A hierarchical measure of contextuality

Víctor H. Cervantes

victorhc@illinois.edu

University of Illinois at Urbana-Champaign

QCQMB'21 workshop May 2021 A system ${\mathfrak R}$ of random variables is a set of double-indexed random variables ${\tt R}^c_q,$ where

- $q \in Q$ denotes their content,
- $c \in C$ is their context.

A system can be presented as

$$\mathcal{R} = \{ \mathsf{R}_{\mathsf{q}}^{\mathsf{c}} : \mathsf{q} \in \mathsf{Q}, \mathsf{c} \in \mathsf{C}, \mathsf{q} \prec \mathsf{c} \},\$$

 $q \prec c$ indicates that content q is responded to in context c.

Connections

Any two variables in the subset

$$\mathfrak{R}_{q} = \{ \mathsf{R}_{q}^{c} : c \in \mathsf{C}, q \prec c \}$$

are stochastically unrelated.

The set \mathcal{R}_q is called the *connection* for content q.

Bunches

The variables of the subset

$$\mathbf{R}^{\mathbf{c}} = \{\mathbf{R}^{\mathbf{c}}_{\mathbf{q}} : \mathbf{q} \in \mathbf{Q}, \mathbf{q} \prec \mathbf{c}\}$$

are jointly distributed.

The set R^c is called the *bunch* corresponding to context c.

A system \Re with n = |Q| and m = |C| where all variables R_q^c take values 0/1 can be represented by three vectors:

 $\mathbf{l}^{\star} = (\mathbf{p}_{q}^{c})_{c \in C, q \in Q, q \prec c}$

$$p_q^c = \Pr(R_q^c = 1)$$

A system \Re with n = |Q| and m = |C| where all variables R_q^c take values 0/1 can be represented by three vectors:

$$l^{\star} = (p_{q}^{c})_{c \in C, q \in Q, q \prec c}$$

$$c^{\star} = (\min\{p_{q}^{c_{1}}, p_{q}^{c_{2}}\})_{c_{1}, c_{2} \in C, q \in Q, q \prec c}$$

$$p_q^c = \mathsf{Pr}(R_q^c = 1)$$

A system \Re with n = |Q| and m = |C| where all variables R_q^c take values 0/1 can be represented by three vectors:

$$\mathbf{l}^{\star} = (\mathbf{p}_{q}^{c})_{c \in C, q \in Q, q \prec c}$$
$$\mathbf{c}^{\star} = (\min\{\mathbf{p}_{q}^{c_{1}}, \mathbf{p}_{q}^{c_{2}}\})_{c_{1}, c_{2} \in C, q \in Q, q \prec c}$$
$$\mathbf{b}^{\star} = \begin{pmatrix} \mathbf{b}_{2}^{\star} \\ \vdots \\ \mathbf{b}_{r}^{\star} \end{pmatrix}$$

$$p_q^c = \Pr(R_q^c = 1)$$

$$\begin{split} \mathbf{b}_{s}^{\star} &= (p_{q_{1},...,q_{s}}^{c})_{q_{1},...,q_{s} \in Q}, c \in C, q_{1},...,q_{s} \prec c, q_{1},...,q_{s} \text{ are distinct} \\ s &= 2, \ldots, r; r \leqslant n; p_{q_{1},...,q_{s}}^{c} = \mathsf{Pr}(R_{q_{1}}^{c} = \cdots = R_{q_{s}}^{c} = 1) \end{split}$$

Note that

$$\mathsf{max}(\mathbf{0}, p_{q_1}^c + p_{q_2}^c - 1) \leqslant p_{q_1,q_2}^c \leqslant \mathsf{min}(p_{q_1}^c, p_{q_2}^c)$$

Note that

$$\mathsf{max}(\mathbf{0}, p_{q_1}^c + p_{q_2}^c - 1) \leqslant p_{q_1,q_2}^c \leqslant \mathsf{min}(p_{q_1}^c, p_{q_2}^c)$$

$$\max\left(0, \frac{p_{q_1,q_2}^c + p_{q_1,q_3}^c + p_{q_2,q_3}^c - 1}{2}\right) \leqslant p_{q_1,q_2,q_3}^c \leqslant \min(p_{q_1,q_2}^c, p_{q_1,q_3}^c, p_{q_2,q_3}^c))$$

and in complete generality,

$$\max\left(0, \frac{1}{s-1}\left(\sum_{k=1}^{s} p_{\{q_1,\dots,q_s\}\setminus\{q_k\}}^c - 1\right)\right) \leqslant p_{q_1,\dots,q_s}^c \leqslant \min(p_{\{q_1,\dots,q_s\}\setminus\{q_k\}}^c)_{k=1,\dots,s},$$

for s = 2, ..., r.

That is, the elements of \mathbf{b}^{\star} are hierarchically bounded, with \mathbf{l}^{\star} providing the bounds for \mathbf{b}_2^{\star} and \mathbf{b}_{s-1}^{\star} determining the bounds for \mathbf{b}_s^{\star} if $2 < s \leqslant r$.

A system represented by vectors l^* , c^* , and b^* is noncontextual if and only if there is a vector $h \ge 0$ (component-wise) such that

$$\mathbf{M}\mathbf{h} = egin{pmatrix} 1\ \mathbf{l}^{\star}\ \mathbf{c}^{\star}\ \mathbf{b}^{\star} \end{pmatrix},$$

 ${\bf h}$ are probabilities assigned to all combinations of values (1's and 0's) assigned to all random variables R^c_q

M is an incidence (Boolean) matrix

Denote the rows of M that correspond to l^{\star} and c^{\star} by M_l and $M_c.$

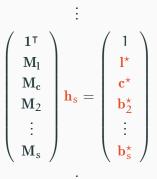
Similarly, let \mathbf{M}_s be the submatrix formed by the rows of \mathbf{M} corresponding to the elements of \mathbf{b}_s^* , for $2 \leq s \leq r$.

Consider the systems of equations

$$\left(egin{array}{c} \mathbf{1}^{\intercal} & \mathbf{M}_{\mathrm{l}} \ \mathbf{M}_{\mathrm{c}} & \mathbf{M}_{\mathrm{c}} \ \mathbf{M}_{\mathrm{2}} \end{array}
ight) \mathbf{h}_{\mathrm{2}} = \left(egin{array}{c} \mathbf{1} & \mathbf{1} \ \mathbf{l}^{\star} & \mathbf{c}^{\star} \ \mathbf{c}^{\star} & \mathbf{b}_{\mathrm{2}}^{\star} \end{array}
ight)$$

ŝ

A hierarchy of linear systems



ŝ

A hierarchy of linear systems

$$\mathbf{M}\mathbf{h} = \begin{pmatrix} \mathbf{1}^{\intercal} \\ \mathbf{M}_{1} \\ \mathbf{M}_{c} \\ \mathbf{M}_{2} \\ \vdots \\ \mathbf{M}_{r} \end{pmatrix} \mathbf{h}_{r} = \begin{pmatrix} \mathbf{1} \\ \mathbf{l}^{\star} \\ \mathbf{c}^{\star} \\ \mathbf{b}^{\star}_{2} \\ \vdots \\ \mathbf{b}^{\star}_{r} \end{pmatrix}$$

.

Noncontextual systems

```
When the system is noncontextual,
```

$$\mathbf{M}\mathbf{h} = \begin{pmatrix} \mathbf{1} \\ \mathbf{l}^{\star} \\ \mathbf{c}^{\star} \\ \mathbf{b}^{\star} \end{pmatrix}$$

has a solution $\mathbf{h}^* \ge 0$.

This solution implies that all the systems have solutions $\mathbf{h}^*_s = \mathbf{h}^*, 2 \leqslant s \leqslant r.$

Contextual systems

When the system is contextual, there is a value $2 \le s^* \le r$ such that there is no solution $\mathbf{h}_s \ge 0$ for any $s \ge s^*$ while there is a solution for each $s < s^*$.

We shall say the system is contextual at level s^* .

The degree of contextuality at level s*: CNT₂^{s*}

find	minimizing	subject to		
x	1⊺d	$-d \leqslant {\boldsymbol{b}}_{{\boldsymbol{s}}^*}^\star - {\boldsymbol{\mathrm{M}}}_{{\boldsymbol{s}}^*} {\boldsymbol{x}} \leqslant d$		
		$\mathbf{x},\mathbf{d} \geqslant 0$		
		$1^{\intercal} \mathbf{x} = 1$		
		$\mathbf{M}_{\mathbf{l}}\mathbf{x} = \mathbf{l}^{\star}$		
		$M_c x = c^{\star}$		
		$\mathbf{M}_2\mathbf{x} = \mathbf{b}_2^{\star}$		
		:		
		$\mathbf{M}_{s^{*}-1}\mathbf{x} = \mathbf{b}_{s^{*}-1}^{\star}$		

For any solution \mathbf{x}^* , compute

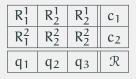
$$\mathsf{CNT}_2^{s^*} = \|\mathbf{b}_{s^*}^{\star} - \mathbf{M}_{s^*} \mathbf{x}^*\|_1$$
.

$$NCNT_{2}^{s} = \min_{i=1,...,K_{s}} \{\min(d_{i}^{*-}, d_{i}^{*+})\},\$$

where ${\tt K}_s$ is the number of elements of ${\tt b}_s^{\star},$ and $d_i^{\star-}, d_i^{\star+}$ are solutions to

find	maximizing	subject to	find	maximizing	subject to
$\mathbf{x}, \mathbf{d}_{\mathbf{i}}^{-}$	d_i^-	$\mathbf{b}_{s}^{\star}-\mathbf{d}_{i}^{-}\mathbf{e}_{i}=\mathbf{M}_{s}\mathbf{x}$	$\mathbf{x}, \mathbf{d}_{\mathbf{i}}^+$	d_i^+	$\boldsymbol{b}_{s}^{\star} + \boldsymbol{d}_{i}^{+} \boldsymbol{e}_{i} = \boldsymbol{M}_{s} \boldsymbol{x}$
		$\mathbf{x}, \mathbf{d}_i^- \geqslant 0$			$\mathbf{x}, \mathbf{d}_{i}^{+} \geqslant 0$
		$1^{T}\mathbf{x} = 1$			$1^{T}\mathbf{x} = 1$
		$\mathbf{M}_{\mathbf{l}}\mathbf{x} = \mathbf{l}^{\star}$			$\mathbf{M}_{\mathbf{l}}\mathbf{x} = \mathbf{l}^{\star}$
		$\mathbf{M}_{\mathbf{c}}\mathbf{x}=\mathbf{c}^{\star}$			$\mathbf{M}_{\mathbf{c}}\mathbf{x}=\mathbf{c}^{\star}$
		$\mathbf{M}_2\mathbf{x} = \mathbf{b}_2^{\star}$			$\mathbf{M}_2\mathbf{x} = \mathbf{b}_2^\star$
		:			:
		$\mathbf{M}_{s-1}\mathbf{x} = \mathbf{b}_{s-1}^{\star}$			$\mathbf{M}_{s-1}\mathbf{x} = \mathbf{b}_{s-1}^{\star}$

Example



- $Pr(R_{q_i}^{c_j} = 1) = 1/2$ for all variables in \mathcal{R} .
- Variables in R^{c1} are independent.
- Variables in R^{c2} are pairwise independent.

Example

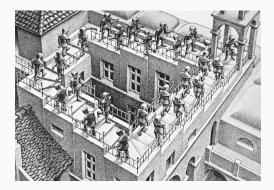


- $Pr(R_{q_i}^{c_j} = 1) = 1/2$ for all variables in \mathcal{R} .
- Variables in R^{c1} are independent.
- Variables in R^{c2} are pairwise independent.
- Noncontextual at level 2, $NCNT_2^2 = 0$.

Example

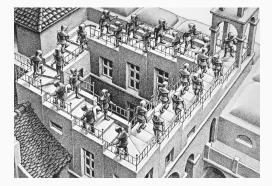


- $Pr(R_{q_i}^{c_j} = 1) = 1/2$ for all variables in \mathcal{R} .
- Variables in R^{c1} are independent.
- Variables in R^{c2} are pairwise independent.
- Noncontextual at level 2, $NCNT_2^2 = 0$.
- Contextual at level 3 whenever $p_{q_1,q_2,q_3}^{c_2}\neq 1/8$ with $CNT_2^3=|p_{q_1,q_2,q_3}^{c_2}-1/8|.$



Thank you!

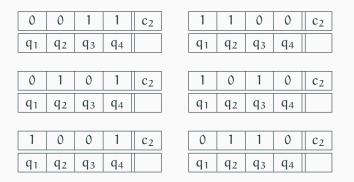
Ascending and Descending



We approach the Ascending and Descending lithograph by M. C. Escher by considering the four stair flights as four contents, q_1, q_2, q_3, q_4 .

In one context we describe how the four stair flights appear together: either all staircases are described as ascending $(R_{q_i}^1 = 1, \text{ for } i = 1, \ldots, 4)$ or all of them are descending $(R_{q_i}^1 = 0, \text{ for } i = 1, \ldots, 4)$.

In a second context, we describe the physically realizable patterns. Four stair flights forming a closed loop cannot ascend or descend indefinitely: the number of ascending stair flights should be precisely two to counterbalance the descending ones.



Ascending and Descending

The resulting system

is contextual at the level $s^* = 2$ with $CNT_2^2 = 2$.

A system is cyclic (containing one or more disconnected cycles) if every bunch and every connection contains precisely two random variables.

It has been shown that removing a bunch/connection with a single variable preserves the (non)contextuality status of the system.

It has been shown that removing a bunch/connection with a single variable preserves the (non)contextuality status of the system.

Hence, a system without cycles is noncontextual.

If the system \mathfrak{R} does not have cycles, then there exists some bunch $R^{c'}$ or some connection $\mathfrak{R}_{q'}$ that has a single variable.

If the system has a single variable, take $\mathbf{h}^* = (p_1^1, 1 - p_1^1)^{\intercal}$

If the system has more than one variable, remove $\mathbb{R}^{c'}$ or $\mathbb{R}_{q'}$ from the system to obtain a system \mathbb{R}' with the same contextuality status as \mathbb{R} .

Example. A system can be contextual without contextual cyclic subsystems

Consider the system

R_1^1	R_{2}^{1}	R ₂ ¹	c ₁
R ₁ ²	R_{2}^{2}	R_2^2	c ₂
q ₁	q ₂	q ₃	R

- $Pr(R_{q_i}^{c_j} = 1) = 1/2$ for all variables in \mathcal{R} .
- Variables in R^{c1} are independent.
- Variables in R^{c2} are pairwise independent.