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Linear constraint systems

A linear constraint system (LCS) is specified by a linear equation

Mx = b over the ring Z4 of integers mod d.

An operator solution consists of unitary matrices A; € U, that
satisfy three conditions:

(1) d-torsion, (2) commutativity and (3) linear constraint.



Today's talk

Our goal is to introduce a generalized cohomology theory that can

be used to classify operator solutions of LCSs.

1. Constructing a space of contexts
2. Interpreting operator solutions as maps
3. Stabilization and generalized cohomology

4. Mermin class

Satisfiability gap: For d odd are there LCSs which admit an

operator solution over U, for m > 2 but not over U7



Contexts in unitary groups

For us a context is a set
C: {A17A2>"' 7An‘ Af S Um}

such that (1) d-torsion: AY =T and (2) commuting: A;A; = AjA;.

We will think of contexts as group homomorphisms

C:Zyg— Un.



Hypergraph formulation

A LCS Mx = b can be described by a pair (£, 7) consisting of
1. a set of vertices V encoding the variables x,
2. a set of edges E encoding the non-zero rows of M,

3. an incidence weight e.(v) encoding the matrix M,

o

. a function 7 : E — Z4 encoding the column b.
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Operator solutions and contextuality

An operator solution is a function T : V — Up, such that for each

e € E theset {T(v)| v € e} is a context and

(3) linear constraint: H T(v)eM) =1 (= &2m/9)

vEe
A LCS is contextual if it admits an operator solution over U, for

m > 2 but does not admit an operator (scalar) solution over Us.

Ex. Mermin square and star LCSs are contextual for d = 2.
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Topological realization

A topological realization for §) is a connected 2-dimensional cell
complex Xy such that

1. 1-cells are labeled by V,

2. 2-cells are labeled by E,

3. attaching maps encode linear constraints (up to a scalar).
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Homotopy and contextuality

The function 7 : E — Zg4 corresponds to [7] € H?(Xg, Zqg).

1. ($,7) admits a scalar solution if and only if [7] = 0 for any
topological realization Xg.

2. If ($,7) admits an operator solution but no scalar solutions
then any topological realization Xg has a non-trivial
fundamental group?.

Generalizes Arkhipov's graph-theoretic characterization.

Can we interpret operator solutions in a topological way?

0. and Raussendorf. Quantum 4 (2020)



Space of contexts

Let B(d, m) denote the cell complex whose set of n-cells is given

by n-tuples of contexts
{C:Z} — Upn| group homomorphism}
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Ex. B(d,1) = Bug where pg = {w*| 0 < k <d —1}.

2Adem and Gémez. Algebr. Geom. Topol. 15 (2015)



Classifying space for contextuality
Let B(d, m) denote the quotient space of B(d, m) obtained by

(Ala"' aAn)N(alAla"' >anAn) Qj € lq-

An operator solution T : V — U, can be turned into a map

fr: Xg — B(d, m).

Homotopy classes of maps induce an equivalence relation

T~T & fr~fr.



Example - homotopic operator solutions
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fr and fr/ are homotopic as maps S* x St — B(2,23).



Stabilization

It is hard to study homotopy classes of maps Xy — B(d, m) but

there is a (two step) procedure to resolve this difficulty:

AH(A o)
0 1

Uh—-U— - = Uy——>Upt1 = = Uso

Step 1

On the level of spaces we have
B(d,1) — B(d,2) —» --- — B(d,m) — B(d, m+1) — --- — B(d, o0)

To study B(d, o) we need to pass to projectors.



Measurements associated to contexts

C = (A1, Az, -, A,) specifies a projective measurement
M:Zg — Proj(C™)

where M(sy - - - s,) is the projector onto Vgl) N Vu%) A-..avi

wsn

where Vu()i) is the eigenspace of A; corresponding to w®.

Stabilization gives a projective measurement
M:Z; — Proj(C*>)

where each l(s; - - - s,) projects onto a finite dimensional subspace.



Projections form a -space

After stabilization, passing to projectors and imposing partial sum
|_|1 1 |_|2 = |_|1 ) |_|2

we obtain a -space

B(d,00) ={C:Z) = Us}>n

!

kpa = {1 : Zg — Proj(C>)}n>0

Every -space3 gives a generalized cohomology theory.

3Segal. Topology 13 (1974)



Stabilization of B(d, m)

The generalized cohomology theory we will use to label operator

solutions of LCSs is obtained from kjiq4.

Step 2

B(d, m) ~~ns kg

| J

B(d, m) ~~s C(d,m)

C(d, m) is a quotient of kju4 in a suitable category of generalized

cohomology theories.



C(d, m)-cohomology

(*) For a connected 2-dimensional cell complex
C(dv m)(X) = Hl(Xaz(d,m)) ©® Hz(X7Z(d,m))

where (d, m) denotes the greatest common divisor.

For LCSs the second cohomology class coincides with [7]:

(5,7, T) ~~ fr:Xg— B(d,m) ~~ (01, 02)€ C(d, m)(Xg)

*0. arXiv:2006.07542 (2020)



Mermin class

If d and m are coprime then every ($),7) that admits an operator

solution over U,, admits a scalar solution:

(d,m)=1= C(d,m)(Xy)=0= [1]=0

Operator solution for the Mermin square LCS defines a class M,
C(2,2™)(S* x S') = HY(S x S*,Zy) @ H?(S* x S, Zy)
= (Z2)2 ® Zo.

It turns out that the Mermin class M, = (0, 0; 1).



Interpretation of stable classes

For m = d" we have
C(d,d")(X) = HY(X, Zg) ® H*(X,Zg).

For d odd when does a stable class come from a LCS?

Real version (C ~~ R) captures information about SPT phases

Zy —— g(2,2")(S%) — Z
<Gu—Wen> <Mn>



Thank you very much for your attention!



