
A hidden variable model 
for universal quantum computation 
with magic states 
on qubits

Robert Raussendorf, UBC Vancouver
Workshop QCQMB'21, Zoom, May 2021

Joint work with Michael Zurel and Cihan Okay, PRL 125 (2020)



What makes quantum computing work?

Entanglement
Superposition &
     interference Largeness of

Hilbert space

Contextuality

Wigner negativity



Summary of the result

We have constructed a hidden variable model with positive rep-

resentation for

• All quantum states

• Clifford unitary gates

• Pauli measurements

Those operations suffice for universal quantum computation.



Need for negativity?

Mind the assumptions:

• Above theorem requires a unique quasiprobability function for

each state, ours not.

• Above theorem considers all measurements, ours only Pauli

measurements; however, the latter suffice for universal QC.

[*] C. Ferrie, Rep. Prog. Phys. 74, 116001 (2011).
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Outline

1. A short history of the subject

• Our phenomenological triangle:

Wigner function
negativity

Quantum computation
with magic states

Contextuality

• The trouble with qubits

2. A hidden variable model for QM in finite dimensions

(a) Model and result

(b) Compatibility: PBR theorem, KS theorem

(c) Classical simulation of quantum computation



Quantum Computation with magic states

output

H Z

magic
states

 restricted gate set
unrestricted classical processing

• Non-universal restricted gate set: e.g. Clifford gates.

• Universality reached through injection of magic states.

+ As of now, leading scheme for fault-tolerant QC.

Computational power is shifted from gates to states



A question

output

H Z

magic
states

 restricted gate set
unrestricted classical processing

Which properties must the magic

states have to enable a speedup?

A: Wigner function negativity



[quantum] mechanics in phase space

classical

Probability denisty

quantum

Wigner function

[p,q]=i h
_

• The Wigner function is a quasi-probability distribution that can

represent each quantum state. It can take negative values.

• It is the closest quantum counterpart to the classical probability

distribution over phase space.



Results ... and a counterpoint

Theorem[1]−[3]: Quantum computation with magic states can

have a quantum speedup only if the Wigner function of the

initial magic states is negative.

Negativity in the Wigner function
is necessary

for quantum computation[1] - [3]

[1] Qudits in odd d: V. Veitch et al., New J. Phys. 14, 113011 (2012).

[2] Rebits: N. Delfosse et al., Phys. Rev. X 5, 021003 (2015).

[3] Qubits: R. Raussendorf et al., Phys. Rev. A 101, 012350 (2020).

Counterpoint: The above theorem hinges on the precise defi-
nition of the Wigner function. Quantum states and their update
under Pauli measurement can be represented positively.

[4] M. Zurel, C. Okay and T. Raussendorf, PRL 125, 260404 (2020).



Covariance of the qudit Wigner function

If and only if the local Hilbert space dimension is odd, then:

• The n-qudit Wigner function transforms covariantly under all
Clifford unitaries, WUρU†(v) = Wρ(LUv), ∀ρ.

D. Gross, PhD thesis, Imperial College London (2005).



Positivity preservation under Pauli measurement

If and only if the local Hilbert space dimension is odd, then:

• The n-qudit Wigner function preserves positivity under all
Pauli measurements.

deterministic outcome for all Pauli measurements,
probabilistic post-measurement state

Pauli measurement on a peaked Wigner function produces a ridge.



Theorem – proof idea

We will show that:
If Wρmagic ≥ 0 ⇒ efficiently classical simulation ⇒ no speedup.

initial sample Cli�ord update Pauli meas update

Simulation algorithm:

1. Wρmagic ≥ 0 is a probability distribution. −→ Sample from it!

Each sample is a point in phase space.

2. Update the phase space points under Clifford gates and Pauli

measurement.



Classical simulation in the presence of negativity

.. is hard
How hard?

• Theorem [1]. The cost O of classically simulating magic
state quantum computation scales as

O ∝

(
|Wρ|1

)2

ε2

where ε is the desired accuracy.

• Numerically [2] (as well as analytically upper-bounded),∣∣∣Wρ⊗n
∣∣∣
1
∝ eκn.

[1] H. Pashayan, J.J. Wallman, S.D. Bartlett, PRL 115, 070501 (2015).

[2] M. Heinrich and D. Gross, Quantum 3, 132 (2019).



The trouble with qubits

Wigner function can 
go negative

Marginals must be
non-negative

p

q

quantum optics:
Hilbert space dimension infinite

quantum computation:
Hilbert space dimension finite

Odd: all nice &
         safe

Even: monsters
           lurking

Mermin’s 
square 
and star



The trouble with qubits

Consider a Wigner function W such that for all states ρ

ρ =
∑

v

Wρ(v)Av.

Phase point operators {Av} span the space of density matrices.

• Trouble with covariance:

Theorem [*] If {Av} is an operator basis then W cannot be Clifford
covariant.

• Trouble with contextuality:

Theorem [**] A memory of O(n2) bits is required for simulating contex-
tuality on n-qubit systems.

Lesson: Base quasiprobability functions on over-complete sets {Av}.

[*] H. Zhu, Phys. Rev. Lett. 116, 040501 (2016).

[**] A. Karanjai et al., arXiv:1802.07744.



Resolution for qubits

Lesson: Base Wigner functions on over-complete sets {Av}.

multi qudit phase space multi qubit phase space

R. Raussendorf et al., Phys. Rev. A 101, 012350 (2020),

also see: W.M. Kirby and P.J. Love, Phys. Rev. Lett. 123, 200501 (2019).



Resolution for qubits

Theorem: Quantum computation with magic states can have a
quantum speedup only if the quasiprobability distribution W̃ρ of
the initial magic state ρ is negative.∗

Price to pay:

• Quasiprobability function W̃ is not unique.

• Phase space way more complicated than for qudits and rebits.

*: Btw, that is not the result of this talk.

R. Raussendorf et al., Phys. Rev. A 101, 012350 (2020).



Earlier results ... and a counterpoint

Theorem[1]−[3]: Quantum computation with magic states can

have a quantum speedup only if the Wigner function of the

initial magic states is negative.

Negativity in the Wigner function
is necessary

for quantum computation[1] - [3]

[1] Qudits in odd d: V. Veitch et al., New J. Phys. 14, 113011 (2012).

[2] Rebits: N. Delfosse et al., Phys. Rev. X 5, 021003 (2015).

[3] Qubits: R. Raussendorf et al., Phys. Rev. A 101, 012350 (2020).

Counterpoint: The above theorem hinges on the precise defi-
nition of the Wigner function. Quantum states and their update
under measurement can be represented positively.

[4] M. Zurel, C. Okay and T. Raussendorf, PRL 125, 260404 (2020).



A hidden variable model

for multi-qubit states,

Clifford gates and Pauli measurements

Model and result

•
Compatibility with the PBR and KS theorems

•
What does this mean for classical simulation?



The HVM state space

Question: For any number n of qubits, what is the largest state space Λn

that is closed under Pauli measurement?

Tinkering with this question brings up the following construct:

Definition: For any n ∈ N, denote by Sn the set of pure n-qubit

stabilizer states. Then, the polytope Λn is the set of operators

O ∈ Op(C2n) with the properties

1. O is Hermitian.

2. Tr(O) = 1.

3. Tr(O |σ〉〈σ|) ≥ 0, for all |σ〉 ∈ Sn.

 density
matrices

Λ

• We can describe the state polytope Λn by its extremal vertices

{Aα, α ∈ Vn}. Vn is the generalized HVM phase space.

• Vn is finite for all n.



Everything is positive

Theorem 1. Vn has the following properties.

(i) Positive representation. All quantum states ρ are represented by a prob-
ability function p : Vn → R≥0,

ρ =
∑
α∈Vn

pρ(α)Aα.

(ii) Positivity preservation. Denote by Πa,s the projection corresponding to
the measurement of the Pauli observable Ta with outcome s. Then,

Πa,sAαΠa,s =
∑
β∈Vn

qα,a(β, s)Aβ,

where the qa,α are probability functions.

(iii) Born rule. Denote by Pρ,a(s) the probability of obtaining outcome s in
the measurement of the Pauli observable Ta on the state ρ. Then,

Pρ,a(s) = Tr(Πa,sρ) =
∑
α∈Vn

pρ(α)Qa(s|α),

where all Qa are conditional probability functions.



Proof of Theorem 1 – Part (ii)

Statement:

(ii) Positivity preservation. Denote by Πa,s the projection corresponding to
the measurement of the Pauli observable Ta with outcome s. Then,

Πa,sAαΠa,s =
∑
β∈Vn

qα,a(β, s)Aβ, (1)

where the qa,α are probability functions.

Proof: Recall from the definition of Λn that Tr (Aα |σ〉〈σ|) ≥ 0,
∀|σ〉 ∈ Sn. This property is inherited under Pauli projection.

Tr (Πa,sAαΠa,s |σ〉〈σ|) = Tr (AαΠa,s |σ〉〈σ|Πa,s)
= Tr (Aα(Πa,s |σ〉〈σ|Πa,s))
= (c ≥ 0) ·Tr

(
Aα|σ′〉〈σ′|

)
,

= ≥ 0.

Main case: Tr(Πa,sAα) > 0.
Πa,sAαΠa,s

Tr(Πa,sAα) ∈ Λn & Eq. (1) holds.

Other case: Tr(Πa,sAα) = 0. Then, Tr (Πa,sAαΠa,s |σ〉〈σ|) = 0 for all |σ〉 ∈ Sn, hence

Πa,sAαΠa,s = 0, and Eq. (1) holds with qα,a ≡ 0. �



Clifford gates are also positively represented

Lemma. If X ∈ Λn then UXU† ∈ Λn, for all Clifford unitaries U .

Proof. For any X ∈ Λn, U Clifford and all stabilizer states |σ〉 it

holds that

Tr(UXU†|σ〉〈σ|) = Tr(X U†|σ〉〈σ|U)
= Tr(X |σ′〉〈σ′|)
≥ 0,

Hence, UXU† ∈ Λn. �

Consequence: UAαU
† =

∑
β∈Vn

qα,U(β)Aβ, with all qα,U(β) ≥ 0.

[In fact, we have Clifford covariance: UAαU † = AUα.]



Application to QC with magic states

Theorem 2. Universal quantum computation by Clifford uni-
taries and Pauli measurements on magic states can be described
by iterated sampling from probability functions.

initial sample Cli�ord update Pauli meas update

This is about universal QC, hence all quantum

mechanics in finite Hilbert space dimension.

Both the states and the operations are positively represented.

We do not claim to efficiently simu-

late universal quantum computation.



If not negativity of 
quasiprobability functions,
then what makes 
classical simulation by sampling
hard?



Consistency

and consequences



Consistency with Kochen-Specker

Consider arbitrary sequences of Pauli measurements on the Mer-

min square ...

Our HVM simulation will never run into a contradiction.

The value assignments in our HVM are probabilistic. Hence, the

Kochen-Specker theorem does not apply.



Consistency with PBR

The Pusey-Barrett-Rudolph theorem states that

Theorem. Any model in which a quantum state represents mere

information about an underlying physical state of the system

[HVM], and in which systems that are prepared independently

have independent physical states, must make predictions which

contradict those of quantum theory.

The condition in italics is called “preparation independence”.

Our HVM does not satisfy it,

Aα ⊗Aβ 6= Aγ.

Thus no contradiction with PBR.



What can be efficiently classically simulated?

For a start ..

Everything that can be efficiently simulated with the stabilizer

formalism can be efficiently simulated with the present method.

Why is this so?—This already holds for the smaller model

multi qudit phase space multi qubit phase space

and this model is contained as a special case in the present one.

And so the real question is: How much more can we simulate
efficiently?



Conclusion

• We have described a hidden variable model for universal

quantum computation where all states and the necessary op-

erations are represented by classical probabilities.

• No negativity is required anywhere.

• The classical simulation algorithm is not necessarily efficient.

PRL 125, 260404 (2020).



Outlook

From the perspective of quantum computation, the interesting
objects are the extremal vertices Aα of the state polytope Λn.

Λn
??

Can those vertices be fully classified?

Where and how is quantumness hiding in them?

PRL 125, 260404 (2020).



Whiteboard



Approaching junctions

Are non-unique quasiprobability functions OK?



Approaching junctions

Should preparation independence be required?


