Contextuality and Dichotomizations of Random Variables

Janne V. Kujala¹ Entibar N. Dzhafarov²

¹Department of Mathematics and Statistics University of Turku

²Department of Psychological Sciences Purdue University

Quantum Contextuality in Quantum Mechanics and Beyond (QCQMB) 2021

Outline

Contextuality-by-Default

- Systems of Random Variables
- Couplings and Contextuality
- Dichotomizations and Split Representations

2 Theory for Choosing Dichotomizations

- Allowable Coarse-grainings
- Examples

Outline

Contextuality-by-Default

• Systems of Random Variables

- Couplings and Contextuality
- Dichotomizations and Split Representations

2 Theory for Choosing Dichotomizations

- Allowable Coarse-grainings
- Examples

Systems of Random Variables

$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\} \tag{1}$$

- Double-indexed with
 - properties (contents) q being measured
 - conditions (contexts) c under which measurements made
- Format relation $q \prec c$ indicates which contents are measured in which contexts

Systems of Random Variables

$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\} \tag{1}$$

- Double-indexed with
 - properties (contents) q being measured
 - conditions (contexts) c under which measurements made
- Format relation $q \prec c$ indicates which contents are measured in which contexts

Systems of Random Variables

$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\} \tag{1}$$

- Double-indexed with
 - properties (contents) q being measured
 - conditions (*contexts*) *c* under which measurements made
- Format relation $q \prec c$ indicates which contents are measured in which contexts

Systems of Random Variables

$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\} \tag{1}$$

- Double-indexed with
 - properties (contents) q being measured
 - conditions (contexts) c under which measurements made
- Format relation $q \prec c$ indicates which contents are measured in which contexts

Systems of Random Variables

$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\} \tag{1}$$

- Double-indexed with
 - properties (contents) q being measured
 - conditions (contexts) c under which measurements made
- Format relation $q \prec c$ indicates which contents are measured in which contexts

Systems of Random Variables

• Technically random variables R_q^c are measurable functions

$R_q^c:\Omega_c o E_q$

- all R_q^c with given c form a bunch (same sample space Ω_c so jointly distributed)
- all R_q^c with given q form a *connection* (same value space E_q ; different sample spaces Ω_c so *stochastically unrelated*)

Systems of Random Variables

• Technically random variables R_q^c are measurable functions

 $R_q^c:\Omega_c \to E_q$

- all R_q^c with given c form a bunch (same sample space Ω_c so jointly distributed)
- all R_q^c with given q form a *connection* (same value space E_q ; different sample spaces Ω_c so *stochastically unrelated*)

Systems of Random Variables

• Technically random variables R_q^c are measurable functions

$$R_q^c:\Omega_c\to E_q$$

- all R_q^c with given c form a bunch (same sample space Ω_c so jointly distributed)
- all R_q^c with given q form a *connection* (same value space E_q ; different sample spaces Ω_c so *stochastically unrelated*)

Systems of Random Variables

• System $\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$ conveniently illustrated as grid

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- rows are bunches (jointly distributed)
- columns are connections (stochastically unrelated)
- empty cells indicate pairs (q,c) missing from the format relation $q\prec c$

Systems of Random Variables

• System
$$\mathcal{R} = \left\{ {R_q^c : q \prec c}
ight\}$$
 conveniently illustrated as grid

R_1^1	R_2^1			c = 1
R_{1}^{2}		R_3^2	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- rows are bunches (jointly distributed)
- columns are connections (stochastically unrelated)
- empty cells indicate pairs (q, c) missing from the format relation $q \prec c$

(2)

Systems of Random Variables

• System $\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$ conveniently illustrated as grid

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- rows are bunches (jointly distributed)
- columns are connections (stochastically unrelated)
- empty cells indicate pairs (q, c) missing from the format relation $q \prec c$

Systems of Random Variables

• System
$$\mathcal{R} = \left\{ \mathsf{R}_q^{\mathsf{c}} : q \prec c
ight\}$$
 conveniently illustrated as grid

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- rows are bunches (jointly distributed)
- columns are connections (stochastically unrelated)
- empty cells indicate pairs (q, c) missing from the format relation $q \prec c$

Outline

Contextuality-by-Default

- Systems of Random Variables
- Couplings and Contextuality
- Dichotomizations and Split Representations

2 Theory for Choosing Dichotomizations

- Allowable Coarse-grainings
- Examples

Couplings

Definition

A coupling of a set $\{X_i : i \in I\}$ of random variables is a *jointly distributed* set $\{Y_i : i \in I\}$ of correspondingly indexed random variables where each Y_i has the same distribution as X_i .

Definition

A coupling $\{Y_1, Y_2\}$ of $\{X_1, X_2\}$ is *maximal* if the probability $Pr[Y_1 = Y_2]$ is maximal among all couplings of $\{X_1, X_2\}$.

Definition

A multimaximal coupling $\{Y_i : i \in I\}$ of $\{X_i : i \in I\}$ is a coupling such that $\{Y_i, Y_j\}$ is a maximal coupling of $\{X_i, X_j\}$ for all $i, j \in I$.

Couplings

Definition

A coupling of a set $\{X_i : i \in I\}$ of random variables is a *jointly distributed* set $\{Y_i : i \in I\}$ of correspondingly indexed random variables where each Y_i has the same distribution as X_i .

Definition

A coupling $\{Y_1, Y_2\}$ of $\{X_1, X_2\}$ is *maximal* if the probability $Pr[Y_1 = Y_2]$ is maximal among all couplings of $\{X_1, X_2\}$.

Definition

A multimaximal coupling $\{Y_i : i \in I\}$ of $\{X_i : i \in I\}$ is a coupling such that $\{Y_i, Y_j\}$ is a maximal coupling of $\{X_i, X_j\}$ for all $i, j \in I$.

Couplings

Definition

A coupling of a set $\{X_i : i \in I\}$ of random variables is a *jointly distributed* set $\{Y_i : i \in I\}$ of correspondingly indexed random variables where each Y_i has the same distribution as X_i .

Definition

A coupling $\{Y_1, Y_2\}$ of $\{X_1, X_2\}$ is *maximal* if the probability $Pr[Y_1 = Y_2]$ is maximal among all couplings of $\{X_1, X_2\}$.

Definition

A multimaximal coupling $\{Y_i : i \in I\}$ of $\{X_i : i \in I\}$ is a coupling such that $\{Y_i, Y_j\}$ is a maximal coupling of $\{X_i, X_j\}$ for all $i, j \in I$.

(3)

Coupling of System

• System
$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$$
 of random variables

R_1^1	R_2^1			c = 1
R_{1}^{2}		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

• bunches (rows) jointly distributed

• connections (columns) stochastically unrelated

• Coupling $S = \{S_q^c : q \prec c\}$ of system \mathcal{R} :

$$\begin{array}{|c|c|c|c|c|c|} \hline S_1^1 & S_2^1 & & c = 1 \\ \hline S_1^2 & S_3^2 & S_4^2 & c = 2 \\ \hline S_2^3 & & S_4^3 & c = 3 \\ \hline q = 1 & q = 2 & q = 3 & q = 4 \\ \hline \end{array}$$

• each bunch $\{S_q^c: q \prec c\}$ (row) has the same joint distribution as $\{R_q^c: q \prec c\}$

• all random variables jointly distributed

Coupling of System

• System
$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$$
 of random variables

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

• bunches (rows) jointly distributed

• connections (columns) stochastically unrelated

• Coupling $S = \{S_q^c : q \prec c\}$ of system \mathcal{R} :

$$\begin{array}{|c|c|c|c|c|c|} \hline S_1^1 & S_2^1 & & c = 1 \\ \hline S_1^2 & S_3^2 & S_4^2 & c = 2 \\ \hline S_2^3 & & S_4^3 & c = 3 \\ \hline q = 1 & q = 2 & q = 3 & q = 4 \\ \hline \end{array}$$

(4)

(3)

- each bunch $\{S_q^c:q\prec c\}$ (row) has the same joint distribution as $\{R_q^c:q\prec c\}$
- all random variables jointly distributed

(3)

Coupling of System

• System
$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$$
 of random variables

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- bunches (rows) jointly distributed
- connections (columns) stochastically unrelated

• Coupling $S = \{S_q^c : q \prec c\}$ of system \mathcal{R} :

$$\begin{array}{|c|c|c|c|c|} \hline S_1^1 & S_2^1 & & c = 1 \\ \hline S_1^2 & S_3^2 & S_4^2 & c = 2 \\ \hline S_2^3 & S_4^3 & c = 3 \\ \hline q = 1 & q = 2 & q = 3 & q = 4 \\ \hline \end{array}$$

• each bunch $\{S_q^c: q \prec c\}$ (row) has the same joint distribution as $\{R_q^c: q \prec c\}$

• all random variables jointly distributed

Coupling of System

• System
$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$$
 of random variables

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- bunches (rows) jointly distributed
- connections (columns) stochastically unrelated

• Coupling $S = \{S_q^c : q \prec c\}$ of system \mathcal{R} :

	S_1^1	S_{2}^{1}			c = 1
	S_1^2		S_{3}^{2}	S_{4}^{2}	<i>c</i> = 2
ĺ		S_{2}^{3}		S_{4}^{3}	<i>c</i> = 3
ĺ	q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

(4)

(3)

- each bunch $\{S_q^c:q\prec c\}$ (row) has the same joint distribution as $\{R_q^c:q\prec c\}$
- all random variables jointly distributed

(3)

(4)

Coupling of System

• System
$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$$
 of random variables

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- bunches (rows) jointly distributed
- connections (columns) stochastically unrelated
- Coupling $S = \{S_q^c : q \prec c\}$ of system \mathcal{R} :

S_1^1	S_2^1			c = 1	
S_1^2		S_{3}^{2}	S_{4}^{2}	<i>c</i> = 2	
	S_{2}^{3}		S_{4}^{3}	<i>c</i> = 3	
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4		

• each bunch $\{S_q^c:q\prec c\}$ (row) has the same joint distribution as $\{R_q^c:q\prec c\}$

• all random variables jointly distributed

(3)

Coupling of System

• System
$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$$
 of random variables

R_1^1	R_2^1			c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

- bunches (rows) jointly distributed
- connections (columns) stochastically unrelated
- Coupling $S = \{S_q^c : q \prec c\}$ of system \mathcal{R} :

S_1^1	S_2^1			c = 1	
S_{1}^{2}		S_{3}^{2}	S_4^2	<i>c</i> = 2	
	S_{2}^{3}		S_4^3	<i>c</i> = 3	
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4		

- each bunch $\{S_q^c:q\prec c\}$ (row) has the same joint distribution as $\{R_q^c:q\prec c\}$
- all random variables jointly distributed

(5)

(6)

Contextuality (traditional understanding)

Definition

A system
$$\mathcal{R} = \left\{ R_q^c : q \prec c
ight\}$$
 of random variables

R_1^1	R_2^1		R_4^1	c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

is *noncontextual* if it has a coupling $S = \{S_q^c : q \prec c\}$

	<u> </u>		<u> </u>	-
S_1	S_2^{\perp}		S_4^{-}	c = 1
S_1^2		S_{3}^{2}	S_4^2	<i>c</i> = 2
	S_{2}^{3}		S_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

whose connections (columns) are identity couplings (i.e., all random variables in a column are identical, or equal with probability 1).

Contextuality (generalized, Contextuality-by-Default)

Definition

A system
$$\mathcal{R} = \left\{ R_q^c : q \prec c \right\}$$
 of random variables

R_1^1	R_2^1		R_4^1	c = 1
R_1^2		R_{3}^{2}	R_4^2	<i>c</i> = 2
	R_2^3		R_4^3	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

is *noncontextual* if it has a coupling $S = \{S_q^c : q \prec c\}$

S_1^1	S_2^1		S_4^1	c = 1
S_1^2		S_{3}^{2}	S_4^2	c = 2
	S_{2}^{3}		S_{4}^{3}	<i>c</i> = 3
q = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	

(8)

(7)

whose connections (columns) are multimaximal couplings (i.e., all pairs of random variables in a column are maximal couplings).

Outline

Contextuality-by-Default

- Systems of Random Variables
- Couplings and Contextuality
- Dichotomizations and Split Representations

2 Theory for Choosing Dichotomizations

- Allowable Coarse-grainings
- Examples

• Distribution of a random variable

$$R_q^c:\Omega_c o E_q$$

is characterized by the probabilities $\Pr[R_q^c \in A]$ for all measurable subsets $A \subset E_q$

- E_q can be arbitrarly complex (numbers, functions, sets, etc.), if endowed with suitable collection of measurable subsets
- Any R_q^c is fully determined by a sufficiently rich collection of *dichotomizations*

$$R_{q,A}^{c} = \begin{bmatrix} R_{q}^{c} \in A \end{bmatrix} := \begin{cases} 1, & R_{q}^{c} \in A \\ 0, & \text{otherwise} \end{cases}$$
(9)

• Distribution of a random variable

$$R_q^c:\Omega_c \to E_q$$

is characterized by the probabilities $\Pr[R_q^c \in A]$ for all measurable subsets $A \subset E_q$

• E_q can be arbitrarly complex (numbers, functions, sets, etc.), if endowed with suitable collection of measurable subsets

• Any R_a^c is fully determined by a sufficiently rich collection of *dichotomizations*

$$R_{q,A}^{c} = \begin{bmatrix} R_{q}^{c} \in A \end{bmatrix} := \begin{cases} 1, & R_{q}^{c} \in A \\ 0, & \text{otherwise} \end{cases}$$
(9)

• Distribution of a random variable

$$R_q^c:\Omega_c o E_q$$

is characterized by the probabilities $\Pr[R_q^c \in A]$ for all measurable subsets $A \subset E_q$

- E_q can be arbitrarly complex (numbers, functions, sets, etc.), if endowed with suitable collection of measurable subsets
- Any R_q^c is fully determined by a sufficiently rich collection of *dichotomizations*

$$R_{q,A}^{c} = \begin{bmatrix} R_{q}^{c} \in A \end{bmatrix} := \begin{cases} 1, & R_{q}^{c} \in A \\ 0, & \text{otherwise} \end{cases}.$$
(9)

• Distribution of a random variable

$$R_q^c:\Omega_c\to E_q$$

is characterized by the probabilities $\Pr[R_q^c \in A]$ for all measurable subsets $A \subset E_q$

- E_q can be arbitrarly complex (numbers, functions, sets, etc.), if endowed with suitable collection of measurable subsets
- Any R_q^c is fully determined by a sufficiently rich collection of *dichotomizations*

$$R_{q,A}^{c} = \begin{bmatrix} R_{q}^{c} \in A \end{bmatrix} := \begin{cases} 1, & R_{q}^{c} \in A \\ 0, & \text{otherwise} \end{cases}.$$
(9)

Example of a Split Representation

Let the random variables of each connection of the system

have value-spaces $E_1 = \{1, 2, 3, 4\}$, $E_2 = \{a, b, c\}$, and $E_3 = \{0, 1\}$.

We can represent this original system by the binary system

$\left[R_{1}^{1} \in \left\{ 1 ight\} ight]$	$\left[R_1^1 \in \{1,2\}\right]$	$\begin{bmatrix} R_1^1 \in \{1,2,3\} \end{bmatrix} \begin{bmatrix} R_2^1 \in \{a\} \end{bmatrix} \begin{bmatrix} R_2^1 \in \{b\} \end{bmatrix}$		c = 1
$\left[{R_1^2 \in \left\{ 1 ight\}} ight]$	$\left[R_1^2 \in \{1,2\} ight]$	$ig[R_1^2 \in \{1,2,3\} ig]$	R_3^2	c = 2
		$\left[{{ extsf{R}}_{2}^{3} \in \left\{ a ight\}} ight] \left[{{ extsf{R}}_{2}^{3} \in \left\{ b ight\}} ight]$	R_3^3	c = 3
$q=(1,\{1\})$	$q = (1, \{1, 2\})$	$q = (1, \{1, 2, 3\}) q = (2, \{a\}) q = (2, \{b\}) $	q = 3	

Example of a Split Representation

Let the random variables of each connection of the system

have value-spaces $E_1 = \{1, 2, 3, 4\}$, $E_2 = \{a, b, c\}$, and $E_3 = \{0, 1\}$. We can represent this original system by the binary system

$\left[R_{1}^{1} \in \left\{ 1 \right\} \right]$	$\left[R_{1}^{1} \in \left\{ 1,2 ight\} ight]$	$\left[R_1^1 \in \{1,2,3\} \right]$	$\left[R_{2}^{1}\in\left\{ a\right\} \right]$	$\left[R_{2}^{1} \in \left\{ b ight\} ight]$		c = 1
$\left[igRightRightRightRightRightRightRightRig$	$\left[R_1^2 \in \{1,2\} \right]$	$[R_1^2 \in \{1, 2, 3\}]$			R_3^2	<i>c</i> = 2
			$\left[R_{2}^{3}\in\left\{ a\right\} \right]$	$\left[R_{2}^{3} \in \left\{ b \right\} \right]$	R_3^3	<i>c</i> = 3
$q = (1, \{1\})$	$q = (1, \{1, 2\})$	$q = (1, \{1, 2, 3\})$	$q = (2, \{a\})$	$q = (2, \{b\})$	q = 3	

Extended Understanding of Contextuality in CbD

- The extended understanding of contextuality in CbD is based on two modifications of traditional understanding:
 - **1** replacement of identity couplings of connections with multimaximal
 - **2** replacement of systems of random variables with their split representations.
- How are these choices justified?

Extended Understanding of Contextuality in CbD

- The extended understanding of contextuality in CbD is based on two modifications of traditional understanding:
 - **1** replacement of identity couplings of connections with multimaximal
 - 2 replacement of systems of random variables with their split representations.
- How are these choices justified?
Justification of the choices

• Why multimaximal coupling?

- The only other reasonable alternative to multimaximal coupling is maximal coupling (i.e., coupling (Y₁,..., Y_n) with maximal Pr[Y₁ = Y₂ = ··· = Y_n])
- however, it does not satisfy
 - *noncontextual nestedness*: any subsystem of a noncontextual system (obtained by removing random variables) is noncontextual
- counterexample based on the fact if any two random variables X_i, X_j of (X_1, \ldots, X_n) have non-overlapping supports, then any coupling (Y_1, \ldots, Y_n) is maximal

- Why multimaximal coupling?
 - The only other reasonable alternative to multimaximal coupling is maximal coupling (i.e., coupling (Y₁,..., Y_n) with maximal Pr[Y₁ = Y₂ = ··· = Y_n])
 - however, it does not satisfy
 - *noncontextual nestedness*: any subsystem of a noncontextual system (obtained by removing random variables) is noncontextual
 - counterexample based on the fact if any two random variables X_i, X_j of (X_1, \ldots, X_n) have non-overlapping supports, then any coupling (Y_1, \ldots, Y_n) is maximal

- Why multimaximal coupling?
 - The only other reasonable alternative to multimaximal coupling is maximal coupling (i.e., coupling (Y₁,..., Y_n) with maximal Pr[Y₁ = Y₂ = ··· = Y_n])
 - however, it does not satisfy
 - noncontextual nestedness: any subsystem of a noncontextual system (obtained by removing random variables) is noncontextual
 - counterexample based on the fact if any two random variables X_i, X_j of (X_1, \ldots, X_n) have non-overlapping supports, then any coupling (Y_1, \ldots, Y_n) is maximal

- Why multimaximal coupling?
 - The only other reasonable alternative to multimaximal coupling is maximal coupling (i.e., coupling (Y₁,..., Y_n) with maximal Pr[Y₁ = Y₂ = ··· = Y_n])
 - however, it does not satisfy
 - noncontextual nestedness: any subsystem of a noncontextual system (obtained by removing random variables) is noncontextual
 - counterexample based on the fact if any two random variables X_i, X_j of (X_1, \ldots, X_n) have non-overlapping supports, then any coupling (Y_1, \ldots, Y_n) is maximal

• Why dichotomizations?

- A non-binary system does not generally satisfy the principle of
 - *coarse-graining*: a noncontextual system remains noncontextual following coarse-graining (certain values lumped together) of its random variables
- The principle is trivial for binary systems
- Can be recovered for non-binary systems using (appropriately chosen) dichotomizations:
 - dichotomizations of coarse-grained random variable correspond to dichotomizations of the original random variable
 - $\bullet \implies$ split representation of coarse-grained system is a subset of the split representation of the original system
 - \implies noncontextual nestedness implies that a coarse-grained version of a noncontextual system is noncontextual

- Why dichotomizations?
 - A non-binary system does not generally satisfy the principle of
 - *coarse-graining*: a noncontextual system remains noncontextual following coarse-graining (certain values lumped together) of its random variables
 - The principle is trivial for binary systems
 - Can be recovered for non-binary systems using (appropriately chosen) dichotomizations:
 - dichotomizations of coarse-grained random variable correspond to dichotomizations of the original random variable
 - $\bullet \implies$ split representation of coarse-grained system is a subset of the split representation of the original system
 - => noncontextual nestedness implies that a coarse-grained version of a noncontextual system is noncontextual

• Why dichotomizations?

- A non-binary system does not generally satisfy the principle of
 - *coarse-graining*: a noncontextual system remains noncontextual following coarse-graining (certain values lumped together) of its random variables
- The principle is trivial for binary systems
- Can be recovered for non-binary systems using (appropriately chosen) dichotomizations:
 - dichotomizations of coarse-grained random variable correspond to dichotomizations of the original random variable
 - $\bullet \implies$ split representation of coarse-grained system is a subset of the split representation of the original system
 - => noncontextual nestedness implies that a coarse-grained version of a noncontextual system is noncontextual

- Why dichotomizations?
 - A non-binary system does not generally satisfy the principle of
 - *coarse-graining*: a noncontextual system remains noncontextual following coarse-graining (certain values lumped together) of its random variables
 - The principle is trivial for binary systems
 - Can be recovered for non-binary systems using (appropriately chosen) dichotomizations:
 - dichotomizations of coarse-grained random variable correspond to dichotomizations of the original random variable
 - $\bullet \implies$ split representation of coarse-grained system is a subset of the split representation of the original system
 - => noncontextual nestedness implies that a coarse-grained version of a noncontextual system is noncontextual

- Why dichotomizations?
 - A non-binary system does not generally satisfy the principle of
 - *coarse-graining*: a noncontextual system remains noncontextual following coarse-graining (certain values lumped together) of its random variables
 - The principle is trivial for binary systems
 - Can be recovered for non-binary systems using (appropriately chosen) dichotomizations:
 - dichotomizations of coarse-grained random variable correspond to dichotomizations of the original random variable
 - $\bullet \implies$ split representation of coarse-grained system is a subset of the split representation of the original system
 - \implies noncontextual nestedness implies that a coarse-grained version of a noncontextual system is noncontextual

- Why dichotomizations?
 - A non-binary system does not generally satisfy the principle of
 - *coarse-graining*: a noncontextual system remains noncontextual following coarse-graining (certain values lumped together) of its random variables
 - The principle is trivial for binary systems
 - Can be recovered for non-binary systems using (appropriately chosen) dichotomizations:
 - dichotomizations of coarse-grained random variable correspond to dichotomizations of the original random variable
 - $\bullet \implies$ split representation of coarse-grained system is a subset of the split representation of the original system
 - => noncontextual nestedness implies that a coarse-grained version of a noncontextual system is noncontextual

- Why dichotomizations?
 - A non-binary system does not generally satisfy the principle of
 - *coarse-graining*: a noncontextual system remains noncontextual following coarse-graining (certain values lumped together) of its random variables
 - The principle is trivial for binary systems
 - Can be recovered for non-binary systems using (appropriately chosen) dichotomizations:
 - dichotomizations of coarse-grained random variable correspond to dichotomizations of the original random variable
 - \implies split representation of coarse-grained system is a subset of the split representation of the original system
 - $\bullet \implies$ noncontextual nestedness implies that a coarse-grained version of a noncontextual system is noncontextual

Choice of Split Representation

• How to choose the split representation?

- contextuality status may depend on the choice
- for categorical random variables, use all possible dichotomizations as there is no structure to choose otherwise
 - the coarse-graining principle holds automatically
- for real-valued, continuous random variables, using all possible dichotomizations makes all inconsistently connected systems contextual (and therby reduce to the traditional understanding of contextuality) so a smaller set would seem more reasonable
- focus of present work

Choice of Split Representation

• How to choose the split representation?

- contextuality status may depend on the choice
- for categorical random variables, use all possible dichotomizations as there is no structure to choose otherwise
 - the coarse-graining principle holds automatically
- for real-valued, continuous random variables, using all possible dichotomizations makes all inconsistently connected systems contextual (and therby reduce to the traditional understanding of contextuality) so a smaller set would seem more reasonable
- focus of present work

- How to choose the split representation?
 - contextuality status may depend on the choice
 - for categorical random variables, use all possible dichotomizations as there is no structure to choose otherwise
 - the coarse-graining principle holds automatically
 - for real-valued, continuous random variables, using all possible dichotomizations makes all inconsistently connected systems contextual (and therby reduce to the traditional understanding of contextuality) so a smaller set would seem more reasonable
 - focus of present work

- How to choose the split representation?
 - contextuality status may depend on the choice
 - for categorical random variables, use all possible dichotomizations as there is no structure to choose otherwise
 - the coarse-graining principle holds automatically
 - for real-valued, continuous random variables, using all possible dichotomizations makes all inconsistently connected systems contextual (and therby reduce to the traditional understanding of contextuality) so a smaller set would seem more reasonable
 - focus of present work

- How to choose the split representation?
 - contextuality status may depend on the choice
 - for categorical random variables, use all possible dichotomizations as there is no structure to choose otherwise
 - the coarse-graining principle holds automatically
 - for real-valued, continuous random variables, using all possible dichotomizations makes all inconsistently connected systems contextual (and therby reduce to the traditional understanding of contextuality) so a smaller set would seem more reasonable
 - focus of present work

- How to choose the split representation?
 - contextuality status may depend on the choice
 - for categorical random variables, use all possible dichotomizations as there is no structure to choose otherwise
 - the coarse-graining principle holds automatically
 - for real-valued, continuous random variables, using all possible dichotomizations makes all inconsistently connected systems contextual (and therby reduce to the traditional understanding of contextuality) so a smaller set would seem more reasonable
 - focus of present work

Outline

Contextuality-by-Default

- Systems of Random Variables
- Couplings and Contextuality
- Dichotomizations and Split Representations

2 Theory for Choosing Dichotomizations

- Allowable Coarse-grainings
- Examples

- Assume value spaces E_q are endowed with a certain additional structure that defines *linked* sets (a certain form of pre-topological connectedness)
 - a more general structure than topology, needed to treat both continuous and discerete spaces
 - main idea: only allow coarse-grainings (or dichotomizations) that do not create new discontinuities in the value space
 - points close to each other in the original space must be close in the coarse-grained space as well and vice versa

- Assume value spaces E_q are endowed with a certain additional structure that defines *linked* sets (a certain form of pre-topological connectedness)
 - a more general structure than topology, needed to treat both continuous and discerete spaces
 - main idea: only allow coarse-grainings (or dichotomizations) that do not create new discontinuities in the value space
 - points close to each other in the original space must be close in the coarse-grained space as well and vice versa

- Assume value spaces E_q are endowed with a certain additional structure that defines *linked* sets (a certain form of pre-topological connectedness)
 - a more general structure than topology, needed to treat both continuous and discerete spaces
 - main idea: only allow coarse-grainings (or dichotomizations) that do not create new discontinuities in the value space
 - points close to each other in the original space must be close in the coarse-grained space as well and vice versa

- Assume value spaces E_q are endowed with a certain additional structure that defines *linked* sets (a certain form of pre-topological connectedness)
 - a more general structure than topology, needed to treat both continuous and discerete spaces
 - main idea: only allow coarse-grainings (or dichotomizations) that do not create new discontinuities in the value space
 - points close to each other in the original space must be close in the coarse-grained space as well and vice versa

Definition

A coarse-graining is a measurable surjection $f : E \to E'$; in particular, a *dichotomization* is a measurable function $f : E \to \{0, 1\}$

Main principle:

Definition

A coarse-graining $f : E \rightarrow E'$ is *allowable* if and only if

- for any linked subset A of E, f(A) is a linked subset of E'
- (2) for any linked subset A' of E', $f^{-1}(A')$ is a linked subset of E

Definition

A coarse-graining is a measurable surjection $f : E \to E'$; in particular, a *dichotomization* is a measurable function $f : E \to \{0, 1\}$

Main principle:

Definition

A coarse-graining $f : E \to E'$ is *allowable* if and only if

- for any linked subset A of E, f(A) is a linked subset of E'
- 2 for any linked subset A' of E', $f^{-1}(A')$ is a linked subset of E

• Consider coarse-grainings $f : \mathbb{R} \to \{0, 1, 2\}$:¹

¹We assume here that linked sets of \mathbb{R} are its connected subsets and linked sets of $\{0, 1, 2\}$ are are all subsets except $\{0, 2\}$.

¹We assume here that linked sets of \mathbb{R} are its connected subsets and linked sets of $\{0, 1, 2\}$ are are all subsets except $\{0, 2\}$.

¹We assume here that linked sets of \mathbb{R} are its connected subsets and linked sets of $\{0, 1, 2\}$ are are all subsets except $\{0, 2\}$.

¹We assume here that linked sets of \mathbb{R} are its connected subsets and linked sets of $\{0, 1, 2\}$ are are all subsets except $\{0, 2\}$.

• Consider coarse-grainings
$$f : \mathbb{R} \to \{0, 1, 2\}$$
:¹

 $^{^{1}}$ We assume here that linked sets of \mathbb{R} are its connected subsets and linked sets of $\{0, 1, 2\}$ are are all subsets except $\{0, 2\}$.

• Consider coarse-grainings
$$f : \mathbb{R} \to \{0, 1, 2\}$$
:¹

 $^{^1}We$ assume here that linked sets of $\mathbb R$ are its connected subsets and linked sets of $\{0,1,2\}$ are are all subsets except $\{0,2\}.$

• Consider coarse-grainings
$$f : \mathbb{R} \to \{0, 1, 2\}$$
:¹

 $^{^1}We$ assume here that linked sets of $\mathbb R$ are its connected subsets and linked sets of $\{0,1,2\}$ are are all subsets except $\{0,2\}.$

Coarse-graining Principle

The coarse-graining principle is satisfied due to

Theorem

Allowable coarse-grainings are closed under compositions: if $f : E \to E'$ and $g : E' \to E''$ are allowable coarse-grainings, then $g \circ f : E \to E''$ is an allowable coarse-graining.

- Allowable dichotomization $d : E' \to \{0, 1\}$ of an allowably coarse-grained space E' = f(E) yields an allowable dichotomization $d \circ f : E \to \{0, 1\}$ of the original space E.
- Thus, a dichotomization of a coarse-grained system is merely a subsystem of the dichotomization of the original system, because of which if the latter is noncontextual, then so is the former (due to noncontextual nestedness).

Coarse-graining Principle

The coarse-graining principle is satisfied due to

Theorem

Allowable coarse-grainings are closed under compositions: if $f : E \to E'$ and $g : E' \to E''$ are allowable coarse-grainings, then $g \circ f : E \to E''$ is an allowable coarse-graining.

- Allowable dichotomization $d : E' \to \{0, 1\}$ of an allowably coarse-grained space E' = f(E) yields an allowable dichotomization $d \circ f : E \to \{0, 1\}$ of the original space E.
- Thus, a dichotomization of a coarse-grained system is merely a subsystem of the dichotomization of the original system, because of which if the latter is noncontextual, then so is the former (due to noncontextual nestedness).

Coarse-graining Principle

The coarse-graining principle is satisfied due to

Theorem

Allowable coarse-grainings are closed under compositions: if $f : E \to E'$ and $g : E' \to E''$ are allowable coarse-grainings, then $g \circ f : E \to E''$ is an allowable coarse-graining.

- Allowable dichotomization $d : E' \to \{0, 1\}$ of an allowably coarse-grained space E' = f(E) yields an allowable dichotomization $d \circ f : E \to \{0, 1\}$ of the original space E.
- Thus, a dichotomization of a coarse-grained system is merely a subsystem of the dichotomization of the original system, because of which if the latter is noncontextual, then so is the former (due to noncontextual nestedness).

Outline

Contextuality-by-Default

- Systems of Random Variables
- Couplings and Contextuality
- Dichotomizations and Split Representations

2 Theory for Choosing Dichotomizations

- Allowable Coarse-grainings
- Examples

Allowable Coarse-grainings Examples

Categorical Random Variables

- For categorical random variables (with the natural pre-topological structure of all subsets), all sets are linked
 - all dichotomizations are allowable (the same as in earlier publications, but now derived from the general principle)
Allowable Coarse-grainings Examples

Categorical Random Variables

- For categorical random variables (with the natural pre-topological structure of all subsets), all sets are linked
 - all dichotomizations are allowable (the same as in earlier publications, but now derived from the general principle)

• In a psychophysical experiment², subject identified position of visual object as

center, left, right, up, or down: *

- Result 5-valued random variable with certain spatial structure.
- Model spatial structure with value space E = 2
 - linked sets are connected subgraphs (pre-topology generated from edges of the graph)
 - all dichotomizations (and coarse-grainings) are allowable except for those that lump together {1,5} or {2,4} without any of the other points that would make the set linked.

²Dzhafarov & Cervantes. True contextuality in a psychophysical experiment. Journal of Mathematical Psychology 91, 119-127 (2019).

• In a psychophysical experiment², subject identified position of visual object as

center, left, right, up, or down: *

- Result 5-valued random variable with certain spatial structure.
- Model spatial structure with value space E = 2 3
 - linked sets are connected subgraphs (pre-topology generated from edges of the graph)
 - all dichotomizations (and coarse-grainings) are allowable except for those that lump together {1,5} or {2,4} without any of the other points that would make the set linked.

²Dzhafarov & Cervantes. True contextuality in a psychophysical experiment. Journal of Mathematical Psychology 91, 119-127 (2019).

• In a psychophysical experiment², subject identified position of visual object as

center, left, right, up, or down: | * * *

- Result 5-valued random variable with certain spatial structure.
- Model spatial structure with value space E = 2 3 4
 - linked sets are connected subgraphs (pre-topology generated from edges of the graph)
 - all dichotomizations (and coarse-grainings) are allowable except for those that lump together $\{1,5\}$ or $\{2,4\}$ without any of the other points that would make the set linked.

²Dzhafarov & Cervantes. True contextuality in a psychophysical experiment. Journal of Mathematical Psychology 91, 119-127 (2019).

• In a psychophysical experiment², subject identified position of visual object as

center, left, right, up, or down: | * * *

- Result 5-valued random variable with certain spatial structure.
- Model spatial structure with value space E = 2 3 4
 - linked sets are connected subgraphs (pre-topology generated from edges of the graph)
 - all dichotomizations (and coarse-grainings) are allowable except for those that lump together {1,5} or {2,4} without any of the other points that would make the set linked.

²Dzhafarov & Cervantes. True contextuality in a psychophysical experiment. Journal of Mathematical Psychology 91, 119-127 (2019).

• For real-valued random variables (with the natural pre-topological structure based on open intervals)

• allowable dichotomizations are cuts $[R_q^c \le x]$ (or $[R_q^c < x]$) for all cut-points $x \in \mathbb{R}$ (only one of the two kinds of cuts are needed, the other is redundant)

Theorem

The split representation of a single original column $\mathcal{R} = \{R^c : c = 1, ..., n\}$ based on cuts is always noncontextual.

Proof.

The required coupling is $\{S_x^c : c = 1, ..., n\}$, where $S_x^c = [F_c^{-1}(U) \le x]$, U is a [0,1]-uniform random variable, and F_c^{-1} is the quantile function of R^c .

- For real-valued random variables (with the natural pre-topological structure based on open intervals)
 - allowable dichotomizations are cuts $[R_q^c \le x]$ (or $[R_q^c < x]$) for all cut-points $x \in \mathbb{R}$ (only one of the two kinds of cuts are needed, the other is redundant)

Theorem

The split representation of a single original column $\mathcal{R} = \{R^c : c = 1, ..., n\}$ based on cuts is always noncontextual.

Proof.

The required coupling is $\{S_x^c : c = 1, ..., n\}$, where $S_x^c = [F_c^{-1}(U) \le x]$, U is a [0,1]-uniform random variable, and F_c^{-1} is the quantile function of R^c .

- For real-valued random variables (with the natural pre-topological structure based on open intervals)
 - allowable dichotomizations are cuts $[R_q^c \le x]$ (or $[R_q^c < x]$) for all cut-points $x \in \mathbb{R}$ (only one of the two kinds of cuts are needed, the other is redundant)

Theorem

The split representation of a single original column $\mathcal{R} = \{R^c : c = 1, ..., n\}$ based on cuts is always noncontextual.

Proof.

The required coupling is $\{S_x^c : c = 1, ..., n\}$, where $S_x^c = [F_c^{-1}(U) \le x]$, U is a [0,1]-uniform random variable, and F_c^{-1} is the quantile function of R^c .

- For real-valued random variables (with the natural pre-topological structure based on open intervals)
 - allowable dichotomizations are cuts $[R_q^c \le x]$ (or $[R_q^c < x]$) for all cut-points $x \in \mathbb{R}$ (only one of the two kinds of cuts are needed, the other is redundant)

Theorem

The split representation of a single original column $\mathcal{R} = \{R^c : c = 1, ..., n\}$ based on cuts is always noncontextual.

Proof.

The required coupling is $\{S_x^c : c = 1, ..., n\}$, where $S_x^c = [F_c^{-1}(U) \le x]$, U is a [0,1]-uniform random variable, and F_c^{-1} is the quantile function of R^c .

Allowable Coarse-grainings Examples

Real-valued Random Variables

The split representation of a column \mathcal{R} is noncontextual iff there exists a coupling S of \mathcal{R} where for all c, c', the pair $(S^c, S^{c'})$ is supported in the set illustrated below:

- CbD requires every random variable in a system to be represented by equivalent set of dichotomous random variables
- We have presented general principles that justify the use of dichotomizations and determine their choice, based on respecting the "topological" structure of the value-spaces
- Enables treatment of systems of real-valued random variables
 - includes continuous and discrete linearly ordered variables such as spin measurements with ordering $\left(-\frac{1}{2},\frac{1}{2}\right)$ for spin-1/2 particles, $\left(-1,0,1\right)$ for spin-1 particles, $\left(-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}\right)$ for spin 3/2-particles, etc
 - virtually all measurements in physics can be modeled using real-valued random variables.
- For more details:
 - Janne V. Kujala and Ehtibar N. Dzhafarov: Contextuality and dichotomizations of random variables, https://arxiv.org/abs/2105.03718

- CbD requires every random variable in a system to be represented by equivalent set of dichotomous random variables
- We have presented general principles that justify the use of dichotomizations and determine their choice, based on respecting the "topological" structure of the value-spaces
- Enables treatment of systems of real-valued random variables
 - includes continuous and discrete linearly ordered variables such as spin measurements with ordering $\left(-\frac{1}{2},\frac{1}{2}\right)$ for spin-1/2 particles, $\left(-1,0,1\right)$ for spin-1 particles, $\left(-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}\right)$ for spin 3/2-particles, etc
 - virtually all measurements in physics can be modeled using real-valued random variables.
- For more details:
 - Janne V. Kujala and Ehtibar N. Dzhafarov: Contextuality and dichotomizations of random variables, https://arxiv.org/abs/2105.03718

- CbD requires every random variable in a system to be represented by equivalent set of dichotomous random variables
- We have presented general principles that justify the use of dichotomizations and determine their choice, based on respecting the "topological" structure of the value-spaces
- Enables treatment of systems of real-valued random variables
 - includes continuous and discrete linearly ordered variables such as spin measurements with ordering $(-\frac{1}{2}, \frac{1}{2})$ for spin-1/2 particles, (-1, 0, 1) for spin-1 particles, $(-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2})$ for spin ³/₂-particles, etc
 - virtually all measurements in physics can be modeled using real-valued random variables.
- For more details:
 - Janne V. Kujala and Ehtibar N. Dzhafarov: Contextuality and dichotomizations of random variables, https://arxiv.org/abs/2105.03718

- CbD requires every random variable in a system to be represented by equivalent set of dichotomous random variables
- We have presented general principles that justify the use of dichotomizations and determine their choice, based on respecting the "topological" structure of the value-spaces
- Enables treatment of systems of real-valued random variables
 - includes continuous and discrete linearly ordered variables such as spin measurements with ordering $\left(-\frac{1}{2},\frac{1}{2}\right)$ for spin-1/2 particles, $\left(-1,0,1\right)$ for spin-1 particles, $\left(-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}\right)$ for spin 3/2-particles, etc
 - virtually all measurements in physics can be modeled using real-valued random variables.
- For more details:
 - Janne V. Kujala and Ehtibar N. Dzhafarov: Contextuality and dichotomizations of random variables, https://arxiv.org/abs/2105.03718

- CbD requires every random variable in a system to be represented by equivalent set of dichotomous random variables
- We have presented general principles that justify the use of dichotomizations and determine their choice, based on respecting the "topological" structure of the value-spaces
- Enables treatment of systems of real-valued random variables
 - includes continuous and discrete linearly ordered variables such as spin measurements with ordering $\left(-\frac{1}{2},\frac{1}{2}\right)$ for spin-1/2 particles, $\left(-1,0,1\right)$ for spin-1 particles, $\left(-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}\right)$ for spin 3/2-particles, etc
 - virtually all measurements in physics can be modeled using real-valued random variables.
- For more details:
 - Janne V. Kujala and Ehtibar N. Dzhafarov: Contextuality and dichotomizations of random variables, https://arxiv.org/abs/2105.03718

- CbD requires every random variable in a system to be represented by equivalent set of dichotomous random variables
- We have presented general principles that justify the use of dichotomizations and determine their choice, based on respecting the "topological" structure of the value-spaces
- Enables treatment of systems of real-valued random variables
 - includes continuous and discrete linearly ordered variables such as spin measurements with ordering $\left(-\frac{1}{2},\frac{1}{2}\right)$ for spin-1/2 particles, $\left(-1,0,1\right)$ for spin-1 particles, $\left(-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}\right)$ for spin 3/2-particles, etc
 - virtually all measurements in physics can be modeled using real-valued random variables.
- For more details:
 - Janne V. Kujala and Ehtibar N. Dzhafarov: Contextuality and dichotomizations of random variables, https://arxiv.org/abs/2105.03718