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Non-commutativity as Partiality

From a physics perspective, we can distill the distinction between classical and quantum
physics in terms of C∗-algebras:
• Classical physics can be cast in terms of commutative C∗-algebras – by Gelfand

duality, these are function algebras on topological spaces
• Quantum physics lives in general (non-commmutative) C∗-algebras – by GNS

representation, subalgebras of B(H).

We can distill the essence further, to the projectors, which play the role of basic
propositions or properties – this is the Birkhoff-von Neumann move to “quantum logic”.

However, as admitted by von Neumann, there is an issue with the physical interpretation
of the logical/algebraic operations on non-commuting projectors.

By contrast, Kochen and Specker represent non-commutativity – and hence
incompability – by partiality.

This leads to their notion of partial Boolean algebras.
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Partial Boolean algebras
A partial Boolean algebra A is given by a set (also written A), constants 0, 1, a reflexive,
symmetric binary relation � on A, read as “commeasurability” or “compatibility”, a total
unary operation ¬, and partial binary operations ∧, ∨ with domain �.

These must satisfy the following property: every set S of pairwise-commeasurable elements
must be contained in a set T of pairwise-commeasurable elements which forms a (total)
Boolean algebra under the restrictions of the given operations.

Note From now on, whenever we say “Boolean algebra”, we mean total Boolean algebra.

The key example: P(H), the projectors on a Hilbert space H.
(A projector on a f.d. Hilbert space is a complex matrix M which is idempotent
(M2 =M), and self-adjoint (equal to its conjugate transpose)).
The operation of conjunction, i.e. product of projectors, becomes a partial one, only
defined on commuting projectors.

Morphisms of partial Boolean operations are maps preserving commeasurability, and the
operations wherever defined. This gives a category pBA.
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Kochen-Specker Contextuality
Kochen and Specker showed, in their seminal 1967 paper, that contextuality is inherent in
quantum mechanics, even in finite dimension (≥ 3), and moreover can be formulated in
logical terms, using the notion of partial Boolean algebras.

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors P(H) into a Boolean
algebra when dimH ≥ 3.

In fact, they considered a hierarchy of increasingly weaker forms of non-contextuality (and
hence whose negations forming increasingly stronger forms of contextuality) for a pBA A:
• A can be embedded in a Boolean algebra
• there is a homomorphism A −→ B, for some Boolean algebra B, whose restriction to

each Boolean subalgebra of A is an embedding
• there is a homomorphism A −→ B for some Boolean algebra B
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KS conditions

The first condition is equivalent to: There are enough homomorphisms A −→ 2 to separate
elements of A

The third is equivalent to: There is some homomorphism A −→ 2.

Thus the strongest contextuality property is:

There is not even one homomorphism A −→ 2

This is what Kochen and Specker prove.

We shall call this the K-S property of a pBA.
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Conditions of impossible experience

Using this terminology, we can express a (physically) remarkable result from Kochen and
Specker as follows:

Theorem
let A be a pba. Then the following are equivalent:
1. A is K-S.
2. For some propositional contradiction ϕ(~x) and assignment ~x 7→ ~a, A |= ϕ(~a).

Thus the event algebra P(H) of quantum mechanics cannot be interpreted globally in a
consistent fashion.

Our local observations – real observations of real measurements – cannot be pieced
together globally by reference to a single underlying objective reality. The values that they
reveal are inherently contextual.

How can the world be this way? Still an ongoing debate, an enduring mystery . . .
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The category pBA

In Heunen and van der Berg, Non-commutativity as a colimit (2012), it is shown that
every partial Boolean algebra is the colimit of its Boolean subalgebras.

Coproducts have a simple direct description. The coproduct A⊕B of partial Boolean
algebras A, B is their disjoint union with 0A identified with 0B , and 1A identified with 1B .
Other than these identifications, no commeasurability holds between elements of A and
elements of B.

N.B. This is very different to coproducts in BA!

By contrast, coequalisers, and general colimits, are shown to exist by Heunen and van der
Berg by an appeal to the Adjoint Functor Theorem. One of our contributions is to give an
explicit construction of the needed colimits.

More generally, we use this approach to prove the following result, which freely generates
from a given partial Boolean algebra a new one where prescribed additional
commeasurability relations are enforced between its elements.
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Theorem
Given a partial Boolean algebra A and a binary relation } on A, there is a partial Boolean
algebra A[}] such that:
• There is a pBA-morphism η : A −→ A[}] such that a} b ⇒ η(a)�A[}] η(b).
• For every partial Boolean algebra B and pBA-morphism h : A −→ B such that
a} b ⇒ h(a)�B h(b), there is a unique homomorphism ĥ : A[}] −→ B such that

A A[}]

B

h

η

ĥ

This result is proved constructively, by giving proof rules for commeasurability and
equivalence relations over a set of syntactic terms generated from A. (In fact, we start
with a set of “pre-terms”, and also give rules for definedness).

7 / 22



The inductive construction
a ∈ A
ı(a)↓

a�A b
ı(a)� ı(b)

a} b
ı(a)� ı(b)

0 ≡ ı(0A), 1 ≡ ı(1A), ¬ı(a) ≡ ı(¬Aa)

a�A b
ı(a) ∧ ı(b) ≡ ı(a ∧A b), ı(a) ∨ ı(b) ≡ ı(a ∨A b)

0↓, 1↓
t� u

t ∧ u↓, t ∨ u↓
t↓
¬t↓

t↓
t� t, t� 0, t� 1

t� u
u� t

t� u, t� v, u� v
t ∧ u� v, t ∨ u� v

t� u
¬t� u

t↓
t ≡ t

t ≡ u
u ≡ v

t ≡ u, u ≡ v
t ≡ v

t ≡ u, u� v
t� v

ϕ(~x) ≡Bool ψ(~x),
∧
i,j vi � vj

ϕ(~v) ≡ ψ(~v)
t ≡ t′, u ≡ u′, t� u

t ∧ u ≡ t′ ∧ u′, t ∨ u ≡ t′ ∨ u′
t ≡ u
¬t ≡ ¬u

8 / 22



Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing
commeasurability, one forces equality by the additional rule

a} a′

ı(a) ≡ ı(a′)

This builds a pBA A[},≡].

Theorem
Let h : A −→ B be a pBA-morphism such that a} a′ ⇒ h(a) = h(a′). Then there is a
unique pBA-morphism ĥ : A[},≡] −→ B such that h = ĥ ◦ η.

This result can be used to give an explicit construction of coequalisers, and hence general
colimits, in pBA.

9 / 22



An apparent contradiction

BA is a full subcategory of pBA. We know from (Heunen and van den Berg) that A is
the colimit in pBA of its boolean subalgebras. Now let B be the colimit in BA of the
same diagram D of boolean subalgebras of A and the inclusions between them.

Then the cone from D to B is also a cone in pBA, hence there is a mediating morphism
from A to B!

To resolve the apparent contradiction, note that BA is an equational variety of algebras
over Set.

As such, it is complete and cocomplete, but it also admits the one-element algebra 1, in
which 0 = 1. Note that 1 does not have a homomorphism to 2.

In the case of a partial Boolean algebra with the K-S property of not having a
homomorphism to 2, the colimit of its diagram of boolean subalgebras must be 1.
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KS-property and colimits
We can turn this into a theorem:

Theorem
Let A be a partial Boolean algebra. The following are equivalent:
1. A has the K-S property.
2. The colimit of the diagram of boolean subalgebras of A in BA is 1.

In fact, we can formulate the K-S property directly for diagrams of Boolean algebras,
without referring to partial boolean algebras at all.

We say that a diagram in BA is K-S if its colimit in BA is 1.

We could say that such a diagram is “implicitly contradictory”, and in trying to combine
all the information in a colimit, we obtain the manifestly contradictory 1.

A partial Boolean algebra with the K-S property – such as P(H) – holds this implicitly
contradictory information together in a single structure.
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Tensor product and the emergence of non-classicality

As already remarked, the K-S property arises in P(H) when dimH ≥ 3.

Note that P(C2) ∼=
⊕

i∈I 4i, where I is a set of the power of the continuum, and each 4i is
the four-element Boolean algebra.

One of the key points at which non-classicality emerges in quantum theory is the passage
from P(C2), which does not have the K–S property, to P(C4) = P(C2 ⊗ C2), which does.

Can we capture the Hilbert space tensor product in logical form?

Question
Is there a monoidal structure ~ on the category pBA such that the functor
P : Hilb −→ pBA is strong monoidal with respect to this structure, i.e. such that
P(H)~ P(K) ∼= P(H⊗K)?

A positive answer to this question would offer a complete logical characterisation of the
Hilbert space tensor product, and provide an important step towards giving logical
foundations for quantum theory in a form useful for quantum information and
computation.
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Tensor products of partial Boolean algebras

In (Heunen and van den Berg), it is shown that pBA has a monoidal structure, with A⊗B
given by the colimit of the family of C +D, as C ranges over Boolean subalgebras of A, D
ranges over Boolean subalgebras of B, and C +D is the coproduct of Boolean algebras.

The tensor product there is not constructed explicitly: it relies on the existence of colimits
in pBA, which is proved by an appeal to the Adjoint Functor Theorem.

Our Theorem 2 allows us to give an explicit description of this construction using
generators and relations.

Proposition
Let A and B be partial Boolean algebras. Then

A⊗B ∼= (A⊕B)[:]

where : is the relation on the carrier set of A⊕B given by ı(a) : (b) for all a ∈ A and
b ∈ B.
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Limitations of this tensor product

There is a lax monoidal functor P : Hilb −→ pBA, which takes a Hilbert space to its
projectors, viewed as a partial Boolean algebra, with an embedding
P(H)⊗ P(K) −→ P(H⊗K) induced by the evident embeddings of P(H) and P(K) into
P(H⊗K)), given by p 7−→ p⊗ 1, q 7−→ 1⊗ q.

It is easy to see that this embedding is far from being surjective. For example, if we take
H = K = C2, then there are (many) two-valued homomorphisms on A = P(C2), which lift
to two-valued homomorphisms on A⊗A. However, by the Kochen–Specker theorem, there
is no such homomorphism on P(C4) = P(C2 ⊗ C2).

Interestingly, in (Kochen 2015) it is shown that the images of P(H) and P(K), for any
finite-dimensional H and K, generate P(H⊗K). This is used there to justify the claim
contradicted by the previous paragraph. The gap in the argument is that more relations
hold in P(H⊗K) than in P(H)⊗ P(K).

Nevertheless, this result is very suggestive. It poses the challenge of finding a stronger
notion of tensor product.
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Towards a more expressive tensor product

An important property satisfied by the rules in Table 1 as applied in constructing A⊗B is
that, if t↓ can be derived, then u↓ can be derived for every subterm u of t. This appears to
be too strong a constraint to capture the full logic of the Hilbert space tensor product.

To see why this is an issue, consider projectors p1 ⊗ p2 and q1 ⊗ q2. To ensure in general
that they commute, we need the conjunctive requirement that p1 commutes with q1, and
p2 commutes with q2.

However, to show that they are orthogonal, we have a disjunctive requirement: p1⊥q1 or
p2⊥q2. If we establish orthogonality in this way, we are entitled to conclude that p1 ⊗ p2
and q1 ⊗ q2 are commeasurable, even though (say) p2 and q2 are not.

Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasized by Kochen.
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Logical exclusivity principle
The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra.

Definition
Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be exclusive,
written a ⊥ b, if there is a c ∈ A such that a ≤ c and b ≤ ¬c.

Note that x ≤ y in a pBA means that x� y and x ∧ y = x.

Thus a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be equivalent
in a Boolean algebra. The point is that, in a general partial Boolean algebra, one might
have exclusive events that are not commeasurable (and for which, therefore, the ∧
operation is not defined).

Definition
A partial Boolean algebra A is said to satisfy the logical exclusivity principle (LEP) if
any two elements that are logically exclusive are also commeasurable, i.e. if ⊥ ⊆ �.
We write epBA for the full subcategory of pBA whose objects are partial Boolean
algebras satisfying LEP.
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Logical exclusivity and transitivity
The logical exclusivity principle turns out to be equivalent to the following notion of
transitivity.

Definition
A partial Boolean algebra is said to be transitive if for all elements a, b, c, a ≤ b and b ≤ c
implies a ≤ c.

Transitivity can fail in general for a partial Boolean algebra, since one need not have a� c
under the stated hypotheses. Note that the relation ≤ on a partial Boolean algebra is
always reflexive and anti-symmetric, so this condition is equivalent to ≤ being a partial
order (globally) on A.

A partial Boolean algebra of the form P(H) is always transitive.

Proposition
Let A be a partial Boolean algebra. Then it satisfies LEP if and only if it is transitive.

As an immediate consequence, any P(H) satisfies LEP.
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A reflective adjunction for logical exclusivity

We can of course form the partial Boolean algebra A[⊥]. While the exclusivity principle
holds for all its elements in the image of η : A −→ A[⊥], it may fail to hold for other
elements in A[⊥].

However, we can adapt our construction to show that one can freely generate, from any
given partial Boolean algebra, a new partial Boolean algebra satisfying LEP.

This LEP-isation is analogous to e.g. the way one can ‘abelianise’ any group, or use
Stone–Čech compactification to form a compact Hausdorff space from any topological
space.
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Theorem
The category epBA is a reflective subcategory of pBA, i.e. the inclusion functor
I : epBA −→ pBA has a left adjoint X : pBA −→ epBA. Concretely, to any partial
Boolean algebra A, we can associate a Boolean algebra X(A) = A[⊥]∗ which satisfies LEP
such that:
• there is a homomorphism η : A −→ A[⊥]∗;
• for any homomorphism h : A −→ B where B is a partial Boolean algebra B satisfying
LEP, there is a unique homomorphism ĥ : A[⊥]∗ −→ B such that:

A A[⊥]∗

B

h

η

ĥ

The proof of this result follows from a simple adaptation of the proof of Theorem 2,
namely adding the following rule to the inductive system presented in Table 1:

u ∧ t ≡ u, v ∧ ¬t ≡ v
u� v
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Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?

Answer: Closer, but still not there!
In particular, we show that if A and B are not K-S, A�B is not K-S.

Details in paper.

20 / 22



Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?

Answer: Closer, but still not there!
In particular, we show that if A and B are not K-S, A�B is not K-S.

Details in paper.

20 / 22



Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?

Answer: Closer, but still not there!
In particular, we show that if A and B are not K-S, A�B is not K-S.

Details in paper.

20 / 22



Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?

Answer: Closer, but still not there!
In particular, we show that if A and B are not K-S, A�B is not K-S.

Details in paper.

20 / 22



Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?

Answer: Closer, but still not there!
In particular, we show that if A and B are not K-S, A�B is not K-S.

Details in paper.

20 / 22



Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?

Answer: Closer, but still not there!
In particular, we show that if A and B are not K-S, A�B is not K-S.

Details in paper.

20 / 22



Logical exclusivity tensor product

We can define a stronger tensor product by forcing logical exclusivity to hold.

This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product.

How close does it it get us to the full Hilbert space tensor product?

Answer: Closer, but still not there!
In particular, we show that if A and B are not K-S, A�B is not K-S.

Details in paper.
20 / 22



Mysteries of partiality

Partial Boolean algebras can behave very differently to the total case.

It is a standard fact that every finitely-generated boolean algebra is finite.

Conway and Kochen (2002) show the following:

Theorem
In P(C4), there is a set of five projectors (local Paulis) which generate a uniformly dense
(infinite) subalgebra.

Some elaborate geometry and algebra is used to show this.

Is there a “logical” proof?
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Some Further Directions

• From state-dependent to state-independent contextuality

• Axiomatizing the tensor product

• Characterizing the contradictions which can be realized in QM

• Stone-type duality for partial Boolean algebras

Paper in Proceedings of CSL 2021. Available at arXiv:2011.03064.
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