

Classical Causal Models cannot faithfully explain Bell nonlocality or Kochen-Specker contextuality in arbitrary scenarios

Jason C. Pearl (joint work with Eric G. Cavalcanti)

Griffith University

Gold Coast, Queensland, Australia

QCQMB'21 workshop

18 May 2021

J. Pearl, *Causality: Models, Reasoning and Inference* (Cambridge University Press, 2000).

2

Directed Acyclic Graphs (DAG)

Causal structure \longrightarrow Directed Acyclic graph (DAG)

Nodes: Random variablesArrows: Causal linksParents of X₄: Set of direct causes of X₄

 $Pa(X_4) = \{X_1, X_3, X_5\}$

Descendents of X_3: Set of effects of X_3

 $De(X_3) = \{X_2, X_4\}$

Non-Descendents of X_3: Set of non-effects of X_3

 $Nd(X_3) = \{X_1, X_5\}$

Causal Markov Condition

 $(X \perp \operatorname{Nd}(X) \mid \operatorname{Pa}(X)) \longrightarrow P(X_1, \dots, X_n) = \prod_j P(X_j | \operatorname{Pa}(X_j))$

The *d*-separation condition for a DAG

Sets X and Y are *d-separated* given a set Z iff Z blocks all paths between X and Y

 $(X \perp Y | Z)_d$

Chain or Fork

Collider (inverted fork)

Path is blocked if $B \in Z$

Path is blocked if $B \notin Z$ and $De(B) \cap Z = \{\}$

d-separation examples

d-separation implies Conditional Independence (CI)

If a DAG G satisfies a particular d-separation condition, any probability distribution P compatible with G satisfies the associated CI.

Sound: For all *P* compatible with DAG *G*

 $(X \perp Y | Z)_d \Rightarrow (X \perp Y | Z)$

Complete: If all *P* compatible with *G* satisfy $(X \perp Y | Z)$, then

 $(X \perp Y | Z)_d$

Semi-Graphoid Axioms

Symmetry $(X \perp Y \mid Z) \Leftrightarrow (Y \perp X \mid Z)$

Decomposition $(X \perp YW \mid Z) \Rightarrow (X \perp Y \mid Z)$

Weak union $(X \perp YW \mid Z) \Rightarrow (X \perp Y \mid ZW)$

Contraction

 $(X \perp Y \mid Z) \And (X \perp W \mid ZY) \Rightarrow (X \perp YW \mid Z)$

Causal framework for Bell & KS scenarios

Set of measurements: $\mathcal{M} = \{m_1, \dots, m_k\}$ Set of measurement outcomes: $\mathcal{O}_m = \mathcal{O} \ \forall m$

Measurement contexts: $c \subseteq \mathcal{M}$ IFF $c \in \mathcal{C}$ i.e. m_1, m_2 compatible $\leftrightarrow \{m_1, m_2\} \in \mathcal{C}$

Bell scenario:
$$\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2 \cup ... \cup \mathcal{M}_n$$

 $\mathcal{M}_i \cap \mathcal{M}_j = \{\} \quad \forall i \neq j$
 $x_1 \in \mathcal{M}_1, \ x_2 \in \mathcal{M}_2, ..., x_n \in \mathcal{M}_n$

Measurement notation

Measurement settings: $X = \{X_1, X_2, ..., X_n\}$

e.g.
$$\{X_1 = m_1, ..., X_n = m_n\} \in \mathcal{C}$$

Measurement outcomes: $A = \{A_1, A_2, ..., A_n\}$

Measurement-outcome pair: (X_i, A_i) for all $i \in \mathcal{I} = \{1, 2, ..., n\}$

Index subset $\ \gamma \subseteq \mathcal{I}$ $A_\gamma \subseteq A ext{ and } X_\gamma \subseteq X$

 $oldsymbol{A}_{egin{array}{ccc} \gamma \end{array}} = oldsymbol{A} \setminus oldsymbol{A}_{egin{array}{ccc} \gamma \end{array}} = oldsymbol{X} \setminus oldsymbol{A}_{egin{array}{ccc} \gamma \end{array}} = oldsymbol{X} \setminus oldsymbol{X}_{egin{array}{ccc} \gamma \end{array}} = oldsymbol{X} \cap oldsymbol{X}_{egin{array}{ccc} \gamma \end{array}} = oldsymbol{X} \cap oldsymbol{X}_{egin{array}{ccc} \gamma \end{array} = oldsymbol{X} \cap oldsymbol{X}_{egin{array}{ccc} \gamma \end{array}} = oldsymbol{X} \cap oldsymbol{X} \cap oldsymbol{X}$

Classical Causal Model

A (classical) causal model Γ for a phenomenon \mathcal{P} consists of,

 $\exists \Xi$, DAG *G* on {**A**, **X**, Ξ } and *P* compatible with *G* s.t.

$$\mathcal{P}(\mathbf{A}\mathbf{X}) = \sum_{\Xi} P(\mathbf{A}\mathbf{X}\Xi)$$

No Disturbance

A phenomenon satisfies no-disturbance iff

(i)
$$\mathcal{P}(A_{\gamma}|X) = \mathcal{P}(A_{\gamma}|X_{\gamma}) \quad \forall \{A_i, X_i\}, \ \gamma \subseteq \mathcal{I} \quad \& i \in \gamma_i$$

A subset of outcomes depends only on the associated subset of settings.

(ii)
$$\mathcal{P}(A_i|X_i = m) = \mathcal{P}(A_j|X_j = m) \forall i, j$$

Marginals for the same measurement are independent of the index.

No-disturbance for a scenario with 3 measurements

Three constraints of the form: $\mathcal{P}(A_1|X_1X_2X_3) = \mathcal{P}(A_1|X_1)$

Three constraints of the form: $\mathcal{P}(A_1A_2|X_1X_2X_3) = \mathcal{P}(A_1A_2|X_1X_2)$

Causal model notation: $(A_{\gamma} \perp X_{\setminus \gamma} \mid X_{\gamma})$

Factorisability

A causal model for a phenomenon is factorisable IFF

 $\mathcal{P}(\boldsymbol{A}|\boldsymbol{X}) = \sum_{\boldsymbol{\Lambda}} P(\boldsymbol{\Lambda}) \prod_{i} P(A_{i}|\boldsymbol{\Lambda}X_{i})$

For Kochen-Specker scenarios

$$P(A_i|\mathbf{\Lambda}X_i=m) = P(A_j|\mathbf{\Lambda}X_j=m)$$

A causal model for a Bell scenario is **Bell-local** IFF it is factorisable.

A causal model for a contextuality scenario satisfies *KS-noncontextuality* IFF it satisfies measurement noncontextuality, outcome determinism and freedom of choice.

Fine-Abramsky-Brandenburger Theorem:

A phenomenon satisfies KS-noncontextuality IFF it has a factorisable model.

Faithfulness (no fine-tuning)

A causal model Γ is faithful relative to a phenomenon \mathcal{P} IFF

1. All Cl's $(C \perp D | E)$ in \mathcal{P} correspond to $(C \perp D | E)_d$ in G of Γ .

i.e. if \mathcal{P} satisfies $(C \perp D | E)$, then any faithful DAG satisfies $(C \perp D | E)_d$

2. Operational symmetries of \mathcal{P} are reflected by the model, rather than holding only for special values of the model parameters.

$$\mathcal{P}(A_i|X_i = m) = \mathcal{P}(A_j|X_j = m) \longrightarrow P(A_i|\mathbf{\Lambda}X_i = m) = P(A_j|\mathbf{\Lambda}X_j = m)$$

Results

Theorem 1: Every phenomenon satisfying no-disturbance in an arbitrary contextuality scenario that has a faithful causal model is factorisable.

Corollary 1: No fine-tuning and no-disturbance (no-signalling) imply KS noncontextuality (Bell locality) in arbitrary scenarios.

Corollary 2: Every classical causal model that reproduces the violation of a Bell-KS inequality for a no-disturbance phenomenon in an arbitrary Bell-KS scenario requires fine-tuning.

Outline of the Proof

From conditional probability, any phenomenon can be written as

$$\mathcal{P}(\boldsymbol{A} \mid \boldsymbol{X}) = \sum_{\boldsymbol{\Xi}} P(\boldsymbol{A} \mid \boldsymbol{X}\boldsymbol{\Xi}) P(\boldsymbol{\Xi} \mid \boldsymbol{X})$$

No-disturbance + NFT ->> additional constraints on the model

These constraints lead to factorisability of the model.

Graphical shortcut notation

--a(B)o----a(C)o----a(D)

A chained graph \mathcal{V}_c .

- A, B, C, D represent sets of vertices.
- Connections indicated represent possible connections between elements in A, B, C, D.
- Dashed connections represent the possibility of no causal connection.

$(A \perp C \mid B)_d \implies (A \perp CD \mid B)_d$, $(A \perp D \mid BC)_d$

Proof

lemma 1

 $(A \perp C \mid B)_d$ implies that **B** blocks all paths between **A** and **C**. So **B** blocks all paths from **A** to **D**. Thus **B** blocks all paths between **A** and **CD**. From the weak union axiom,

$$(A \perp CD \mid B)_d \longrightarrow (A \perp D \mid BC)_d$$

Proof

- DAG structure for a no-disturbance phenomenon.
- Arbitrary number of parties or measurements per context.
- Latent variables as common causes between observables.

$$(m{A}_\gamma \perp m{X}_{ackslash \gamma} \mid m{X}_\gamma)_d$$
 — No direct or common cause between $\{A_i, m{X}_{ackslash i}\}$

Any causal connection remains between

 $\{A_i, X_i\}, \{A_i, \boldsymbol{A}_{\setminus i}\}, \{X_i, \boldsymbol{X}_{\setminus i}\}$

All members of $A = \{A_1, \dots, A_n\}$ and $X = \{X_1, \dots, X_n\}$ are grouped into subsets **B**, **C**, **Y**, **Z**

 $B \subseteq A$ have no causal connection to X.

 $C \subseteq A$ have some causal connection to X.

Dashed nodes represent the possibility of an empty set.

i.e. $B = \{\} \implies C = A, Y = \{\}$ and Z = X. All pairs $\{A_i, X_i\}$ have some causal link. 19

From no-disturbance + NFT, $(\boldsymbol{B} \perp \boldsymbol{Z} \mid \boldsymbol{Y})_d$

Any path between **B** and **Z** must pass through one element of **C**.

Since **C** is not in **Y**, it must act as a collider. Direct links from **C** to **B** would therefore violate $(\mathbf{B} \perp \mathbf{Z} \mid \mathbf{Y})_d$.

Elimination of direct links from C to B.

Y cannot act as a middle node between B and Z.

 $(\boldsymbol{B} \perp \boldsymbol{Z} \mid \boldsymbol{Y})_d$ implies $(\boldsymbol{B} \perp \boldsymbol{Z})_d$

B and **Z** are *d*-separated given any non-collider $\Rightarrow (B \perp Z \mid \Lambda)_d$

No-disturbance + NFT \implies $(C \perp Y \mid Z)_d \implies$ $(Y \perp C \mid Z)_d$

Lemma 1: $(Y \perp C \mid Z)_d \implies (Y \perp CB\Lambda \mid Z)_d$

Weak union: $(Y \perp CB \mid Z\Lambda)_d$

Symmetry and BC = A:

$$(\boldsymbol{A} \perp \boldsymbol{Y} \mid \boldsymbol{Z} \boldsymbol{\Lambda})_d$$

Consider the pair $\{C_i, C_j\} \in \mathbf{C}$

 $(A_{\gamma} \perp X_{\setminus \gamma} \mid X_{\gamma})_d + \text{decomposition} \implies (C_j \perp Z_i \mid Z_j)_d$

For a path $(Z_i - C_i - C_j)$ to be blocked by Z_i , C_i must be a collider.

This eliminates a direct link from C_i to C_j

Similarly, for
$$(Z_j - C_j - C_i)$$
 and $(C_i \perp Z_j \mid Z_i)_d$

Direct links from C_i to C_i are eliminated.

No pair $\{C_i, C_j\} \in \mathbf{C}$ can have a direct causal link.

Consider paths between C_i and C_{i} that go through Z_i

 $(A_{\gamma} \perp X_{\setminus \gamma} \mid X_{\gamma})_d$ + decomposition $\Rightarrow (C_i \perp Z_{\setminus i}Y \mid Z_i)_d$

 Z_i cannot be a collider between C_i and $Z_{i}Y$

 Z_i must be the middle node of a chain or a fork

 Z_i blocks all paths between C_i and C_{i} through Z_i

Consider paths between C_i and $C_{\setminus i}$ that go through $B\Lambda$

 $B\Lambda$ acts as the middle node of a chain or fork

Thus $B\Lambda$ blocks all paths through $B\Lambda$

No-disturbance + NFT
$$\implies (C_i \perp C_{\setminus i} \mid ZB\Lambda)_d$$

$$(C_i \perp Z_{\setminus i} \mid Z_i)_d \implies (C_i \perp Z_{\setminus i} \mid Z_i \Lambda)_d$$

(a) Direct link from C_i to Z_i with or without a common cause (b) Excludes a direct link from C_i to Z_i No-disturbance + NFT $\implies (B \perp Z \mid Y)_d$ and $(C_{i} \perp Z_i \mid Z_{i})_d$

 C_i and any member of B or C_{i} cannot share a common cause

For graphs of this type, there are no paths of type $\Lambda - C_i - Z_i$ Consider paths of type $\Lambda - C_i - Z_i$

 C_i must always act as a collider, where Z_i is not a descendent.

Paths of this type are blocked by the empty set.

Every path between Λ and Z includes a subpath of this form in (a) or (b).

$$(\mathbf{\Lambda} \perp \mathbf{X})_d$$

(b)

The derived *d*-separation conditions imply the corresponding conditional independence (CI) relations

The joint distribution can be written as

 $\mathcal{P}(\boldsymbol{A} \mid \boldsymbol{X}) = \sum_{\boldsymbol{\Lambda} \boldsymbol{\Omega}} P(\boldsymbol{A} \boldsymbol{\Omega} \mid \boldsymbol{X} \boldsymbol{\Lambda}) P(\boldsymbol{\Lambda} \mid \boldsymbol{X})$

Summing over Ω , using (1) and writing X = YZ

$$\mathcal{P}(\boldsymbol{A} \mid \boldsymbol{X}) = \sum_{\boldsymbol{\Lambda}} P(\boldsymbol{A} \mid \boldsymbol{Y}\boldsymbol{Z}\boldsymbol{\Lambda}) P(\boldsymbol{\Lambda})$$

From A = BC and using (2) and (3)

$$\mathcal{P}(\boldsymbol{A} \mid \boldsymbol{X}) = \sum_{\boldsymbol{\Lambda}} P(\boldsymbol{C} \mid \boldsymbol{Z} \boldsymbol{B} \boldsymbol{\Lambda}) P(\boldsymbol{B} \mid \boldsymbol{\Lambda}) P(\boldsymbol{\Lambda})$$

 $\begin{array}{l} \textbf{Derived Cl relations} \\ (\Lambda \perp X) & (1) \\ (B \perp Z \mid \Lambda) & (2) \\ (A \perp Y \mid Z\Lambda) & (3) \\ (C_i \perp C_{\setminus i} \mid ZB\Lambda) & (4) \\ (C_i \perp Z_{\setminus i} \mid Z_i\Lambda) & (5) \end{array}$

No variables outside **B** can have a direct causal link to **B**

Let Λ determine B

 $P(C \mid ZB\Lambda) = P(C \mid Z\Lambda)$

$$P(\boldsymbol{C} \mid \boldsymbol{Z}\boldsymbol{\Lambda}) = \prod_{j} P(C_{j} \mid \boldsymbol{C} \setminus \{C_{1}, C_{2}, \dots, C_{j}\}\boldsymbol{Z}\boldsymbol{\Lambda})$$

From (4) and (5) then, and similarly for $P(\boldsymbol{B}|\boldsymbol{\Lambda})$

$$P(\boldsymbol{C} \mid \boldsymbol{Z}\boldsymbol{\Lambda}) = \prod_{j} P(C_{j} \mid Z_{j}\boldsymbol{\Lambda})$$
$$P(\boldsymbol{B} \mid \boldsymbol{\Lambda}) = \prod_{k} P(B_{k} \mid \boldsymbol{\Lambda})$$
$$\mathcal{P}(\boldsymbol{A} \mid \boldsymbol{X}) = \sum_{\boldsymbol{\Lambda}} P(\boldsymbol{\Lambda}) \prod_{j} P(C_{j} \mid Z_{j}\boldsymbol{\Lambda}) \prod_{k} P(B_{k} \mid \boldsymbol{\Lambda})$$

 $\begin{array}{l} \textbf{Derived Cl relations} \\ (\Lambda \perp X) & (1) \\ (B \perp Z \mid \Lambda) & (2) \\ (A \perp Y \mid Z\Lambda) & (3) \\ (C_i \perp C_{\setminus i} \mid ZB\Lambda) & (4) \\ (C_i \perp Z_{\setminus i} \mid Z_i\Lambda) & (5) \end{array}$

This completes the proof for Bell scenarios.

Since a no-disturbance phenomenon satisfies the operational symmetry,

$$\mathcal{P}(A_i|X_i = m) = \mathcal{P}(A_j|X_j = m)$$

No fine-tuning requires that

$$P(A_i|\mathbf{\Lambda}X_i=m) = P(A_j|\mathbf{\Lambda}X_j=m)$$

Which completes the proof for KS scenarios.

Bell-nonlocality and Kochen-Specker contextuality as violations of the classical framework of causality.

Generalises previous results

C. J. Wood and R. W. Spekkens, New Journal of Physics **17**, 033002 (2015).

E. G. Cavalcanti, Physical Review X 8, 021018 (2018).