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Linear constraint systems

A linear constraint system (LCS) is specified by a linear equation

Mx = b over the ring Zd of integers mod d .

An operator solution consists of unitary matrices Ai ∈ Um that

satisfy three conditions:

(1) d-torsion, (2) commutativity and (3) linear constraint.



Today’s talk

Our goal is to introduce a generalized cohomology theory that can

be used to classify operator solutions of LCSs.

1. Constructing a space of contexts

2. Interpreting operator solutions as maps

3. Stabilization and generalized cohomology

4. Mermin class

Satisfiability gap: For d odd are there LCSs which admit an

operator solution over Um for m ≥ 2 but not over U1?



Contexts in unitary groups

For us a context is a set

C = {A1,A2, · · · ,An| Ai ∈ Um}

such that (1) d-torsion: Ad
i = I and (2) commuting: AiAj = AjAi .

We will think of contexts as group homomorphisms

C : Zn
d → Um.



Hypergraph formulation

A LCS Mx = b can be described by a pair (H, τ) consisting of

1. a set of vertices V encoding the variables x ,

2. a set of edges E encoding the non-zero rows of M,

3. an incidence weight εe(v) encoding the matrix M,

4. a function τ : E → Zd encoding the column b.
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Operator solutions and contextuality

An operator solution is a function T : V → Um such that for each

e ∈ E the set {T (v)| v ∈ e} is a context and

(3) linear constraint:
∏
v∈e

T (v)εe(v) = ωτ(e)I (ω = e2πi/d)

A LCS is contextual if it admits an operator solution over Um for

m ≥ 2 but does not admit an operator (scalar) solution over U1.

Ex. Mermin square and star LCSs are contextual for d = 2.
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Topological realization

A topological realization for H is a connected 2-dimensional cell

complex XH such that

1. 1-cells are labeled by V ,

2. 2-cells are labeled by E ,

3. attaching maps encode linear constraints (up to a scalar).
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Homotopy and contextuality

The function τ : E → Zd corresponds to [τ ] ∈ H2(XH,Zd).

1. (H, τ) admits a scalar solution if and only if [τ ] = 0 for any

topological realization XH.

2. If (H, τ) admits an operator solution but no scalar solutions

then any topological realization XH has a non-trivial

fundamental group1.

Generalizes Arkhipov’s graph-theoretic characterization.

Can we interpret operator solutions in a topological way?

1O. and Raussendorf. Quantum 4 (2020)



Space of contexts

Let B(d ,m) denote the cell complex whose set of n-cells is given

by n-tuples of contexts

{C : Zn
d → Um| group homomorphism}
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Ex. B(d , 1) = Bµd where µd = {ωk | 0 ≤ k ≤ d − 1}.

2Adem and Gómez. Algebr. Geom. Topol. 15 (2015)



Classifying space for contextuality

Let B̄(d ,m) denote the quotient space of B(d ,m) obtained by

(A1, · · · ,An) ∼ (α1A1, · · · , αnAn) αi ∈ µd .

An operator solution T : V → Um can be turned into a map

fT : XH → B̄(d ,m).

Homotopy classes of maps induce an equivalence relation

T ∼ T ′ ⇔ fT ' fT ′ .



Example - homotopic operator solutions
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fT and fT ′ are homotopic as maps S1 × S1 → B̄(2, 23).



Stabilization

It is hard to study homotopy classes of maps XH → B̄(d ,m) but

there is a (two step) procedure to resolve this difficulty:

Step 1

U1 → U2 → · · · → Um

A 7→
(

A 0

0 1

)
−−−−−−−→ Um+1 → · · · → U∞

On the level of spaces we have

B(d , 1)→ B(d , 2)→ · · · → B(d ,m)→ B(d ,m+1)→ · · · → B(d ,∞)

To study B(d ,∞) we need to pass to projectors.



Measurements associated to contexts

C = (A1,A2, · · · ,An) specifies a projective measurement

Π : Zn
d → Proj(Cm)

where Π(s1 · · · sn) is the projector onto V
(1)
ωs1 ∩ V

(2)
ωs2 ∩ · · · ∩ V

(n)
ωsn

where V
(i)
ωs is the eigenspace of Ai corresponding to ωs .

Stabilization gives a projective measurement

Π : Zn
d → Proj(C∞)

where each Π(s1 · · · sn) projects onto a finite dimensional subspace.



Projections form a Γ-space

After stabilization, passing to projectors and imposing partial sum

Π1 ⊥ Π2 ⇒ Π1 ⊕ Π2

we obtain a Γ-space

B(d ,∞) = {C : Zn
d → U∞}≥n

kµd = {Π : Zn
d → Proj(C∞)}n≥0

Every Γ-space3 gives a generalized cohomology theory.

3Segal. Topology 13 (1974)



Stabilization of B̄(d ,m)

The generalized cohomology theory we will use to label operator

solutions of LCSs is obtained from kµd .

Step 2

B(d ,m) kµd

B̄(d ,m) C (d ,m)

C (d ,m) is a quotient of kµd in a suitable category of generalized

cohomology theories.



C (d ,m)-cohomology

(4) For a connected 2-dimensional cell complex

C (d ,m)(X ) ∼= H1(X ,Z(d ,m))⊕ H2(X ,Z(d ,m))

where (d ,m) denotes the greatest common divisor.

For LCSs the second cohomology class coincides with [τ ]:

(H, τ,T ) fT :XH→ B̄(d ,m) (ϕ1;ϕ2)∈C (d ,m)(XH)

4O. arXiv:2006.07542 (2020)



Mermin class

If d and m are coprime then every (H, τ) that admits an operator

solution over Um admits a scalar solution:

(d ,m)=1⇒ C (d ,m)(XH)=0⇒ [τ ]=0

Operator solution for the Mermin square LCS defines a class Mn

C (2, 2n)(S1 × S1) = H1(S1 × S1,Z2)⊕ H2(S1 × S1,Z2)

= (Z2)2 ⊕ Z2.

It turns out that the Mermin class Mn = (0, 0; 1).



Interpretation of stable classes

For m = dn we have

C (d , dn)(X ) = H1(X ,Zd)⊕ H2(X ,Zd).

For d odd when does a stable class come from a LCS?

Real version (C R) captures information about SPT phases

Z2
〈Gu–Wen〉

CR(2, 2n)(S2) Z2
〈Mn〉



Thank you very much for your attention!


