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Punchline

Let

I d , e, f range over various correlations (contextual or not)

I d ⊗ e denote having d and e independently side-by-side

I d  e denote the existence of a transformation d → e in the resoure theory of contextuality

Theorem
If d ⊗ e  d ⊗ f , then e  f . Ditto for the resource theory of non-locality.

Contrast with entanglement, where catalysis is possible:

‘Entanglement-assisted local manipulation of pure quantum states’
Jonathan, Plenio, PRL 1999.



Overview

I As the resource theory of contextuality we use that of

‘A comonadic view of simulation and quantum resources’
Abramsky, Barbosa, MK., Mansfield, LiCS 2019.

giving a formalization of the the wirings and prior-to-input-classical communication
paradigm studied in physics.

I The resource theory of non-locality: the n-partite version of the above

I Proof idea: if you can catalyze once you can catalyze arbitrarily many times. For big enough
n this implies that one needs only a compatible (and hence non-contextual) part of d .1

1or rather, a compatible subset of MP(d)



Formalising empirical data

A measurement scenario S = 〈XS ,ΣS ,OS〉:
I XS – a finite set of measurements

I ΣS – a simplicial complex on XS

faces are called the measurement contexts

I OS = (Ox)x∈XS
– for each x ∈ X a

non-empty outcome set Ox . Joint outcomes
over U ⊆ XS denoted by ES(U).

An empirical model e = {eσ}σ∈Σ on S :

I each eσ ∈ Prob (ES(U)) is a probability
distribution over joint outcomes for σ.

I generalised no-signalling holds: for any
σ, τ ∈ ΣS , if τ ⊆ σ,

eσ|τ = eτ
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Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.



Maps between scenarios

S

. . .

. . .

T

. . .

. . .

A deterministic map S → T proceeds as follows:

I map inputs of T (measurements) to inputs of S

I run S

I map outputs of S (measurement outcomes) to outputs of T



Same but formally

A deterministic map (π, h) : S → T is given by:

I A simplicial function π : (XT ,ΣT )→ (XS ,ΣS).

I For each x ∈ XS , a function hx : Oπ(y) → Ox .

Simpliciality of π means that contexts in ΣT are mapped to contexts in ΣS .



Simulations

Given d : T , e : S , a deterministic simulation d → e is a deterministic map f : S → T that
transforms d to e.

d

f

=
e

For instance, the PR-box can be simulated from a liar’s paradox on a triangle, by collapsing one
edge to a point.
But what if we want to

(i) let a measurement of T to depend on a measurement protocol of S?

(ii) use classical randomness?



The MP construction

Given a scenario S = 〈XS ,ΣS ,OS〉 we build a new scenario MP(S), where:

I measurements are the (deterministic) measurement protocols on S . A measurement
protocol on S is either empty or consists of a measurement in x ∈ XS and of a function
from outcomes of x to measurement protocols on S |lkx

I outcomes are the joint outcomes observed during a run of the protocol

I measurement protocols are compatible if they can be combined consistently



Adaptive procedure

S
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T
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MP

An adaptive map S → T proceeds as follows:

I map measurements of T to measurement protocols over S

I run S

I map outcomes of MP(S) to outputs of T



Adaptive procedure with classical randomness

d

. . .

. . .

c

. . .

. . .

e

. . .

. . .

MP

Requirement: c is noncontextual.



General simulations

Given empirical models e and d , a simulation of e by d is a deterministic simulation

MP(d ⊗ c)→ e

for some noncontextual model c .

The use of the noncontextual model c is to allow for classical randomness in the simulation.

We denote the existence of a simulation of e by d as d  e, read “d simulates e”.



Why bother?

The convertibility relation  results in a resource theory of contextuality with nice properties:

I Expressive enough to capture less formally defined transformations in the literature (in the
single-shot exact case)

I Mathematically precise (at least in principle)

I Contextual fraction is a monotone

I Contextuality is equivalent to insimulability from a trivial model. Variants for logical and
strong contextuality.



No-catalysis

Theorem (No-catalysis)
If d ⊗ e  d ⊗ f then e  f

Proof.
First step — reduce to the deterministic case:
If d ⊗ e  d ⊗ f , then there is a deterministic simulation MP(d ⊗ e ⊗ c)→ d ⊗ f for some
non-contextual c . Setting g := e ⊗ c we thus have a deterministic map MP(d ⊗ g)→ d ⊗ f .
Second step—if you can catalyze once, you can do so many times: we can get
deterministic simulations MP(d ⊗ (g⊗n))→ d ⊗ (f ⊗n) for any n so that the i-th copy of f uses
d and the i-th copy of g , but otherwise the copies of f are simulated similarly.



Concluding the proof

Cont.
Final step—things needed from d are compatible: as the underlying map is simplicial,
questions asked from d when simulating different copies of e are always compatible.
Considering big enough n, this means that the set of all possible behaviours in d needed for the
simulation forms a compatible subset of MP(d). Join all of these to a single measurement
protocol over d and simulate 1st copy of f by first measuring this single measurement of
MP(d) and then proceeding to the 1st copy of g . This results in a deterministic simulation
MP(d ′ ⊗ g)→ f , where d ′ has a single measurement (representing the whole MP over d) and
is thus noncontextual.

�



Non-locality

We think of the resource theory of non-locality as an n-partite version of that of contextuality:
an object is a model e :

⊗
i=1 Si over an n-partite scenario, and a simulation d → e is an n-tuple

of adaptive maps that, taken together, transform d to e.
In the deterministic case:

d

. . .
f1 fn

=
e

. . .

in the randomness-assisted case

d c

. . .

. . . . . .

f1 fn

=
e

. . .

where c is local. This captures the LOSR-paradigm.



No catalysts for non-locality and beyond

For a minor variant of the previous proof, an n-partite simulation d ⊗ e → d ⊗ f produces an
n-partite simulation e → f , proving the theorem for non-locality.

In fact, the proof shows more: if X is a class of models that (i) contains all non-contextual
models and (ii) is closed under ⊗, one can define X -assisted simulations d → e as deterministic
simulations MP(d ⊗ x)→ e where x ∈ X . Write d  X e for the existence of such a simulation.

Theorem
For any such X , d ⊗ e  X d ⊗ f if and only if e  X f

Thus we can’t use a PR box as a catalyst, even if we can freely use quantum correlations.



Questions...
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