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Sheaf-theoretic contextuality

Sheaf-theoretic Contextuality
Contextuality can be seen as the impossibility to find a global
section of the presheaf:

DRE : P(X)op → Set (1)

which is compatible with observations.

Logical/Possibilistic Contextuality
In some systems, only the support of the distributions is needed to
show contextuality

Framework only works for no-signalling systems
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Contextuality-by-Default

Motivation for Contextuality-by-Default (CbD)

• Measurements between contexts are fundamentally unrelated
• Maximise the probability of agreement between contents (“local
measurement”)

• Allows systems to be signalling

• More general definition of contexts
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Contextuality-by-Default

Cyclic systems
Definition
A system is a cyclic system if every content if binary, if every context
contains exactly 2 contents, and every content is contained in
exactly 2 contexts.

(Non)Contextuality criterion for cyclic systems
A cyclic system is non-contextual within the CbD framework iff:

sodd
(〈
RiiRii⊕1

〉)
i=1,...,n

≤ n− 2+∆ (1)

where:

∆ =
n∑
i=1

∣∣∣〈Rii〉−
〈
Ri⊖1i

〉∣∣∣ (2)
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Contextuality-by-Default

Direct influences via M-Contextuality
C

Λ

Fq
1

. . .Fq
2

Fq
n

Canonical model

Direct Influence
Given a pair of contexts c, c′ in a
given canonical model, the direct
influence on content variable Fq is
quantified as:

∆c,c′ (Fq) = Pr [λ|Fq(λ, c) ̸= Fq(λ, c′)]
(1)
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Contextuality-by-Default

Direct influences via M-Contextuality
M-Contextuality
A system is contextual is there is no canonical model which
simulteneously minimises all direct influences.

M-Contextuality and CbD
• M-Contextuality is equivalent to CbD-contextuality
• If ∆∗

cq,c′q (Fq) is the minimal direct influence across all canonical
models:

∆ = 2
∑
q
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Ambiguity in Natural Language

Lexical Ambiguity
• The beach was mined
• I saw a log
• They can fish

Syntactic Ambiguity

• I shot an elephant in my pyjamas (Attachment ambiguity)
• He bought blue socks and hats (Scope ambiguity)

Co-reference Ambiguity
• John put the bowl on the plate and it broke
• The man couldn’t lift his son because he was so weak.
(Winograd challenge)
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Homonymy and Polysemy

Difference in processing

• Homonymous words VS polysemous words:
• Frequency effect in homonymous words: Most common activated
first

• Context effect: Context can change the activation weights
• Verbs VS Nouns:

• Nouns: disambiguation happens when disambiguating context is
given;

• Verbs: wait to know its arguments first (for homonymous verbs) or
end of clause/sentence (for polysemous verbs).
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Logical contextuality

Bell scenarios in Natural Language

:

Agent A Agent B

SV∗
∗ subject-verb

Initial state

Meaning interaction/
measurementchoice Bchoice A

Outcome collection
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Logical contextuality

Bell scenarios in Natural Language

:

Agent A Agent B

SV∗
∗ subject-verb

choice Bboxer

Possible outcomes for boxer

0

1
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Logical contextuality

Bell scenarios in Natural Language : Possibilistic models
Agent A Agent B

SV∗
∗ subject-verb

choice Bchoice A

subject verb (0,0) (0,1) (1,0) (1,1)
coach lap 1 1 1 0
coach file 1 1 0 0
boxer lap 1 1 1 1
boxer file 1 1 0 0
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Contextuality-by-Default contextuality

Adopting boxers and Boxers adopting

Adopt Boxer

0
They are thinking
about adopting a
child

The heavyweight
boxer won the
fight

1
They are thinking
about adopting a
new policy

The boxer dog
barked.

(adopt, boxer) (0,0) (0,1) (1,0) (1,1)
adopt boxer 0 29/30 1/30 0
boxer adopts 1/4 0 0 3/4

• Contextual!

2 > 28/15

• Contextuality measure: 1/30
• Non-contextuality
probability: > 0.56
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Contextuality-by-Default contextuality

Throwing pitchers and Pitchers throwing

Throw Pitcher

0
She threw the
ball across the
field.

The pitcher was
filled with water.

1 They are throw-
ing a party.

In baseball,
pitchers usually
bats as well.

(throw, pitcher) (0,0) (0,1) (1,0) (1,1)
throw pitcher 2/5 0 1/10 1/2
pitcher throws 0 2/3 1/3 0

• Also contextual!

9/5 > 13/15

• Contextuality measure: 7/30
• Non-contextuality
probability: > 0.08
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Beyond contextuality: analysis of
signalling



Analysis of signalling

• Models considered are signalling

• Contextuality-by-Default and M-contextuality offers a way to
quantify the degree of signalling

Motivation
Can we use the “measures” of signalling to detect context effects in
natural language?

• Focus on cyclic models of rank 2

• Compare the data for models in the following categories:
Verbs with multiple meanings - Noun with multiple meanings
Verbs with multiple meanings - Noun with multiple senses
Verbs with multiple senses - Noun with multiple meanings
Verbs with multiple senses - Noun with multiple senses
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Degree of signalling (∆)
• Average essentially equal across different classes

PPPPPPPPPNouns
Verbs

Meanings Senses Overall

Meanings 1.24± 0.29 1.36± 0.15 1.33± 0.14
Senses 1.50± 0.43 1.38± 0.36 1.41± 0.29
Overall 1.30± 0.25 1.36± 0.14 1.35± 0.12

• Small disparities in standard deviations
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Degree of signalling (∆)
• Average essentially equal across different classes
• Small disparities in standard deviations

Classes of models SD
Verbs with multi. meanings 1.04
Verbs with multi senses 1.20

Nouns with multi meanings 1.18
Nouns with multi senses 1.11
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Conclusions and implications

• Natural Language exhibits contextuality in a way that is similar
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Future work

• Collect human judgements

• Analysis of signalling: add causality in the equation

• Is our data compatible with certain causal structure?
• Which ones and why?

• Use contextuality analysis to further the analogy with the work
from psycholinguistics

• Frequency effect (dominant VS subordinate interpretations)
• Priming context VS no priming context
• Garden path sentences
e.g. The old man the boat

• Senses following rules
e.g. chicken (animal)→ chicken(meat)
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