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Introduction

• The common interpretation of the Kochen-Specker theorem denies the pre-existing value
of an observable. Is the outcome of a measurement the result of the observer’s personal
gambling?

• Suppose that two observers simultaneously measure the same observable. Then it is
predicted that their probability distributions are the same. Are the outcomes identical
and perfectly correlated, or different and uncorrelated?

• Here, we shall show that quantum mechanics answers the question, so that only the first
case occurs.

• This suggests that the common outcome of the two measurements reveals the value pre-
existed before the measurement.

• Indeed, we show that the state-dependent approach enables quantum mechanics to an-
swer the question: there is a time-like perfect correlation between the observable just
before the measurement and the meter just after the measurement.
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Postulates for Quantum Mechanics

(P1) Quantum systems ↔ Hilbert spaces; Observables ↔ self-adjoint operators; States ↔
unit vectors.

(P2) Born formula for commuting observables: For any commuting observablesX,Y ,

Pr{X = x, Y = y‖Ψ} = 〈Ψ|PX(x)P Y (y)|Ψ〉. (1)

(P3) Schrödinger-Heisenberg time-evolution: For any commuting observablesX,Y ,

Pr{X(t) = x, Y (t) = y‖Ψ} = 〈U(t)Ψ|PX(x)P Y (y)|U(t)Ψ〉 (2)

= 〈Ψ|PX(t)(x)P Y (t)(y)|Ψ〉, (3)

whereU(t) = e−itH/h̄ for the HamiltonianH of the system, andX(t) = U(t)†XU(t)

and Y (t) = U(t)†Y U(t).
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Observer Independence of the Outcomes of Measurements

• S: the system to be measured described by a Hilbert space H.

• E: the environment described by a Hilbert space K.

• A: an observable of S to be measured.

• M1, M2: two commuting observables in E representing the meters of the two remote
observers.

The time evolution of the total system with the total Hamiltonian H on H ⊗ K deter-
mines the Heisenberg operatorsA(0),Mj(t), (j = 1, 2) with 0 < t, where

A(0) = A⊗ I, (4)

Mj(t) = U(t)†(I ⊗Mj)U(t), (5)

U(t) = exp(−itH/h̄). (6)
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• Let ψ and ξ be the initial state of the system S and the environment E. The POVMs of
the two observers are defined by

Πj(y) = 〈ξ|PMj (t)(y)|ξ〉. (7)

• Observer j obtains the outcome x in the system state ψ with the probability

Pr{Mj(t) = x‖ψ ⊗ ξ} = 〈ψ|Πj(x)|ψ〉. (8)

• Then our sole assumption is that the two observers reproduce the probability distribu-
tion ofA correctly; namely, we require

Pr{Mj(t) = x‖ψ ⊗ ξ} = Pr{A(0) = x‖ψ ⊗ ξ}. (9)

• Equivalently,
Πj(x) = PA(x). (10)
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• SinceM1(t) andM2(t) commute, their joint probability distribution in the initial state
ψ ⊗ ξ is given by

Pr{M1(t) = x,M2(t) = y‖ψ ⊗ ξ} = 〈ψ ⊗ ξ|PM1(t)(x)PM2(t)(y)|ψ ⊗ ξ〉 (11)

for all x, y ∈ R. Thus, quantum mechanics can answer whether the above JPD is per-
fectly correlated or uncorrelated.

• Theorem 1. The outcomes of the measurements of A by the two observers are identical,
i.e.,

Pr{M1(t) = x,M2(t) = y‖ψ ⊗ ξ} = 0 (12)

if x 6= y.

• The proof is based on the theory of quantum perfect correlations developed in [M.
Ozawa, Quantum perfect correlations, Ann. Phys. (N.Y.) 321, 744-769 (2006)].
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Value Reproducibility of Quantum Measurements

• Theorem 1 suggests that the measurement reproduces the pre-existing value, i.e.,

Pr{A(0) = x,Mj(t) = y‖ψ ⊗ ξ} = 0 (13)

if x 6= y, where j = 1, 2.

• There is a difficulty in the above formula, since A(0) and Mj(t) are not necessarily
commuting.

• However, we shall show that A(0) and Mj(t) are essentially commuting, and Eq. (13)
actually makes sense to hold.
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State-Dependent Commutativity

• von Neumann (1932; English ed. p. 230) observed that any observables X and Y are
commuting on the subspace M(X,Y ) generated by the common eigenstates of X and
Y .

• Definition. We say that X and Y are commuting in a state Ψ (X ↔Ψ Y ) iff
Ψ ∈ M(X,Y ).

• Definition. µ(x, y) is a joint probability distribution (JPD) of X,Y in Ψ iff

〈Ψ|f(X,Y )|Ψ〉 =
∑
x,y f(x, y)µ(x, y) (14)

for any polynomial f(X,Y ).
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• Theorem 2. The following conditions are equivalent.

(i)X ↔Ψ Y .

(ii) [PX(x), P Y (y)]Ψ = 0 for any x, y ∈ R.

(iii) JPD µ ofX,Y in Ψ exists.

(iv) Ψ is a superposition of common eigenstates, i.e., Ψ =
∑
x,y cx,y |X = x, Y = y〉.

(v)
∑
x,y P

X(x) ∧ P Y (y)Ψ = Ψ.

In this case, we obtain

µ(x, y) = |cx,y|2 = 〈Ψ|PX(x)P Y (y)|Ψ〉 = 〈Ψ|PX(x) ∧ P Y (y)|Ψ〉. (15)

• State-Dependent Born Formula: IfX ↔Ψ Y , we define

Pr{X = x, Y = y‖Ψ} = 〈Ψ|PX(x)P Y (y)|Ψ〉. (16)
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Quantum Perfect Correlations

• Definition (MO 2006): We say thatX,Y are perfectly correlated in a state Ψ (X =Ψ Y )
iff X ↔Ψ Y and Pr{X = x, Y = y‖Ψ} = 0 if x 6= y.

• Theorem 3 (MO 2006). The following conditions are equivalent.

(i)X =Ψ Y .

(ii) Ψ is a superposition of common eigenstates of X and Y with common eigenvalues,
i.e., Ψ =

∑
x cx |X = x, Y = x〉.

(iii)
∑
x P

X(x) ∧ P Y (x)ψ = ψ.

• Theorem 4 (MO2006). The relation =Ψ is an equivalence relation. In particular, it is
transitive, i.e., ifX =Ψ Y and Y =Ψ Z, thenX =Ψ Z.
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From Value Reproducibility to Observer Independence

• Theorem 5 (MO2006). If a measurement of A with the meter M(t) has the correct
POVM Π, i.e., Π = PA, then the value reproducibility holds, i.e.,

A(0) =ψ⊗ξ M(t) (17)

for all ψ.

• Proof of Theorem 1: From Theorem 5, we have

M1(t) =ψ⊗ξ A(0) and A(0) =ψ⊗ξ M2(t). (18)

By transitivity, we have
M1(t) =ψ⊗ξ M2(t). (19)

Thus, we have

Pr{M1(t) = x,M2(t) = y‖ψ ⊗ ξ} = 0 (20)

if x 6= y for all ψ.
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Conclusion

• The Kochen-Specker theorem denies the “non-contextual” pre-existing value. Neverthe-
less, the outcomes of simultaneous measurements by remote observers of an observable
is always unique and observer independent, shown as the space-like perfect correlation
between the two outcomes.

• This suggests the existence of the “pre-existing value” as a common cause for the coinci-
dence of outcomes of remote observers.

• The state-dependent approach to quantum mechanics can indeed prove that the mea-
surement reveals the “contextual” pre-existing value, as the time-like perfect correlation
between the observable just before the measurement and the meter just after the mea-
surement.

• Here, the “context” is brought by the measuring interaction that makes the time-like
perfect correlation between the observable and the meter. The value of an observable is
thus defined by the measuring arrangement as Bohr claimed long ago.
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