
p
1� x2, y

p
(1� x2)(1� y2))T ;

|v9i = (0, 1, 0)T ; |v10i = (�
p
1� x2, x, 0)T . (25)

The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;

|v9+4ti = (�x(1� x2),�(1� x2)
p
1� x2, x2t�1)T ;

|v10+4ti = (x2t, x2t�1
p

1� x2, 1� x2)T ; (26)

repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)

2(1� x2)(1� x2 + x4t�2)
,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit
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With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1
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, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
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Eq.24, we obtain xk+2p
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k+2
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k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,
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1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:
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The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;
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p
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repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)
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,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit

12

With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1

2
p
2
, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
by xk+1p

1+x2
k+1

= k
k+2 , i.e., xk+1 = k

2
p
k+1

. Substituting in

Eq.24, we obtain xk+2p
1+x2

k+2

= k+1
k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,

p
1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:

|v3i = (0, x,�
p
1� x2)T ;

|v4i = (�(1� x2), x
p
1� x2, x2)T ;

|v5i = (x, (1� x2)
p
1� x2, x(1� x2))T ;

|v6i = (0, y,
p

1� y2)T ;

|v7i = (�
p

(1� x2)(1� y2), x
p

1� y2, xy)T ;

|v8i = (x, (1� y2)
p
1� x2, y

p
(1� x2)(1� y2))T ;

|v9i = (0, 1, 0)T ; |v10i = (�
p
1� x2, x, 0)T . (25)

The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;

|v9+4ti = (�x(1� x2),�(1� x2)
p
1� x2, x2t�1)T ;

|v10+4ti = (x2t, x2t�1
p

1� x2, 1� x2)T ; (26)

repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)

2(1� x2)(1� x2 + x4t�2)
,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit
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With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1

2
p
2
, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
by xk+1p

1+x2
k+1

= k
k+2 , i.e., xk+1 = k

2
p
k+1

. Substituting in

Eq.24, we obtain xk+2p
1+x2

k+2

= k+1
k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,

p
1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:

|v3i = (0, x,�
p
1� x2)T ;

|v4i = (�(1� x2), x
p
1� x2, x2)T ;

|v5i = (x, (1� x2)
p
1� x2, x(1� x2))T ;

|v6i = (0, y,
p

1� y2)T ;

|v7i = (�
p

(1� x2)(1� y2), x
p

1� y2, xy)T ;

|v8i = (x, (1� y2)
p
1� x2, y

p
(1� x2)(1� y2))T ;

|v9i = (0, 1, 0)T ; |v10i = (�
p
1� x2, x, 0)T . (25)

The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;

|v9+4ti = (�x(1� x2),�(1� x2)
p
1� x2, x2t�1)T ;

|v10+4ti = (x2t, x2t�1
p

1� x2, 1� x2)T ; (26)

repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)

2(1� x2)(1� x2 + x4t�2)
,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit
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With the initial overlap for k = 1 of 1/3 and correspond-
ing initial x values of x1 = 0 and x2 = 1

2
p
2
, we can now

evaluate the expression for the overlap for any k > 1.
We find that the overlap at the k-th step is k

k+2 . This is
readily seen by an inductive argument. The base claim is
clear, suppose that at the k-th step the overlap is given
by xk+1p

1+x2
k+1

= k
k+2 , i.e., xk+1 = k

2
p
k+1

. Substituting in

Eq.24, we obtain xk+2p
1+x2

k+2

= k+1
k+3 = (k+1)

(k+1)+2 . Moreover,

we see that choosing bk = 1, ck = 1, the overlap expres-
sion (23) is a continuous function of ak for any fixed xk

with the minimum value of 0 achieved at ak = 0. Thus,
every intermediate overlap in [0, k

k+2 ] between the two
outer vectors is also achievable by appropriate choice of
ak for the fixed value of xk, bk, ck. This completes the
construction of the gadget for C3 (possibly by taking its
faithful version in the graph representation).

Now, one may simply consider the same set of vec-
tors as being embedded in any Cd (with additional
vectors(0, 0, 0, 1, 0, . . . , 0)T , (0, 0, 0, 0, 1, 0, . . . , 0)T etc.)
to construct a gadget in this dimension. ut

In fact, the construction above is not unique. We give
an alternative set of vectors that also serves to prove
Theorem 4. The construction is shown in Fig. 6. Sup-
pose we are given two distinct non-orthogonal vectors
|v1i = (1, 0, 0)T , |v2i = (x,

p
1� x2, 0)T , with 0 < x < 1.

We begin by adding the following set of vectors with a
parameter y 2 R:

|v3i = (0, x,�
p
1� x2)T ;

|v4i = (�(1� x2), x
p
1� x2, x2)T ;

|v5i = (x, (1� x2)
p
1� x2, x(1� x2))T ;

|v6i = (0, y,
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1� y2)T ;

|v7i = (�
p

(1� x2)(1� y2), x
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1� y2, xy)T ;

|v8i = (x, (1� y2)
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1� x2, y

p
(1� x2)(1� y2))T ;

|v9i = (0, 1, 0)T ; |v10i = (�
p
1� x2, x, 0)T . (25)

The remaining vectors are obtained using a repeating
unit consisting of four vectors:

|v7+4ti = (�(1� x2), 0, x2(t�1))T ;

|v8+4ti = (x2(t�1), 0, 1� x2)T ;

|v9+4ti = (�x(1� x2),�(1� x2)
p
1� x2, x2t�1)T ;

|v10+4ti = (x2t, x2t�1
p

1� x2, 1� x2)T ; (26)

repeated t times for an integer t � 1 depending on x.
Choosing the parameter y as

y =

s
(1� x2)2 + 2x4t�2 �

p
(1� x2)((1� x2)3 � 4x4t)

2(1� x2)(1� x2 + x4t�2)
,

we find that y 2 R, for t satisfying (1� x2)3 � 4x4t. We
see that as t increases this inequality can be satisfied for
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FIG. 5: An iterative construction of an extended 01-gadget for
which the two distinguished vertices u1 and u8 are such that in
the limit of large number of iterations k, |hu(k)

1 |u(k)
8 i| 2 [0, 1[.

larger values of x, and for any 0 < x < 1 as t ! 1. From
the orthogonality graph of this set of vectors S shown in
Fig. 6, it is clear that there cannot be any assignement
f : S ! [0, 1] such that f(|v1i) = f(|v2i) = 1, giving an
extended 01-gadget.
While the construction in Theorem 4 and that in the

previous paragraph work for any two distinct vectors,
given two such vectors it is of great interest to find the
minimal extended 01-gadget with these vectors as the
distinguished vertices. While this question is the foun-
dational analog for extended KS systems of the question
of finding minimal KS sets, it is also of practical inter-
est in obtaining Hardy paradoxes with optimal values
of the non-zero probability, and extracting randomness
from the gadgets [29].
We now show how the extended 01-gadgets can be used

to construct proofs of the extended KS Theorem 3.

Proof. (Theorem 3) We present the construction for d =
3, the proof for higher dimensions will follow in an anal-
ogous fashion. The idea is encapsulated by Fig. 7. Sup-
pose we are given two distinct non-orthogonal vectors |v1i
and |v2i in Cd. We begin by constructing an appropriate
extended 01-gadget Gv1,v2 , depending on |hv1|v2i|, with
the corresponding v1, v2 being the distinguished vertices.

Let |v3i = |v1i ⇥ |v2i denote the vector orthogonal
to the plane span(|v1i, |v2i) spanned by |v1i and |v2i,
where ⇥ denotes the cross product of the vectors. Let
|v4i be the vector in the plane span(|v1i, |v2i) orthogo-
nal to |v1i, and |v5i denote the vector in this plane or-
thogonal to |v2i, so that {|v1i, |v3i, |v4i}, {|v2i, |v3i, |v5i}
form orthogonal bases in C3. We construct appropri-
ate extended 01-gadgets Gv1,v5 and Gv2,v4 depending on
|hv1|v5i| and |hv2|v4i|. In Gv1,v5 the vertices v1, v5 cor-
responding to the vectors |v1i, |v5i play the role of the
distinguished vertices and similarly in Gv2,v4 . Let GPit



COMPUTATIONAL COMPLEXITY OF CHECKING KS COLORABILITY

➤ Forbidden subgraphs in particular dimensions: 

➤ It turns out that checking {0,1}-colorability of 

 graphs without these forbidden subgraphs is  

 still NP-complete
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(i) (ii)

(iii) (iv)

FIG. 8: Examples of forbidden subgraphs in dimensions 3, 4
and 5. Graph (i) is the square graph which is not faithfully
realizable in C3 as explained in the text. Graph (iv) is the
graph from [14] which was verified to be not faithfully realiz-
able in dimension three despite being square-free. Graph (ii)
is not faithfully realizable in C4, which can be seen as arising
from the fact that the induced square subgraph is not faith-
fully realizable in C3 and the additional vertex being adjacent
to all vertices of the square, the vector corresponding to this
vertex occupies an orthogonal subspace to that spanned by
the square. Graph (iii) is similarly not realizable in C5 this
time owing to the presence of two vertices (which themselves
cannot be represented by identical vectors) that are adjacent
to all the vertices of the square. It is clear that the construc-
tion can be extended to higher dimensions.

In searching for Kochen-Specker vector systems in Cd,
it is therefore crucial to reduce the size of the search by re-
stricting to non-isomorphic graphs which do not contain
these forbidden graphs as subgraphs. Indeed, searching
over non-isomorphic square-free graphs lead to the proof
that the smallest Kochen-Specker vector system in C3 is
of size at least 18 [15].

Let us denote the set of forbidden graphs in Cd as
{Gfbd}. We show, following the proof by Arends et al.
[15, 16] for the square-free case, that the problem of
checking {0, 1}-colorability of {Gfbd}-free graphs is NP-
complete. Here, by a {Gfbd}-free graph we mean a graph
that does not contain any of the forbidden graphs as sub-
graphs.

Theorem 5 (see also [15]). Checking {0, 1}-colorability
of {Gfbd}-free graphs is NP-complete.

The proof is based on a reduction to the well-known
graph coloring problem that uses 01-gadgets in a crucial
manner. Let us first recall the usual notion of coloring of
a graph used in the proof. A proper coloring c of a graph
G is an assignment of one among n colors to each of the
vertices of the graph c : V (G) ! [n] ([n] := {1, . . . , n})
such that no pair of adjacent vertices are assigned the

same color. If such a coloring exists, we say that G is
n-colorable.

Proof. The proof generalizes and simplifies that for the
analogous question of {0, 1}-colorability of square-free
graphs in [15], with the di↵erence being that we directly
use the constructions of 01-gadgets from the previous sec-
tions. Firstly, we know that checking {0, 1}-colorability
of a {Gfbd}-free graph is in NP because the problem of
checking an arbitrary graph for {0, 1}-colorability is in
NP [15]. Suppose we are given a graph G. The idea is
to construct a new graph H which is {Gfbd}-free such
that the problem of !(G)-colorability of G is equivalent
to the problem of {0, 1}-colorability of H. Provided the
construction is achievable in polynomial time, this gives
a reduction from the {0, 1}-colorability problem to the
!(G)-colorability problem (for !(G) � 3) which is known
to be NP-complete [27].

The construction goes as follows. Replace every ver-
tex v 2 V (G) by a clique of size !(G) in H and label
the corresponding vertices vi 2 V (H) for i 2 [!(G)]. For
every edge (u, v) 2 E(G), connect the corresponding ver-
tices (ui, vi) by a 01-gadget �(ui,vi) in H. The exact form
of the gadget �(ui,vi) is left unspecified at the moment,
for the polynomial time reduction it is only important
that it is finite (i.e., |V (�(ui,vi))| and |E(�(ui,vi))| are fi-
nite), so that |V (H)|  !(G)(|V (�(ui,vi))|max�1)|V (G)|
and |E(H)|  !(G)|V (G)|+ |E(�(ui,vi))|max|E(G)|, i.e.,
|V (H)| = O(|V (G)|) and |E(H)| = O(|E(G)|+ |V (G)|).

We first verify that H is {Gfbd}-free. We do this by
showing that H is in fact faithfully realizable in dimen-
sion !(G) and consequently free of the forbidden sub-
graphs for that dimension. For the vertices v 2 V (G),
the actual representation of the vertices vi 2 V (H) is
chosen independent of the exact structure of the graph,
i.e., for any G with |V (G)| = n, we choose a fixed faith-
ful orthogonal representation {|vii} for v 2 V (G) and
i 2 [!(G)]. Indeed, to show the realizability of the rest
of H, it su�ces to show the realizability of the vertices
v1 for v 2 V (G), since the representation for the remain-
ing vertices vi for i � 2 can be readily obtained by a
cyclic permutation ⇧i : |ji 7! |j + ii with the sum taken
modulo !(G). The structure of the graph is then incor-
porated by means of an appropriate choice of the gadgets
�(ui,vi). The crucial idea behind the construction is that
there exist finite sized gadgets (with faithful represen-
tations) for any two distinct vertices as shown in Prop.
4. So that for any edge (u, v) 2 E(G), we use a gadget
�(u1, v1) from Prop. 4 (the same gadget is used for the
other pairs (ui, vi)) corresponding to the required overlap
|hu1|v1i|. Now, since the representation is faithful, we do
not have di↵erent vertices represented by the same vec-
tor. As such, the construction from Prop. 4 yields a
finite sized gadget for any pair of vertices (ui, v1).

The proof that checking {0, 1}-colorability of the
{Gfbd}-free graph H is equivalent to checking the !(G)-
colorability of G (which is NP -complete) follows along
analogous lines to the proof in [15] and we present it
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APPLICATIONS OF CONTEXTUALITY: RANDOMNESS GENERATION
➤ Device-independent application: thru’ link with Hardy paradoxes (Prof. Pawel 
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➤ Suppose Alice and Bob measure according to the Clifton bug configuration and 
check for perfect correlations. 

➤ In any no-signaling theory: 

➤ Translates to:  

➤ This i-o combination can be employed in a DI protocol.
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here for completeness. Firstly, we show that H is {0, 1}-
colorable if G is !(G)-colorable. Consider the interme-
diate situation when we form a graph G0 by replacing
every vertex v 2 V (G) by a clique of size !(G) and label-
ing the corresponding vertices vi 2 V (G0) for i 2 [!(G)].
For every edge (u, v) 2 E(G), connect the correspond-
ing vertices (ui, vi) by an edge in G0. The strategy is
to show that if G is !(G)-colorable, then G0 admits a
valid {0, 1}-assignment. Suppose G is !(G)-colorable,
and c : V (G) ! [!(G)] is an optimal coloring. We define
the {0, 1}-coloring of G0 by

c0(vi) =

⇢
1, for i = c(v)
0, else

The fact that this is a valid {0, 1}-coloring of G0 follows
the proof of Lemma 1 in [15]. We now derive the {0, 1}-
coloring of H from that of G0 by seeing that each of the
gadgets in Prop. 4 can be {0, 1}-colored in all three cases,
when the distinguished vertices ui, vi have the assign-
ments: (i) f(ui) = 0, f(vi) = 0, (ii) f(ui) = 0, f(vi) = 1,
and f(ui) = 1, f(vi) = 0. This is done by checking that
such a valid {0, 1}-coloring exists for the Clifton gadget
in Fig. 1 in each of the three cases. The {0, 1}-coloring
can be extended to the entire gadget iteratively by fol-
lowing the procedure shown in the proof of Prop. 4. This
gives a valid {0, 1}-coloring of H.

We now show that a valid {0, 1}-coloring of H also
implies that G is !(G)-colorable. Let f : V (H) ! {0, 1}
be a valid {0, 1} assignment ofH. For every v 2 V (G), by
the fact that we have a valid {0, 1}-coloring, exactly one
of the vertices vi 2 V (H) is assigned value 1, i.e., f(vi) =
1. One can then define a !(G)-coloring c : V (G) !

[!(G)] by c(v) = i $ c(vi) = 1 for every v 2 V (G). It is
clear that this is a valid coloring since if (u, v) 2 E(G) we
have by the property of the gadget that at most one of
ui, vi is assigned value 1, i.e., either f(ui) = 0 or f(vi) =
0. Thus, the {0, 1}-colorability of the {Gfbd}-free graph
H is equivalent to the !(G)-colorability of G. From [27],
we know that for !(G) � 3, this problem is NP-complete,
which finishes the proof. ut

It is also interesting to examine the complexity of iden-
tifying 01-gadgets. In this case, it appears to be neces-
sary to enumerate all {0, 1}-colorings of a given graph
and to check O(n2) vertices to identify the possible dis-
tinguished vertices. Note that for a graph with n vertices
there are 2n possible {0, 1}-colorings so that it is not ap-
parent whether even a polynomially checkable certificate
exists for this problem. Peeters in [32] gave a polynomial
time reduction preserving graph planarity of the problem
of testing ⇠(G)  3 to the problem of testing whether the
chromatic number �(G) is less than or equal to 3, which
is a well-known NP-complete problem, so that it is hard
to check whether d(G)  3 already for the case of planar
graphs.

VIII. RANDOMNESS FROM 01-GADGETS

In this section, we give a brief outline of how 01-gadgets
may be linked to device-independent randomness certi-
fication. Namely, when two parties Alice and Bob per-
form locally the measurements from the Clifton gadget on
their half of a maximally entangled state (in C3

⌦C3), we
will show that some specific outcome of their joint mea-
surements has probability bounded from above and below
(and this holds in all no-signaling theories). This can be
inserted into a fully device-independent protocol as given
in [30], the details are deferred to a separate paper [29].
To show how the Clifton gadget can be used for ran-
domness amplification we first consider a non-contextual
assignment of probabilities to its vertices v satisfying

X

v2clique

pv  1,
X

v2maximum clique

pv = 1 (27)

This is the same requirement as Eq.(3), but we now as-
sign not necessarily zeros and ones, but probabilities (i.e.,
values in [0, 1] rather than in {0, 1}). Recall that such an
assignment was also considered in our discussion of the
extended Kochen-Specker theorem in Section VI. Now,
since the gadgets are {0, 1} colorable, such an assignment
of zeros and ones is possible, although in the {0, 1} as-
signment, it is not possible to assign 1’s to both vertices
1 and 8. Here, we will first show, that even if we assign
probabilities, we still cannot have p1 = p8 = 1, and we
will provide a quantitative bound for this. Indeed, let us
write Eq.(27) explicitly for the cliques in question from
the Clifton gadget in Fig. 1:

p1 + p2  1, p1 + p6  1, p4 + p5  1,

p7 + p8  1, p3 + p2  1 (28)

for non-maximal cliques and

p2 + p3 + p4 = 1, p5 + p6 + p7 = 1 (29)

for the two maximum cliques. We sum up all the inequal-
ities (28), and get

2p1 + p2 + p3 + p4 + p5 + p6 + p7 + 2p8  5. (30)

Using (29) we then obtain

p1 + p8 
3

2
. (31)

To exploit this feature for randomness amplification, we
consider a maximally entangled state shared by two par-
ties. The parties will measure observables composed of
the projectors given by the quantum representation (if
the clique is not maximal, one simply adds a third orthog-
onal projector to obtain a complete measurement). Re-
call here that a set of eight projectors Pv = |uvihuv| that
is compatible with the Clifton graph is given in Eq.(5).
Projectors of Alice will be denoted Av and those of Bob
Bv, and the probability of obtaining outcome v, while
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measuring observable containing v, will be denoted by
p(Av = 1). We correspondingly denote by p(Av = 0) the
probability that the outcome v was not obtained. Clearly
p(Av = 1)+p(Av = 0) = 1. Now, we shall show using no-
signaling (which will impose non-contextuality), that the
probability p(A1 = 1, B8 = 1) is bounded from above.
To see this, we apply Eq.(31) to Alice’s observables and
get

p(A1 = 1) + p(A8 = 1) 
3

2
(32)

From the correlations in the maximally entangled state,
we have that

p(A8 = 1) = p(B8 = 1) (33)

giving

p(A1 = 1) + p(B8 = 1) 
3

2
. (34)

Now, from no-signaling we have

p(A1 = 1) = p(A1 = 1, B8 = 0) + p(A1 = 1, B8 = 1),

p(B8 = 1) = p(A1 = 0, B8 = 1) + p(A1 = 1, B8 = 1).

(35)

Summing these and applying (34) we get

p(A1 = 1, B8 = 0) + p(A1 = 1, B8 = 1) +

p(A1 = 0, B8 = 1) + p(A1 = 1, B8 = 1) 
3

2
(36)

and hence

p(A1 = 1, B8 = 1) 
3

4
. (37)

Thus we have obtained, that the probability of the event
(A1, B8) = (1, 1) is bounded from above. We have also
the lower bound

p(A1 = 1, B8 = 1) =
1

3
|hu1|u8i|

2
�

1

27
. (38)

Thus

1

27
 p(A1 = 1, B8 = 1) 

3

4
(39)

Therefore, the outcome (A1, B8) = (1, 1) has random-
ness, which can be used in a randomness amplification
scheme employing the protocol of [30]. The lower
bound is 1

27 in noiseless conditions, and assuming we
have exactly measured the specified projectors. In a
real experiment, this value may be di↵erent, but if the
noise is low enough it should be close to 1

27 . Also the
upper bound, relies on perfect correlations, which in
a real experiment may be imperfect. Thus in noisy
conditions, we will have less stringent lower and upper
bounds, though these are certifiable by statistics from
the experiment. Note that crucially we have not used

explicitly Bell inequalities, nor even the KS paradox.
We have simply made use of the perfect correlations
between the parties and the local 01-gadget structure of
Alice and Bob’s observables.

IX. CONCLUSION AND OPEN QUESTIONS

In this paper, we have shown that there exist in-
teresting subgraphs of the Kochen-Specker graphs that
we termed 01-gadgets that encapsulate the main con-
tradiction necessary to prove the Kochen-Specker the-
orem. Furthermore, we gave simple constructive proofs
of statistical KS arguments and state-independent non-
contextuality inequalities for any d � 3 using these gad-
gets. An extended notion of 01-gadgets also helped
to provide simple constructive proofs of the extended
Kochen-Specker theorem [22]. The gadgets enable
a proof of the NP-completeness of checking {0, 1}-
colorability of graphs free from the forbidden subgraphs
from Hilbert spaces of any dimension. Practically, the
gadgets open up a highly important application of con-
textuality to practical device-independent randomness
generation, which we study in a companion paper [29]
where we provide an explicit device-independent proto-
col for randomness amplification based on [10–12] and
Hardy paradoxes constructed using 01-gadgets.
An open question, is to find, for given overlap |hv1|v2i|,

the minimal 01-gadget and extended 01-gadget with the
corresponding vertices v1, v2 playing the role of the dis-
tinguished vertices. An answer to this question would
have applications for randomness generation from con-
textuality [29]. Another open question is whether all
state-independent contextual graphs (including those go-
ing beyond KS sets such as that of Yu and Oh [25])
contain 01-gadgets as subgraphs, or even possibly as in-
duced subgraphs. Finally, while it is known that in C3 KS
sets cannot be constructed using rational vectors [5], it
would be very interesting to study quantum realizations
of 01-gadgets using rational vectors, to build statistical
KS arguments and state-independent non-contextuality
inequalities using these.
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the minimal 01-gadget and extended 01-gadget with the
corresponding vertices v1, v2 playing the role of the dis-
tinguished vertices. An answer to this question would
have applications for randomness generation from con-
textuality [29]. Another open question is whether all
state-independent contextual graphs (including those go-
ing beyond KS sets such as that of Yu and Oh [25])
contain 01-gadgets as subgraphs, or even possibly as in-
duced subgraphs. Finally, while it is known that in C3 KS
sets cannot be constructed using rational vectors [5], it
would be very interesting to study quantum realizations
of 01-gadgets using rational vectors, to build statistical
KS arguments and state-independent non-contextuality
inequalities using these.
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FIG. 1: The 8-vertex “Clifton” graph that was used by
Kochen and Specker in their construction of the 117 vector
KS set. The two distinguished vertices are u1 and u8.

FIG. 2: A 16 vertex coloring gadget (also a 101-gadget) that
is a subgraph of the 18 vertex Kochen-Specker graph in di-
mension d = 4 found by Cabello et al. [18]. The 9 edge colors
denote 9 cliques in the graph, with the maximum clique be-
ing of size !(G) = 4. The distinguished vertices u1, u6 are
denoted by black circles.

one at a time, an induced subgraph Gcrit that is vertex-
critical. By vertex-critical, we mean that (i) Gcrit is not
{0, 1}-colorable, but (ii) any subgraph obtained from it
by deleting a supplementary vertex does admit a {0, 1}-
coloring. Observe that in the process of constructing
Gcrit we are able to preserve the maximum clique size,
i.e., !(Gcrit) = !(GKS). This is because we are able to
delete vertices from all but two maximum cliques, sim-
ply because at least two maximum cliques must exist in
a graph that is not {0, 1}-colorable. Observe also that
Gcrit is itself a KS graph, since the faithful orthogonal

representation of GKS in dimension d = !(G KS) pro-
vides an orthogonal representation of Gcrit in the same
dimension.
We consider three cases: (i) there exists a vertex in

Gcrit that belongs to a single maximum clique, (ii) all
vertices in Gcrit belong to at least two maximum cliques,
and there exists a vertex that belong to exactly two max-
imum cliques; (iii), all vertices in Gcrit belong to at least
three maximum cliques. In the first two cases, which hap-
pens to be the case encountered in all known KS graphs,
we will be able to prove that the 01-gadget appears as an
induced subgraph while in the third case, the 01-gadget
appears as a subgraph that may not necessarily be in-
duced.
In case (i), let v be one of the vertices having the prop-

erty that it belongs to a single maximum clique. We de-
note this clique Q1 ⇢ Gcrit

S
. Deleting v leads to a graph

Gcrit \ v that is {0, 1}-colorable by definition. However,
observe that in any coloring f of Gcrit \ v, all the ver-
tices in Q1 \ v are assigned the value 0 by f . This is
because, if one of these vertices were assigned value 1,
then one could obtain a valid coloring of Gcrit from f by
defining f(v) = 0. Choose a vertex v1 2 Q1 \ v and any
other non-adjacent vertex v2 2 Gcrit \ v. Then Gcrit \ v is
the required 01-gadget with v1, v2 playing the role of the
distinguished vertices.

In case (ii), let v be one of the vertices having the
property that it belongs to exactly two maximum cliques,
which we denote Q1, Q2 ⇢ Gcrit. Again, deleting v leads
to a graph Gcrit \ v that is {0, 1}-colorable. However,
in any coloring f of Gcrit \ v, it cannot be that a value
f(v1) = 1 and a value f(v2) = 1 are simultaneously as-
signed to a vertex v1 2 Q1 \ v and a vertex v2 2 Q2 \ v.
This is again because if there was such a coloring f , then
one could obtain a valid coloring for Gcrit by defining
f(v) = 0, in contradiction with the criticality of Gcrit.
Choose v1 2 Q1 \ v and v2 2 Q2 \ v such that v1 and v2
are not adjacent. Two such vertices must exist. Indeed,
if all vertices Q1\v where adjacent to all vertices of Q2\v,
then the maximum clique size would be strictly greater
than !(Gcrit). Therefore, we have that Gcrit \ v is the
required 01-gadget with v1, v2 the distinguished vertices.

Finally, we consider the case (iii) where each vertex in
Gcrit belongs to at least three maximum cliques. In this
case, we cannot proceed as above where we remove a cer-
tain vertex v and pick vertices from two maximal cliques
containing v, because we can no longer guarantee that
these two vertices cannot simultaneously be assigned the
value 1 (we can only guarantee that a certain t-uple of
vertices, each one picked from the t maximum cliques to
which v belongs, cannot all simultaneously be assigned
the value 1). Instead, we proceed as follows. We start
by deleting edges of Gcrit one at a time, to construct a
new graph G0

crit that is edge-critical. By edge-critical, we
mean, similarly to the construction above, that G0

crit is
not {0, 1}-colorable, but any graph obtained from it by
deleting a supplementary edge (and thus also by deleting
a supplementary vertex) does admit a {0, 1}-coloring. As

R. Ramanathan, F.G.S.L. Brandao, K. Horodecki, M. Horodecki, P. Horodecki and H. Wojewodka. “Randomness 
Amplification under minimal fundamental assumptions on the devices”. Phys. Rev. Lett. 117, 230501 (2016).



APPLICATIONS OF CONTEXTUALITY: RANDOMNESS GENERATION
➤ Hardy paradoxes turn out to have interesting applications in DI protocols for 

randomness amplification. 

➤ Crucial parameter controlling noise: prob. Of Hardy output. 

➤ The 01-gadgets can be used to construct Hardy paradoxes with the prob. Of Hardy 
output in the entire range (0,1].
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This gives the non-zero Hardy probability in the corre-
sponding Hardy paradox. Choosing a gadget with the
distinguished vectors identical in Prop. 8, we see that the

probability P (u(k)

1
, u

(k)

2
|x⇤

, y
⇤) = 1

4
for all k = 1, . . . , 4.

We thus obtain a Hardy paradox with the maximum pos-
sible contradiction, i.e., a set of events which have proba-
bility 0 in any classical theory, which however are certain
to occur in quantum theory. Thus, from Eq.(99) and
the gadget construction in Prop. 8, we see that one can
obtain Hardy paradoxes with the non-zero probability in

the entire spectrum (0, 1] and obtain the following propo-
sition.

Proposition 9. There exist Hardy paradoxes for the

maximally entangled state
1p
d

P
d�1

i=0
|i, ii for all d � 3

with the non-zero probability taking any value in (0, 1

d
].

In dimensions four and eight, there exist Hardy paradoxes

for the maximally entangled state with the non-zero prob-

ability taking any value in (0, 1].
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construction of a 01-gadget for any two distinct vectors
in Cd for d � 3 given in Proposition 8 (Theorem 2 of
[17]) we obtain Hardy paradoxes with the non-zero prob-
ability taking on the spectrum of values in (0, 1/3] at the
expense of complexity of the gadget.

Proposition 8 (Theorem 2 of [17]). Let |v1i and |v2i be
any two non-orthogonal vectors in Cd

with d � 3. Then

there exists a 01-gadget in dimension d with |v1i and |v2i
being the two distinguished vertices.

In fact, it is possible to obtain Hardy paradoxes for
the entire spectrum (0, 1] as we now show. To do this,
we work in R4, i.e., we augment the gadget in R3 with
the additional vertex (0, 0, 0, 1)T to obtain a gadget in
dimension four. As shown in Prop. 8 it is possible to
obtain a gadget with any two vectors as distinguished
vertices u1, u2 in R4 by embedding the gadget in R3

in this manner. We now form four copies of the gad-
get G

(1)
, G

(2)
, G

(3)
, G

(4) in C4, with the corresponding
vectors in each copy being mutually orthogonal, i.e.,

|u(1)

k
i, |u(2)

k
i, |u(3)

k
i, |u(4)

k
i form a complete basis (the ver-

tices form a maximum clique). That such a construction
is always possible is based on the fact that in dimensions
4 and 8 there exist division algebras [35] (the quater-
nions and octonions) so that one can rotate each vector
(a, b, c, d) 2 R4 in a set of vectors, to the orthogonal
vectors (b,�a,�d, c), (c, d,�a,�b), (d,�c, b,�a) by mul-
tiplication by the orthogonal units i, j or k of the algebra,
i.e., to every vector (a, b, c, d) 2 R4, one can associate the
real orthogonal matrix

0

BBB@

a b c d

b �a d �c

c �d �a b

d c �b �a

1

CCCA
(96)

A similar construction also exists in dimension eight
by means of the octonions. Let G denote the
newly formed orthogonality graph with V (G) =
V (G(1))

S
V (G(2))

S
V (G(3))

S
V (G(4)) and the edge set

formed by the orthogonality constraints defined by the
three faithful representations of the copies as before.
The construction is illustrated by means of the 8-vertex
Clifton gadget in Fig. 11.

Now, we form the set Qmax(G) of bases (maximum
cliques in G) as before, with the measurement settings
x, y of the two parties corresponding to these maximum
cliques. In particular, we now denote x

⇤
, y

⇤ as the max-
imum cliques formed by the four orthgonal vectors cor-
responding to the distinguished vertices u1 and u2, i.e.,

u
(1)

1
, . . . , u

(4)

1
and u

(1)

2
, . . . , u

(4)

2
. From a faithful represen-

tation of the gadget {|uz,ci}, we form the constraint set
SB

SB := {((x, a), (y, b)) : hu(x,a)|u(y,b)i = 0}
[

[4

k=1
{((x⇤

, u
(k)

1
), (y⇤, u(k)

2
))}. (97)
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FIG. 11: An illustration of the Hardy paradox construc-
tion in dimension four by means of the real orthogonal ma-
trix in Eq.(96). We embed the Clifton graph in dimension
four by adding the extra vertex u0 corresponding to the vec-
tor (0, 0, 0, 1)T . We then obtain four copies of the resulting
gadget in dimension four by multiplication by the orthogo-
nal unit as in Eq.(96) (not all resulting edges are shown for
clarity). The two distinguished vertices u1 and u8 give rise
in this manner to distinguished measurement bases given as
{|u1/8i, |v1/8i, |w1/8i, |x1/8i}. In the scenario of the gadget
constructed in Prop. 8 with |v1i and |v2i identical, measure-
ments on a maximally entangled ququart state by Alice and
Bob in these respective bases give rise to a Hardy paradox
with non-zero probability in (0, 1] as explained in the text.

Now, the input-output pairs ((x⇤
, u

(k)

1
), (y⇤, u(k)

2
)) cor-

respond to the four pairs of distinguished vertices of
the 01-gadget in R4 and will give rise to the non-
zero probabilities in the Hardy paradox. In the quan-
tum strategy, the players share a two-ququart maxi-
mally entangled state 1

2

P
3

i=0
|i, ii and measure in the

basis {⇧x} = {|u(x,a)ihu(x,a)|}a=1,...,4 and {⌃y} =
{|u(y,b)ihu(y,b)|}b=1,...,d corresponding to the received in-
put clique. They return the outcomes a, b of the
measurement. We have for all ((x, a), (y, b)) 2 SB \
[4

k=1
{((x⇤

, u
(k)

1
), (y⇤, u(k)

2
))} that

h |
�
|u(x,a)i ⌦ |u(y,b)i

�
=

1

2
hu(x,a)|u(y,b)i = 0. (98)

As before, these form the zero constraints of the
corresponding Hardy paradox. By the properties of
the 01-gadgets, in any classical theory we have that
for each of the distinguished pairs, the probability

P (u(k)

1
, u

(k)

2
|x⇤

, y
⇤) = 0 for all k = 1, . . . , 4. In the quan-

tum strategy for the measurements x
⇤
, y

⇤ however, we
have that

P (u(k)

1
, u

(k)

2
|x⇤

, y
⇤) =

1

4
|hu(k)

1
|u(k)

2
i|2 (99)



CONCLUSIONS AND OPEN QUESTIONS
➤ Constructed 01-gadgets and applied them to produce novel KS sets. 

➤ Minimal 01-gadgets? So far: 40 vectors for arbitrary distinguished vectors. 

➤ If you have a non-{0,1}-colorable graph, chances are with 01-gadgets you can 
convert it into a KS proof. 

➤ Introduced extended 01-gadgets. 

➤ Applied to produce constructive proofs of Pitowsky’s Logical Indeterminacy. 

➤ Minimal constructions? Current proofs require large vector sets for arbitrary 
distinguished vectors. 

➤ Important role of 01-gadgets in Randomness Generation to be explored further. 

➤ Do rational representations of 01-gadgets exist?…


