
1/26

JJ
II
J
I

Back

Close

May

USA

.

Andrei Khrennikov

Center Math Modeling in Physics and Cognitive
Sciences, Linnaeus University, Växjö , Sweden
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Quantum contextualitieS

Contextuality has a variety of interpretations associated with their

inventors, say Bohr, Bell, Kochen and Specker, Cabello, and recently

Dzhafarov.

In fact, Bohr was the first who pointed to contextuality of quantum

measurements as a part of formulation of his principle of complemen-

tarity. (Instead of “contextuality”, he considered dependence on “ex-

perimental conditions.”) But contextuality counterpart of the comple-

mentarity principle was overshadowed by the issue of incompatibility of

observables.

Interest for contextuality of quantum measurements rose again only in

connection with the Bell inequality. The original Bohr’s contextuality, as

contextuality of each quantum measurement, was practically forgotten.
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Bohr’s viewpoint on contextuality of quantum measurements was high-

lighted in my works, with applications both to physics and cognition.

Khrennikov, A. Contextual Approach to Quantum Formalism; Springer:

Berlin, Germany; New York, NY, USA, 2009.

Khrennikov, A. (2010). Ubiquitous quantum structure: from psy-

chology to finances; Springer: Berlin-Heidelberg-New York.

In this talk, the theory of open quantum systems is applied to for-

malization of Bohr’s contextuality within the the scheme of indirect

measurements. This scheme is widely used in quantum information

theory and it leads to the theory of quantum instruments (Davis-Lewis-

Ozawa). In this scheme, Bohr’s viewpoint on contextuality of quantum

measurements is represented in the formal mathematical framework.
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Bohr’s contextuality has the clear physical meaning

“Strictly speaking, the mathematical formalism of quantum me-

chanics and electrodynamics merely offers rules of calculation for

the deduction of expectations pertaining to observations obtained

under well-defined experimental conditions specified by clas-

sical physical concepts.”

Instead of “contextuality”, he considered dependence on “experimen-

tal conditions.” (We remark that neither Bell nor Kochen and Specker

operated with the notion of contextuality. It was invented later by Bel-

trametti and Cassinelli.)
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Bell, Kochen-Specker and their followers considered a variety of “deriva-

tives” of Bohr’s contextuality related to the very special case of joint

measurement of pairs of compatible observables.

Joint-measurement contextuality: If A,B,C are three

quantum observables, such that A is compatible with B

and C, a measurement of A might give different result

depending upon whether A is measured with B or with

C.

This formulation is based on counterfactual argument and from my

viewpoint it cannot be tested experimentally, so it has no relation to

physics. (But, Svozil and Griffiths claimed that they elaborated experi-

mental tests for joint-measurement contextuality.)

This formulation due to Bell who tried in this way to find an alternative

to nonlocality in explaining violation of his inequality. Cabello widely

advertized identification of contextuality with violation of the Bell type

ineqialities, so called noncontextual inequalities.
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Bohr-contextuality is experimentally tested through in-

compatibility and theoretically it is formulated in terms

of commutators. The basic test is based on the Heisenberg uncer-

tainty relation in its general form of the Schrödinger-Robertson inequal-

ity.

Cabello-contextuality can be tested experimentally in experiments by

demonstration of violation of various noncontextual inequalities.
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Contextuality component of Bohr’s principle of comple-

mentarity

We follow my previous works devoted to Bohr’s principle of comple-

mentarity and its contextual component. We start with the well known

citate of Bohr ([?], v. 2, p. 40-41):

“This crucial point ... implies the impossibility of any sharp sepa-

ration between the behaviour of atomic objects and the interaction

with the measuring instruments which serve to define the condi-

tions under which the phenomena appear. In fact, the individuality

of the typical quantum effects finds its proper expression in the circum-

stance that any attempt of subdividing the phenomena will demand a

change in the experimental arrangement introducing new possibilities of

interaction between objects and measuring instruments which in prin-

ciple cannot be controlled. Consequently, evidence obtained under dif-

ferent experimental conditions cannot be comprehended within a single

picture ... .”
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The contextual component of this statement can be formulated as

Principle 1 (Contextuality) The output of any quantum

observable is indivisibly composed of the contributions of

the system and the measurement apparatus.

• There is no reason to expect that all experimental contexts can

be combined and all observables can be measured jointly.

• Hence, incompatible observables (complementary experimental

contexts) may exist.

• Moreover, they should exist, otherwise the contextuality principle

would have the empty content.

• Really, if all experimental contexts can be combined into single

context C and all observables can be jointly measured in this

context, then the outputs of such joint measurements can be

assigned directly to a system.

• To be more careful, we have to say: “assigned to a system and

context −C ′′. But, the latter can be omitted, since this is the

same context for all observables.
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The above reasoning implies:

Principle 2 (Incompatibility) There exist incompatible

observables (complementary experimental contexts).

Since both principles, contextuality and ncompatibility, are so closely

interrelated, it is natural to unify them into the single principle, Contextuality-

Incompatibility principle.

This is my understanding of the Bohr’s Complementarity principle.
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Indirect measurement scheme: apparatus with meter

interacting with a system

This scheme represents Bohr’s framework - the outcomes of measure-

ments are created in the process of the interaction of a system S with a

measurement apparatus M. The latter is combined of a complex phys-

ical device interacting with S and a pointer showing the outcomes of

measurements; for example, it can be the “spin up or spin down” arrow.

The system S by itself is not approachable by the observer who can see

only the pointer of M. Then the observer associates pointer’s outputs

with the values of measured observable A for the system S.
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The indirect measurement scheme can be represented as the block of

following interrelated components:

• the states of the systems S and the apparatus M ; they are

represented in complex Hilbert spaces H and K, respectively;

• the unitary operator U representing the interaction-dynamics for

the compound system S +M ;

• the meter observable MA giving outputs of the pointer of the

apparatus M.
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It is assumed that the compound system S + M is isolated. The

dynamics of pure states of the compound system is described by the

Schrödinger equation:

(1) i
d

dt
|Ψ〉(t) = H|Ψ〉(t), |Ψ〉(0) = |Ψ〉0,

where H is it Hamiltonian (generator of evolution) of S + M . The

state |Ψ〉(t) evolves as

|Ψ〉(t) = U(t)|Ψ〉0,

where U(t) is the unitary operator represented as

U(t) = e−itH.

Hamiltonian (evolution-generator) describing information interactions

has the form

H = HS ⊗ I + I ⊗HM +HS,M ,
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The Schrödinger equation implies that evolution of the density oper-

ator R(t) of the system S + M is described by the von Neumann

equation:

(2)
dR

dt
(t) = −i[H,R(t)], R(0) = R0.

However, the state R(t) is too complex to be handled consistently: the

apparatus includes many degrees of freedom.
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Suppose an observable on the system S which is represented by Hemi-

tian operator A, acting in system’s state space H. The indirect mea-

surement model for measurement of the A-observable was introduced

by Ozawa in [?] as a “(general) measuring process”; this is a quadruple

(K, σ, U,MA)

consisting of a Hilbert space K, a density operator σ ∈ S(K), a

unitary operator U on the tensor product of the state spaces of S and

M, U : H⊗K → H⊗K, and a Hermitian operator MA on K.

Here K represents the states of the apparatus M , U describes the

time-evolution of system S + M , σ describes the initial state of the

apparatus M before the start of measurement, and the Hermitian oper-

ator MA is the meter observable of the apparatus M (say the pointer

of M). This operator represents indirectly outcomes of an observable

A for the system S.
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The probability distribution Pr{A = x‖ρ} in the system state ρ ∈
S(H) is given by

(3) Pr{A = x‖ρ} = Tr[(I ⊗ EMA(x))U(ρ⊗ σ)U?],

where EMA(x) is the spectral projection of MA for the eigenvalue x.

We reall that operator MA is Hermitian. In the finite dimensional case,

it can be represented in the form:

(4) MA =
∑
k

xkE
MA(xk),

where (xk) is the set of its eigenvalues and EMA(xk) is the projector

on the subspace of eigenvectors corresponding to eigenvalue xk.
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The change of the state ρ of the system S caused by the measurement

for the outcome A = x is represented with the aid of the map IA(x)

in the space of density operators defined as

(5) IA(x)ρ = TrK[(I ⊗ EMA(x))U(ρ⊗ σ)U?],

where TrK is the partial trace overK. The map x 7→ IA(x) is a quan-

tum instrument. We remark that conversely any quantum instrument

can be represented via the indirect measurement model (see Ozawa).
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Bohr’s contextuality from the indirect measurement scheme

We take the basic part of the aforementioned citate of Bohr: “.. the

impossibility of any sharp separation between the behaviour of atomic

objects and the interaction with the measuring instruments” and estab-

lish correspondence with the indirect measurement scheme.

• “atomic object” - state ρ;

• “measuring instrument” - state σ;

• “interaction” - unitary operator U.
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The triple C = (ρ, σ, U) represents the complex of the “experi-

mental conditions”, the context of measurement.

The interrelation between contextuality (in Bohr’s sense) and incom-

patibility is completely clear: incompatibility is so to say the “derivative”

of contextuality.

There is no reason to expect that any pair of contexts, C1 = (ρ1, σ1, U1)

and C2 = (ρ2, σ2, U2) can be unified in the joint measurement

scheme, even if ρ1 = ρ2 = ρ.

Thus, for the fixed system’s state measurement context is given by

the pair C′ = (σ,U). For a macroscopic apparatus, we can assume

that its state is also fixed. So, the main characteristic of a context is

the system-apparatus interaction U.

Since for the same observable A interactions can be different, quan-

tum mechanics is contextual in the Bohr’s sense.
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Can here be given any meaning to Cabello-contextuality

without incompatibility?

Bohr’s contextuality is the genuine measurement contextuality.

Complementarity is its consequence.

We claim that ”under natural conditions” Cabello-contextuality (=

violation of noncontextual inequalities) is the same as complementarity

– for quantum observables!

A. Khrennikov, Can here be given any meaning to contextuality with-

out incompatibility? Int. J. Theor. Phys.; https://doi.org/10.1007/s10773-

020-04666-z

In this sense, there is no meaning to check these inequalities at all!

Since we know from Heisenberg that incompatible quantum observables

exist.
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CHSH in the noncontextual framework:

(6) |〈X1X2〉+ 〈X2X3〉+ 〈X3X4〉 − 〈X4X1〉| ≤ 2.

Since we work with quantum observables, we proceed under the com-

patibility assumption

(7)

[X̂1, X̂2] = 0, [X̂3, X̂2] = 0, [X̂3, X̂4] = 0, [X̂1, X̂4] = 0.

Now set

(8) M̂13 = i[X̂1, X̂3] and M̂34 = i[X̂2, X̂4].

These are Hermitian operators, so they represent some quantum observ-

ables M13 and M34. We remark that these observables are compatible:

(9) [M̂13, M̂34] = 0.
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Theorem 1. Condition

(10) M̂13 ◦ M̂34 6= 0.

is necessary and sufficient for violation of the noncontextuality

inequality (6) for some quantum state.

Proof’s scheme. Consider the operator

(11) Γ̂ = X̂1X̂2 + X̂2X̂3 + X̂3X̂4 − X̂4X̂1.

Then we have

(12) Γ̂2 = 4 + [X̂1, X̂3][X̂2, X̂4] = 4 + M̂13M̂34.

Then it is easy to show that ‖Γ̂2‖ > 4, if and only if condition (10)

holds.
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Finally, we note that

(13) sup
‖ψ‖=1

|〈ψ|Γ̂|ψ〉 = ‖Γ̂‖ =

√
‖Γ̂2‖.

We remark that condition (10) is trivially satisfied for incompatible

observables, if the state space and observables have the tensor product

structure: H = H13 ⊗H24 and

(14) X̂i = X̂i ⊗ I, X̂j = I ⊗ X̂j,

where

(15) X̂i : H13 → H13, i = 1, 3, X̂j : H24 → H44, j = 2, 4.

Here condition (10) is reduced to incompatibility condition:

(16) [X̂i, : X̂j] 6= 0, i = 1, 3; j = 2, 4.
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In particular, for compound systems, contextuality (“non-

locality”) is exactly incompatibility.

The same is valid for any tensor decomposition of the state space of a

single quantum system with observables of the type (14). In the tensor

product case, contextuality without incompatibility leads to the notion

with the empty content.

But, it may happen thatXi-observables, i = 1, 3, andXj-observables,

j = 2, 4, are not connected via the tensor product structure. In this

case, the interpretation of constraint (10) is nontrivial.

What is its physical meaning?

I have no idea.
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A. Khrennikov, Get rid of nonlocality from quantum physics. Entropy,

21(8), 806 (2019).

The same reasoning leads to conclusion that nonlocality is apparent,

it is just another word for incompatibility.
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Bell, J.S. On the problem of hidden variables in quantum theory. Rev.

Mod. Phys. 1966, 38, 450.


