Neither contextuality nor non-locality admits catalysts

Martti Karvonen

QCQMB 2021

Punchline

Let

- ▶ *d*, *e*, *f* range over various correlations (contextual or not)
- ▶ $d \otimes e$ denote having d and e independently side-by-side
- ▶ $d \rightsquigarrow e$ denote the existence of a transformation $d \rightarrow e$ in the resoure theory of contextuality

Theorem

If $d \otimes e \rightsquigarrow d \otimes f$, then $e \rightsquigarrow f$. Ditto for the resource theory of non-locality.

Contrast with entanglement, where catalysis is possible:

'Entanglement-assisted local manipulation of pure quantum states' Jonathan, Plenio, PRL 1999.

Overview

As the resource theory of contextuality we use that of

'A comonadic view of simulation and quantum resources' Abramsky, Barbosa, MK., Mansfield, LiCS 2019. giving a formalization of the the wirings and prior-to-input-classical communication paradigm studied in physics.

▶ The resource theory of non-locality: the n-partite version of the above

Proof idea: if you can catalyze once you can catalyze arbitrarily many times. For big enough n this implies that one needs only a compatible (and hence non-contextual) part of d.¹

¹or rather, a compatible subset of MP(d)

Formalising empirical data

A measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

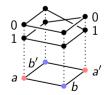
- > X_S a finite set of measurements
- Σ_S a simplicial complex on X_S faces are called the measurement contexts
- O_S = (O_x)_{x∈X_S} − for each x ∈ X a non-empty outcome set O_x. Joint outcomes over U ⊆ X_S denoted by E_S(U).

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on S:

- each e_σ ∈ Prob (E_S(U)) is a probability distribution over joint outcomes for σ.
- generalised no-signalling holds: for any $\sigma, \tau \in \Sigma_S$, if $\tau \subseteq \sigma$,

$$|e_\sigma|_ au=e_ au$$

А	В	(<mark>0</mark> , <mark>0</mark>)	(<mark>0</mark> , 1)	(1, <mark>0</mark>)	(1, 1)	
a_0	b_0	1/2	0	0	1/2	
a_0	b_1	$^{1/2}$	0	0	$^{1/2}$	
a_1	b_0	$^{1/2}$	0	0	$^{1/2}$	
a_1	b_1	0	$^{1}/_{2}$	$^{1}/_{2}$	0	
$X = \{a_0, a_1, b_0, b_1\}, \ O_x = \{0, 1\}$						
$\Sigma \ = \downarrow \ \{ \ \{a_0, b_0\}, \ \{a_0, b_1\}, \ \{a_1, b_0\}, \ \{a_1, b_1\} \ \}$						



Contextuality

An empirical model $e = \{e_{\sigma}\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is **non-contextual** if there is a distribution d on $\prod_{x \in X} O_x$ such that, for all $\sigma \in \Sigma$:

$$d|_{\sigma} = e_{\sigma}.$$

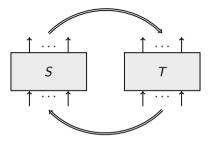
That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is **contextual**.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell's and Kochen–Spekker's theorems is that there are behaviours arising from quantum mechanics that are contextual.

Maps between scenarios



A deterministic map $S \rightarrow T$ proceeds as follows:

• map inputs of T (measurements) to inputs of S

▶ run S

▶ map outputs of S (measurement outcomes) to outputs of T

Same but formally

A deterministic map $(\pi, h) : S \to T$ is given by:

• A simplicial function $\pi : (X_T, \Sigma_T) \to (X_S, \Sigma_S)$.

For each
$$x \in X_S$$
, a function $h_x : O_{\pi(y)} \to O_x$.

Simpliciality of π means that contexts in Σ_T are mapped to contexts in Σ_S .

Simulations

Given d : T, e : S, a deterministic simulation $d \rightarrow e$ is a deterministic map $f : S \rightarrow T$ that transforms d to e.

For instance, the *PR*-box can be simulated from a liar's paradox on a triangle, by collapsing one edge to a point.

But what if we want to

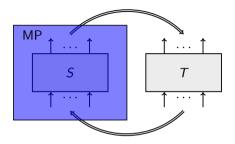
(i) let a measurement of T to depend on a measurement protocol of S?

(ii) use classical randomness?

Given a scenario $S = \langle X_S, \Sigma_S, O_S \rangle$ we build a new scenario MP(S), where:

- ▶ measurements are the (deterministic) measurement protocols on *S*. A measurement protocol on *S* is either empty or consists of a measurement in $x \in X_S$ and of a function from outcomes of *x* to measurement protocols on $S|_{lk_x}$
- outcomes are the joint outcomes observed during a run of the protocol
- measurement protocols are compatible if they can be combined consistently

Adaptive procedure



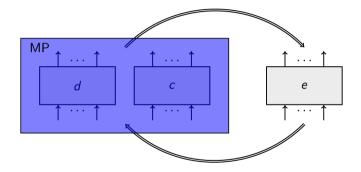
An adaptive map $S \rightarrow T$ proceeds as follows:

• map measurements of T to **measurement protocols** over S

▶ run S

• map outcomes of MP(S) to outputs of T

Adaptive procedure with classical randomness



Requirement: *c* is noncontextual.

Given empirical models e and d, a simulation of e by d is a deterministic simulation

 $\mathsf{MP}(d\otimes c) o e$

for some noncontextual model *c*.

The use of the noncontextual model c is to allow for classical randomness in the simulation. We denote the existence of a simulation of e by d as $d \rightsquigarrow e$, read "d simulates e". The convertibility relation \rightsquigarrow results in a resource theory of contextuality with nice properties:

- Expressive enough to capture less formally defined transformations in the literature (in the single-shot exact case)
- Mathematically precise (at least in principle)
- Contextual fraction is a monotone
- Contextuality is equivalent to insimulability from a trivial model. Variants for logical and strong contextuality.

No-catalysis

Theorem (No-catalysis)

If $d \otimes e \rightsquigarrow d \otimes f$ then $e \rightsquigarrow f$

Proof.

First step — reduce to the deterministic case:

If $d \otimes e \rightsquigarrow d \otimes f$, then there is a deterministic simulation $MP(d \otimes e \otimes c) \rightarrow d \otimes f$ for some non-contextual c. Setting $g := e \otimes c$ we thus have a deterministic map $MP(d \otimes g) \rightarrow d \otimes f$. **Second step—if you can catalyze once, you can do so many times**: we can get deterministic simulations $MP(d \otimes (g^{\otimes n})) \rightarrow d \otimes (f^{\otimes n})$ for any n so that the *i*-th copy of f uses d and the *i*-th copy of g, but otherwise the copies of f are simulated similarly.

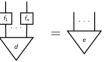
Concluding the proof

Cont.

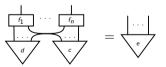
Final step—things needed from *d* **are compatible**: as the underlying map is simplicial, questions asked from *d* when simulating different copies of *e* are always compatible. Considering big enough *n*, this means that the set of all possible behaviours in *d* needed for the simulation forms a compatible subset of MP(*d*). Join all of these to a single measurement protocol over *d* and simulate 1st copy of *f* by first measuring this single measurement of MP(*d*) and then proceeding to the 1st copy of *g*. This results in a deterministic simulation MP(*d'* \otimes *g*) \rightarrow *f*, where *d'* has a single measurement (representing the whole MP over *d*) and is thus noncontextual.

Non-locality

We think of the resource theory of non-locality as an *n*-partite version of that of contextuality: an object is a model $e : \bigotimes_{i=1} S_i$ over an *n*-partite scenario, and a simulation $d \to e$ is an *n*-tuple of adaptive maps that, taken together, transform *d* to *e*. In the deterministic case:



in the randomness-assisted case



where c is local. This captures the LOSR-paradigm.

No catalysts for non-locality and beyond

For a minor variant of the previous proof, an *n*-partite simulation $d \otimes e \rightarrow d \otimes f$ produces an *n*-partite simulation $e \rightarrow f$, proving the theorem for non-locality.

In fact, the proof shows more: if \mathcal{X} is a class of models that (i) contains all non-contextual models and (ii) is closed under \otimes , one can define \mathcal{X} -assisted simulations $d \to e$ as deterministic simulations $MP(d \otimes x) \to e$ where $x \in \mathcal{X}$. Write $d \rightsquigarrow_{\mathcal{X}} e$ for the existence of such a simulation.

Theorem

For any such \mathcal{X} , $d \otimes e \rightsquigarrow_{\mathcal{X}} d \otimes f$ if and only if $e \rightsquigarrow_{\mathcal{X}} f$

Thus we can't use a PR box as a catalyst, even if we can freely use quantum correlations.

Questions...

?

MK, 'Neither contextuality nor non-locality admits catalysts" (2021), arXiv:2102.07637