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CSW Graph Approach

and 12 cliques of size 4 (sets of four pairwise adjacent
vertices).
Similarly, in the Klyachko-Can-Binicioğlu-Shumovsky

(KCBS) contextuality experiment [9,25] there are five tests
i ¼ 0 ;…; 4 with two possible outcomes 0 and 1, and the
experiment consists of performing the five pairs of tests
(i, iþ 1), with the sum modulo 5, on systems in the same
quantum state. The exclusivity graph of the KCBS experi-
ment GKCBS is shown in Fig. 1(b). It has 20 vertices and 15
cliques of size 4.
The correlations in any Bell or NC inequality are

expressed as a linear combination of probabilities of a
subset of events of the corresponding experiment. The fact
that the sum of probabilities of outcomes of a test is 1 can
be used to express these correlations as a positive linear
combination of probabilities of events, S¼

P
iwiPðeiÞ,

with wi > 0 . For example, the CHSH and KCBS inequal-
ities can be expressed [28], respectively, as

SCHSH ¼
X3

i¼0

X

a;b

Pða; bji; iþ 1Þ ≤
LHV

3 ; (1a)

SKCBS ¼
X4

i¼0

Pð0 ; 1ji; iþ 1Þ ≤
NCHV

2 ; (1b)

where the second sum in Eq. (1a) is extended to a, b∈
f0 ; 1g with a ¼ b if i ≠ 2 and a ≠ b if i ¼ 2 , the sum in
iþ 1 is taken modulo 4 in Eq. (1a) and modulo 5 in
Eq. (1b), and LHV and NCHV denote local and non-
contextual hidden variables, respectively. Although in these
examples all probabilities have weight 1, each probability

PðeiÞ may have a different weight wi. A vertex-weighted
graph (G, w) is a graph G with vertex set V and weight
assignment w∶V → Rþ.
We can associate to Sa vertex-weighted graph (G, w),

where G ⊆ G and i ∈ V represents event ei such that PðeiÞ
is in S, adjacent vertices represent exclusive events, and the
vertex weights represent the weights wi of the probabilities
PðeiÞ. We will call (G, w) the exclusivity graph of S. The
exclusivity graphs of SCHSH and SKCBS are represented in
Figs. 1(a) and 1(b), respectively.
In order to define a general class of theories assigning

probabilities to events, we will consider theories satisfying
the following principle: The sum of probabilities of any set
of pairwise exclusive events cannot be higher than 1. This
class has been previously considered in [29,30]. Specker
noticed that classical and QT satisfy this principle, but that
there are theories that do not [29,31]. Following [32,33], we
will refer to this principle as the exclusivity principle. We
will denote by E1 those theories satisfying the exclusivity
principle applied to G alone. The index 1 in E1 is used to
distinguish these theories from those satisfying the exclu-
sivity principle applied jointly to G and other independent
graphs [32,33].
We first show that the exclusivity graph of Scan be used

to calculate the limits of the correlations in classical,
quantum, and theories satisfying E1.
Result 1: Given S corresponding to a Bell or NC

inequality, the maximum value of S for classical (LHV
and NCHV) theories, QT, and theories satisfying E1 is
given by

S ≤
LHV;NCHV

αðG;wÞ≤
Q
ϑðG;wÞ ≤

E1
α% ðG;wÞ; (2)

where αðG;wÞ is the independence number of (G, w) [34],
ϑðG;wÞ is the Lovász number of (G, w) [34–36], and
α% ðG;wÞ is the fractional packing number of (G, w)
[34,36,37]. ϑðG;wÞ might be only an upper bound to
the maximum quantum value of S in cases in which the
particular physical settings of the experiment testing Sadd
further constraints.
Proof: The maximum value of Sfor classical theories is

always reached by a model in which each of the tests has a
predefined outcome, i.e., a model in which each of the
events in S has either probability 0 or 1. Since mutually
exclusive events cannot both have probability 1, the
maximum value of S for classical theories occurs when
probability 1 is assigned to each vertex in a set of non-
adjacent vertices in G. A set of nonadjacent vertices is
called an independent or stable set of vertices of G.
Therefore, the maximum of Sfor classical theories is the

maximum of
P

iwi where the maximum is taken over all
stable sets of vertices of G. This is exactly the independ-
ence number of (G, w), denoted as αðG;wÞ [34].
An orthonormal representation (OR) in Rd of a graph G

with vertex set V assigns a nonzero unit vector jvii ∈ Rd to
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FIG. 1. (a) Simplified representation of the exclusivity graph of
the CHSH experiment GCHSH. (b) Idem of the KCBS experiment,
GKCBS. Events are represented by vertices. Here, for simplicity,
sets of pairwise exclusive events are represented by vertices in the
same straight line or circumference rather than by cliques. (a) The
exclusivity graph of SCHSH, denoted as GCHSH, is the induced
subgraph of GCHSH obtained by removing all but the eight black
vertices. An induced subgraph is obtained by selecting a subset of
vertices and their incident edges. We use G instead of (G, w)
whenever vertex weights are all 1. GCHSH is isomorphic to the
eight-vertex circulant (1,4) graph Ci8 ð1; 4 Þ. (b) The exclusivity
graph of SKCBS, denoted as GKCBS, is the induced subgraph of
GKCBS obtained by removing all but the five black vertices.GKCBS
is isomorphic to a five-cycle C5 (i.e., a pentagon).
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which must be removed by applying Fourier-Motzkin (FM)
elimination [41], i.e., by summing inequalities where it appears
with the minus sign with those where it appears with the plus
sign. This step of the proof is a simple application of the
techniques from Ref. [39]. For the convenience of the reader,
details are presented in Appendix A.

We can now proceed by induction on n. The case n =
3 is known. For the inductive step, following the above
argument, we calculate the n-cycle inequalities by combining
the (n − 1)-cycle inequalities for the subset {X0, . . . ,Xn−2}
with the 3-cycle inequalities for {X0,Xn−1,Xn−2}. We apply
FM elimination on the variable ⟨X0Xn−2⟩ from the whole
set of inequalities. All inequalities in (4) are obtained by
combining one inequality for the (n − 1)-cycle with one for
the 3-cycle and are in the right number. Combining two
inequalities for the (n − 1)-cycle, or two for the 3-cycle, gives
a redundant inequality as happens for the combination of
positivity conditions (3) with inequalities of the form (4), the
latter being obtainable as a sum of n − 1 (or three) positivity
conditions. There are no other inequalities. The proof of their
tightness is presented in Appendix B. !

The reader, familiar with Fine’s proof for the 4-cycle [6],
obtained by combining two 3-cycles, may have noticed that
the above is a straightforward generalization.

We can also characterize the vertices of the no-disturbance
polytope.

Theorem 2. The vertices of the no-disturbance polytope are
the 2n noncontextual deterministic correlation vectors,

(⟨X0⟩, . . . ,⟨Xn−1⟩,⟨X0⟩⟨X1⟩, . . . ,⟨Xn−1⟩⟨X0⟩), (5)

where ⟨Xi⟩ = ±1 together with the 2n−1 contextual correlation
vectors of the form

(0, . . . ,0,⟨X0X1⟩, . . . ,⟨Xn−1X0⟩), (6)

where ⟨XiXi+1⟩ = ±1 such that the number of negative
components is odd.

Proof. By definition, the vertices of the polytope are given
by the intersection of 2n independent hyperplanes, i.e., as a
unique solution for a set of 2n independent linear equations
chosen among the 4n equations saturating (3). The above ver-
tices are obtained by choosing two equations among (3a)– (3d)
for each index i. In particular, contextual vertices are obtained
by choosing Eqs. (3a) and (3d) for an odd number of indices i
and Eqs. (3b) and (3c) for the remaining indices. It is straight-
forward to check that all other possible strategies for obtaining
a vertex, i.e., involving the choice of one, two, or three
equations for each index i, give the same set of vertices. !

To summarize our results: The no-disturbance polytope,
defined by the 4n positivity conditions (3), has 2n + 2n−1

vertices of which 2n are noncontextual and 2n−1 are con-
textual. The noncontextuality polytope, defined by the 2n

noncontextual vertices (5), has 4n + 2n−1 facets [it is trivial
to check that inequalities (3) are tight for the noncontextuality
polytope]. Also note that, for each vertex in (6), there exists
an inequality in (4) such that ⟨XiXi+1⟩ = γi , i.e., contextual
vertices and noncontextuality inequalities are in a one-to-one
correspondence.

IV. QUANTUM VIOLATIONS

Here we address the problems of whether quantum
mechanics (QM) violates the inequalities (4), which is the
maximum quantum violation—the Tsirelson bound—and
how to achieve it.

Theorem 3. Quantum mechanics violates the noncontextu-
ality inequalities (4) for any n " 4. The Tsirelson bound is

"QM =
{ 3n cos( π

n
)−n

1+cos( π
n

) for odd n,

n cos
(

π
n

)
for even n.

(7)

Proof. Without loss of generality, we can restrict our
discussion to the inequalities in which, for odd n, γi = −1
for all i and, for even n, γi = −1 for all i except γn−1 = 1.
Using that

±⟨XiXi+1⟩ = 2[p(+ ± |Xi,Xi+1)

+p(− ∓ |Xi,Xi+1)] − 1, (8)

we can rewrite " as 2$ − n, where $ is a sum of probabilities.
Any sum of probabilities is upperbounded in quantum

mechanics by the Lovász ϑ function ϑ(G) of the graph G in
which nodes are the arguments of the probabilities and edges
link exclusive events [e.g., (+ + |X0,X1) and (− − |X1,X2)]
[25].

If n is odd, the graph G associated with $ is the prism
graph of order n, Yn (see Fig. 3). Its ϑ function is

ϑ(Yn) =
2n cos

(
π
n

)

1 + cos
(

π
n

) , (9)

therefore, if n is odd, the Tsirelson bound "QM is up-
perbounded by 2ϑ(Yn) − n. The following quantum state
and observables saturate this bound [24]: |ψ⟩ = (1,0,0) and
Xj = 2|vj ⟩⟨vj | − 1, where |vj ⟩ = (cos θ, sin θ cos[jπ (n −
1)/n], sin θ sin[jπ (n − 1)/n]) and cos2 θ = cos(π/n)/[1 +
cos(π/n)].

For even n, the proof can be obtained simply by noting
that our inequalities are closely related to the Braunstein-
Caves inequalities [42], whose Tsirelson bound was found
in Ref. [43]. A small modification of the proof in Ref. [43]
then suffices. The following quantum state and observables
saturate this bound: |ψ⟩ = (0,1/

√
2, − 1/

√
2,0) and Xj =

X̃j ⊗ 1 for even j and Xj = 1 ⊗ X̃j for odd j , where X̃j =
cos(jπ/n)σx + sin(jπ/n)σz and σx,σz are Pauli matrices.

The calculations for ϑ(Yn) and the proof for even n are
presented in Appendix C. !

It is also interesting to examine the even case with the same
technique we used for the odd case. If n is even, the graph G
associated with $ is the Möbius ladder of order 2n, M2n (see

Y3 Y5M8 M12

FIG. 3. Graphs associated with the sum of probabilities $ in the
tight noncontextuality inequalities for n = 3, . . . ,6.
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CHSH Inequality Graph
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CHSH Inequality Graph

S(GCHSH) = p(v0) + p(v1) + p(v2) + p(v3)+

+p(v4) + p(v5) + p(v6) + p(v7) ≤ 3
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CHSH Inequality Graph

S(GCHSH) = p(v0) + p(v1) + p(v2) + p(v3)+

+p(v4) + p(v5) + p(v6) + p(v7)

v0

v1

v2

v3

v4

v5

v6

v7vi ↦ vi

Orthogonal Representation

vi ∼ vj ⇒ vi ⋅ vj = 0

Handle ψ

p(vi) = |vi ⋅ ψ |2

≤ ϑ(GCHSH) = 2 + 2

Lovász theta Number
Quantum Bound (for the graph)
Quantum Reasoning
Born’s Rule

Lovász, IEEE Trans Inf. Theory 25, 1 Cabello, Severini, Winter, Phys. Rev. Lett. 112, 040401



CHSH Inequality Graph

S(GCHSH) = p(v0) + p(v1) + p(v2) + p(v3)+

+p(v4) + p(v5) + p(v6) + p(v7)

v0

v1

v2

v3

v4

v5

v6

v7vi ↦ Πi

Orthogonal Projective Representation

vi ∼ vj ⇒ ΠiΠj = 0

Handle ψ

p(vi) = Πiψ
2

≤ ϑ(GCHSH) = 2 + 2

Lovász theta Number
Quantum Bound (for the graph)
Quantum Reasoning
Born’s Rule

Rabelo, Duarte, López-Tarrida, Terra Cunha, Cabello, J. Phys. A: Math. Theor. 47, 424021
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CHSH Coloured Graph

S(G) = p(00|00) + p(00|01) + p(00|10) + p(01|11)+
+p(11|00) + p(11|01) + p(11|10) + p(10|11)  3

GAG = t GB

We define a multipartite quantum behaviour of an edge-coloured exclusivity
multigraphG as a vector ∈P R V| | N

whose entries are joint probabilities …P a n( , , ) for which
there exist orthogonal projective representations of …G G, , n1 ,
Π Π∈ … ∈a V n V{ : }, , { : }a

A
n
N , respectively, and a normalized vector ψ in a Hilbert

space such that

ψ Π Π ψ… = ⊗ ⋯ ⊗ ∀ … ∈P a n a n V( , , ) , , , , (7)a
A

n
N

where V is the vertex set of G. Let GQ ( ) denote the set of multipartite quantum behaviours
of G.

It follows that the multigraph Lovász number Gθ w( , ) can be seen as the maximum value
of a linear function of probabilities, where optimization is performed over GQ̂ ( ). Let us
remark that, since Sonly involves P iˆ ( ), optimizing Sover GQ̂ ( ) is the same as optimizing S
over GQ ( ) under the identification = …P i P i iˆ ( ) ( , , ). For convenience, we will adopt opti-
mization over GQ ( ) as the standard throughout this text. The reason is that the set GQ ( ), as
defined here, is in direct analogy to the set of quantum non-local correlations, a set known to
be hard to completely characterize, but which can be efficiently outer-approximated by means
of a hierarchy of SDPs, as proven by NPA [17, 18].

To bound the multigraph Lovász number of a given G w( , ), we adapt the method
developed by NPA to the situation in which no experimental scenario is assumed a priori and
the only information we have is the relationships of exclusivity given by G w( , ). Details on
how our method works are given in the appendix. In the usual NPA method, the relationships
of exclusivity are given by the assumed Bell scenario (i.e., the pre-established number of
parties, measurements per party and outcomes per measurement). In our version of the
method, it is not necessary to assume, a priori, a Bell scenario or a particular labelling of
events. The multigraph Lovász number is a graph-theoretical quantity, and, for this reason,
our method is general in the sense that it can be applied not only to exclusivity multigraphs
that represent specific NC or Bell inequalities, but also to any conceivable N-colour edge-
coloured vertex-weighted multigraph. Note that any such multigraph is physically realizable
in QT, in the sense that there is always a Bell inequality such that its maximum in QT is
exactly Gθ w( , ) and a quantum system and an experimental scenario spanning exactly GQ̂ ( ).

5. Examples

As indicated before, in general, Gθ ϑ⩽w G w( , ) ( , ), where (G, w) is the simple
graph obtained from G w( , ) when multiple edges between two vertices are merged into a
single edge. The equality occurs for many NC and Bell inequalities. In this section we focus
on three relevant cases in which ϑ G w( , ) does not provide the quantum maximum. Each of
them is interesting for a different reason.

Table 1. Enumeration of the eight events involved in the CHSH Bell inequality (3) and
whose relationships of exclusivity are represented in figure 1.

Vertex Event Vertex Event

1 00 | 00 5 11 | 00
2 11 | 01 6 00 | 01
3 10 | 11 7 01 | 11
4 00 | 10 8 11 | 10

J. Phys. A: Math. Theor. 47 (2014) 424021 R Rabelo et al
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CHSH inequality is essentially encoded on the coloured graph!

Rabelo, Duarte, López-Tarrida, Terra Cunha, Cabello, J. Phys. A: Math. Theor. 47, 424021



CHSH Coloured Graph

GAG = t GB
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space such that

ψ Π Π ψ… = ⊗ ⋯ ⊗ ∀ … ∈P a n a n V( , , ) , , , , (7)a
A

n
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where V is the vertex set of G. Let GQ ( ) denote the set of multipartite quantum behaviours
of G.

It follows that the multigraph Lovász number Gθ w( , ) can be seen as the maximum value
of a linear function of probabilities, where optimization is performed over GQ̂ ( ). Let us
remark that, since Sonly involves P iˆ ( ), optimizing Sover GQ̂ ( ) is the same as optimizing S
over GQ ( ) under the identification = …P i P i iˆ ( ) ( , , ). For convenience, we will adopt opti-
mization over GQ ( ) as the standard throughout this text. The reason is that the set GQ ( ), as
defined here, is in direct analogy to the set of quantum non-local correlations, a set known to
be hard to completely characterize, but which can be efficiently outer-approximated by means
of a hierarchy of SDPs, as proven by NPA [17, 18].

To bound the multigraph Lovász number of a given G w( , ), we adapt the method
developed by NPA to the situation in which no experimental scenario is assumed a priori and
the only information we have is the relationships of exclusivity given by G w( , ). Details on
how our method works are given in the appendix. In the usual NPA method, the relationships
of exclusivity are given by the assumed Bell scenario (i.e., the pre-established number of
parties, measurements per party and outcomes per measurement). In our version of the
method, it is not necessary to assume, a priori, a Bell scenario or a particular labelling of
events. The multigraph Lovász number is a graph-theoretical quantity, and, for this reason,
our method is general in the sense that it can be applied not only to exclusivity multigraphs
that represent specific NC or Bell inequalities, but also to any conceivable N-colour edge-
coloured vertex-weighted multigraph. Note that any such multigraph is physically realizable
in QT, in the sense that there is always a Bell inequality such that its maximum in QT is
exactly Gθ w( , ) and a quantum system and an experimental scenario spanning exactly GQ̂ ( ).

5. Examples

As indicated before, in general, Gθ ϑ⩽w G w( , ) ( , ), where (G, w) is the simple
graph obtained from G w( , ) when multiple edges between two vertices are merged into a
single edge. The equality occurs for many NC and Bell inequalities. In this section we focus
on three relevant cases in which ϑ G w( , ) does not provide the quantum maximum. Each of
them is interesting for a different reason.

Table 1. Enumeration of the eight events involved in the CHSH Bell inequality (3) and
whose relationships of exclusivity are represented in figure 1.

Vertex Event Vertex Event

1 00 | 00 5 11 | 00
2 11 | 01 6 00 | 01
3 10 | 11 7 01 | 11
4 00 | 10 8 11 | 10
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v ↦ ΠA
v ⊗ ΠB

v

Orthogonal Projective Representation

v ∼X u ⇒ ΠX
v ΠX

u = 0

Handle ψ

p(v) = ΠA
v ⊗ ΠB

v ψ
2

Rabelo, Duarte, López-Tarrida, Terra Cunha, Cabello, J. Phys. A: Math. Theor. 47, 424021



2-Coloured Lovász Number
GAG = t GB

v ↦ ΠA
v ⊗ ΠB

v

Orthogonal Projective Representation

v ∼X u ⇒ ΠX
v ΠX

u = 0

Handle ψ

p(v) = ΠA
v ⊗ ΠB

v ψ
2

Rabelo, Duarte, López-Tarrida, Terra Cunha, Cabello, J. Phys. A: Math. Theor. 47, 424021

θ(G) = sup
OPR,ψ ∑

v∈V(G)

p(v)

Thanks to Tensor Product…

Not a Semi Definite Program (SDP)

A Hierarchy of SDPs, like in NPA

Navascués, Pironi, Acín, Phys. Rev. Lett. 98, 010401; New J. Phys. 10, 073013



Pentagonal Bell 
Inequalities

5.1. Pentagonal Bell inequalities

The pentagonal Bell inequalities introduced in ref. [16] are the Bell inequalities with quantum
violation with the simplest exclusivity graph. There are three non-equivalent pentagonal Bell
inequalities and none of them is tight. The point is that they provide the simplest platform to
understand why, in some cases, ϑ G w( , ) does not give the quantum maximum .

Following [16], the first, second and third pentagonal Bell inequalities are, respectively

= + + + + ⩽I P P P P P(00 00) (11 01) (10 11) (00 10) (11 00) 2, (8)1
P

LHV

= + + + + ⩽I P P P P P(00 00) (11 01) (10 11) (00 10) (_1 _0) 2, (9)2
P

LHV

= + + + + ⩽I P P P P P(00 00) (11 01) (10 11) (00 10) (11 20) 2, (10)3
P

LHV

where P ab xy( | ) is the joint probability of obtaining the results a and b for, respectively, the
measurements x (in Aliceʼs side) and y (in Bobʼs), and P b y(_ |_ ) is the probability of the
result b for Bobʼs measurement y irrespectively of Alice. Note that, in I2

P, Alice chooses
among two measurements, while in I3

P she chooses among three.
Figure 2 shows the exclusivity multigraph G w( , )I( )1

P
and the corresponding exclusivity

factors of Alice and Bob for the first pentagonal Bell inequality, given by (8). Figure 3 shows

Figure 2. (a) Exclusivity multigraph G w( , )I( )1
P

, (b) exclusivity factor of Alice,

G w( , )A
I( )1

P
, and (c) exclusivity factor of Bob, G w( , )B

I( )1
P

, for the first pentagonal Bell
inequality (8). All vertices have weight 1. See table 2 for the correspondence between
the vertices of G w( , )I( )1

P
and the events of I1

P.

Table 2. Enumeration of the five events involved in the first pentagonal Bell inequality
(8) and whose relationships of exclusivity are represented in figure 2.

Vertex Event

1 00 | 00
2 11 | 01
3 10 | 11
4 00 | 10
5 11 | 00
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components, one for each of her settings. The minimum number of outcomes of a given
setting appearing in S is equal to the clique number of the corresponding connected
component.

In this paper, parties are defined as entities that perform measurements that are co-
measurable with any other measurement performed by any other party. Notice that this notion
of parties includes the one used in Bell-inequality scenarios (in which measurements of
different parties are mutually spacelike separated), but is less restrictive (e.g., measurements
of different parties may be timelike separated). Notice also that not all NC inequalities allow
us to distribute the measurements between a given number of parties in such a way that each
experiment only involves measurements performed by different parties and each party can
choose between different measurements (examples of NC inequalities in which this dis-
tribution is not possible can be found in refs. [9, 10]).

As an example of an exclusivity multigraph of S, consider the Clauser–Horne–
Shimony–Holt (CHSH) Bell inequality [19] written as

= + + + +

+ + + ⩽

S P P P P P

P P P

(00 00) (11 00) (00 01) (11 01) (00 10)

(11 10) (01 11) (10 11) 3, (3)

CHSH
LHV

where P ab xy( | ) is the joint probability of obtaining the results a and b for, respectively, the
measurements x (in Aliceʼs side) and y (in Bobʼs) and LHV denotes local hidden variables. In
figure 1 we show the exclusivity multigraph G w( , )S( )CHSH and the corresponding exclusivity
factors of Alice and Bob.

Figure 1. (a) Exclusivity multigraph G w( , )S( )CHSH , (b) exclusivity factor of Alice,
G w( , )A

S( )CHSH , and (c) exclusivity factor of Bob, G w( , )B
S( )CHSH , for the CHSH Bell

inequality (3). Notice that each factor has two connected components, each of them
corresponding to a local observable. This observable is indicated with a bold letter. All
vertices have weight 1. See table 1 for the correspondence between the vertices of
G w( , )S( )CHSH and the events of SCHSH.

J. Phys. A: Math. Theor. 47 (2014) 424021 R Rabelo et al
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Refreshing

• CSW only sees exclusivities

• Coloured graphs characterise which 
part sees each exclusivity

• More restrictions, lower upper bounds



For Pentagons
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Beyond Numbers

v ↦ Πv

Orthogonal Projective Representation

v ∼ u ⇒ ΠvΠu = 0

Handle ψ

p(v) = Πvψ
2

THETA (G) = {(p (v)), v ∈ V (G)}

Given G

v ↦ ΠA
v ⊗ ΠB

v

Orthogonal Projective Representation

v ∼X u ⇒ ΠX
v ΠX

u = 0

Handle ψ

p(vi) = ΠA
i ⊗ ΠB

i ψ
2

Given 𝒢

cTHETA (𝒢) = {(p (v)), v ∈ V (𝒢)}⊇

Quantum Sets



In the case of CHSH

THETA (G) = {(p (v)), v ∈ V (G)} cTHETA (𝒢) = {(p (v)), v ∈ V (𝒢)}⊇
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Can they be equal??
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More than one inequality…
Weighted graphs: (G, ω) or (𝒢, ω)

ω : v ↦ ωv ≥ 0

Each weight vector, a new inequality ω ⋅ p = ∑
v∈V(G)

ωvpv ≤ α (G, ω)

Each weight vector, a different direction in THETA (G) or cTHETA (𝒢)



A All Graphs

GCHSH

G44,43

G44,411 G1

44,33 G2

44,33 G1

43,43 G2

43,43

G44,311 G43,411 G1

43,33 G2

43,33

G44,1111 G43,311 G411,33 G33,33

Figure 6: The 15 di�erent subgraphs of GCHSH with the same shadow Gshadow. On the top is the graph GCHSH with
four double edges, one row below is the graph G44,43 with three double edges and so on. There is a connecting line
between two graphs if the graph in the row below is a subgraph of the graph in the row above.

B Analytical Calculations of the Behaviours

In this appendix, we want to give an idea, how the handles and projectors which lead to quantum
behaviours on the boundaries of the required quantum sets can be constructed. A detailed description
can be found in [16].

If we restrict Alice and Bob to use measurements and states acting on a Hilbert space H2 ¢ H2, the

10

A Family of Graphs
With the same Shadow



Clearly not equal

Figure 4: Upper and lower bounds of the
coloured Lovász numbers ◊ (GCHSH, Ê
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The curve of ◊ (G33,33, Ê

‘
5(0

≠
1

≠
7
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)) has a “kink” at

‘ ¥ 0.85.

these changes, we compare the upper bound of
coloured Lovász numbers of the chain of graphs
given in Fig. 3 for certain weight vectors Ê.

Fig. 4 shows upper and lower bounds of the
graphs GCHSH, G33,33, and G44,1111, weighted with
the weight vector
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where ‘ œ [0, 1].
It is note worthy, that we found the given

curves of GCHSH and G44,1111 with orthogonal la-
belling {�i} and a handle |�Í in Hilbert spaces
H2 ¢ H2, while we need a Hilbert space H2 ¢ H3

in order to approximate the curve of G33,33. In
the case ‘ = 0, all graphs have the same Lovász
number which can be reached with the orthog-
onal labelling and handle known from the case
of CHSH:

Ó
�

CHSH

i

Ô
,

---�CHSH

f
. For ‘ = 1, the

graphs reduce to the graphs of the first and third
pentagonal inequalities, I

P
1

and I
P
3

, respectively,
where the optimal solutions are given in [4]. For
GCHSH and G44,1111, we approximate the analytic
curve by a superposition of

---�CHSH

f
and

---�IP
1

f

or
---�IP

3
f

and rotations of the projectors from

Figure 5: Upper bounds of the coloured Lovász numbers
of the graphs given in Fig. 3, weighted with Ê

‘ as given
in Eq. (7). For ‘ = 0 we have in all cases ◊ ¥ 0.427.
Four of the five curves are di�erent and therefore the
quantum sets of the underlying graphs are di�erent, as
well. Some explicit numbers are given in Table 1.

�
CHSH

i to �
IP

1
i and �

IP
3

i , respectively. In the case
of G33,33, we can approximate the curve with a su-
perposition of

---�CHSH

f
and

---�IP
3

f
and rotations

of the projectors from �
CHSH

i to �
IP

3
i for i ”= 1

and �1 = |22ÍÈ22|. A more detailed phenomeno-
logical description of the results can be found in
[16] and in Appendix B. Using the same method
we can analyse other paths with the goal to gen-
eralise to manifolds on the boundary which could
be described parametrically.

‘ GCHSH G44,43 G1

44,33 G44,311 G44,1111

0.3 0.4292 0.4292 0.4292 0.4296 0.4296

0.5 0.4326 0.4326 0.4326 0.4339 0.4340

0.9 0.4432 0.4456 0.4456 0.4485 0.4486

Table 1: Some explicit numbers ◊(G, Ê
‘
) of the curves

in Fig. 5, rounded to the 4
th digit.

In order to understand how removing one edge
in the graph changes the quantum set, we made
the same numerical calculations as before, but
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CHSH Pentagonal



More than this
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f

or
---�IP

3
f

and rotations of the projectors from

Figure 5: Upper bounds of the coloured Lovász numbers
of the graphs given in Fig. 3, weighted with Ê

‘ as given
in Eq. (7). For ‘ = 0 we have in all cases ◊ ¥ 0.427.
Four of the five curves are di�erent and therefore the
quantum sets of the underlying graphs are di�erent, as
well. Some explicit numbers are given in Table 1.

�
CHSH

i to �
IP

1
i and �

IP
3

i , respectively. In the case
of G33,33, we can approximate the curve with a su-
perposition of

---�CHSH

f
and

---�IP
3

f
and rotations

of the projectors from �
CHSH

i to �
IP

3
i for i ”= 1

and �1 = |22ÍÈ22|. A more detailed phenomeno-
logical description of the results can be found in
[16] and in Appendix B. Using the same method
we can analyse other paths with the goal to gen-
eralise to manifolds on the boundary which could
be described parametrically.

‘ GCHSH G44,43 G1

44,33 G44,311 G44,1111

0.3 0.4292 0.4292 0.4292 0.4296 0.4296

0.5 0.4326 0.4326 0.4326 0.4339 0.4340

0.9 0.4432 0.4456 0.4456 0.4485 0.4486

Table 1: Some explicit numbers ◊(G, Ê
‘
) of the curves

in Fig. 5, rounded to the 4
th digit.

In order to understand how removing one edge
in the graph changes the quantum set, we made
the same numerical calculations as before, but
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GCHSH G44,43 G1

44,33
G44,311 G44,1111

´ ´ ´ ´

Figure 3: A chain of subgraphs. The chain is constructed as follows: We start with GCHSH (on the left) and
remove edge by edge until we reach G44,1111 (on the right). Each graph is a subgraph of all graphs on its left side.
Equivalently, each quantum set of a graph is a subset of all quantum sets of graphs on its right side.

version GCHSH says that the maximal quantum
value coincide whether we see CHSH inequal-
ity as a Bell or a NC inequality. We show
that not only the NC graph Gshadow allows for a
larger quantum set than the coloured CHSH-Bell
graph GCHSH, but also that there are many other
coloured graphs with the same shadow which gen-
erate intermediate quantum sets. We are inter-
ested in exploring the differences between these
sets.

4 Results
We first state some general properties of quan-
tum sets. The quantum set is convex. More-
over, for a behaviour P œ Q(G) every behaviour
P

Õ œ R|V | where P
Õ
i 6 Pi for all i œ V is ful-

filled is a behaviour of Q(G) as well [13]. We are
therefore only interested in finding behaviours on
the boundary of the quantum set. Other useful
properties are given in Theorems 7 and 8.

Theorem 7. The quantum set Q(G) of a

weighted graph (G, Ê) is independent of the weight

Ê.

Theorem 8. Let ◊ (G, Ê) be the coloured Lovász

number of a weighted graph (G, Ê). If there exist

an orthogonal labelling {�i} of (G, Ê) and a han-

dle |�Í, such that
q

iœV Êi È�|�i|�Í = ◊ (G, Ê),

the behaviour P induced by these orthogonal la-

belling and handle is on the boundary of the quan-

tum sets Q (G).

Theorem 7 comes from the fact that only ex-
clusivities play a role on the definition of the
quantum behaviour. Theorem 8 follows from the
linearity of the function being optimised. Using
this two theorems, we know that if we want to
analyse the quantum behaviours of an inequality
S =

q
iœV Pi 6 –, we can equivalently analyse

the set of inequalities SÊ =
q

iœV ÊiPi 6 –
Õ for

Êi > 0.

We are interested in how the quantum set
of GCHSH is different from the quantum set of
its shadow Gshadow. In order to compare the
CHSH-Bell quantum set QCHSH with the CHSH-
NC quantum set Qshadow, we introduce a family
of graphs, whose quantum sets are supersets of
QCHSH but subsets of the set Qshadow. The fam-
ily contains subgraphs of GCHSH which all have
the same shadow. There are 15 graphs which are
different among each other up to coloured graph
isomorphisms. This family of graphs is shown in
Fig. 6. We introduce a notation to distinguish
between the graphs: For each colour we count
the number of edges in each component of the
graph and write them as indices. We use com-
mas to separate between colours. For example the
graph G44,311 denotes a bi-coloured graph where
the graph of the first colour contains two non-
adjacent subgraphs with each four edges and the
graph of the second colour contains three non-
adjacent subgraphs with 3, 1, and 1 edges, re-
spectively. In some cases, this notation is not
sufficient to distinguish between graphs. In this
cases, we use superscripts, as shown in Fig. 6.
Note, that the introduced notation is suitable for
this family of interest and for the purposes of this
paper, but it is not a way of well characterising
coloured graphs in general.

In order to compare the sets QCHSH and
Qshadow, we use the intermediate sets. We chose
the graphs Q33,33 and Q44,1111, since their proper-
ties are the most different from GCHSH and from
each other. Using the NPA hierarchy [14, 15],
we first numerically find a path on their surfaces.
This numeric results are an upper bound to the
real maximal quantum bound. We then find a
lower bound by approximating the behaviours an-
alytically by constructing orthogonal labellings
and handles.

A related interesting question is how changes in
the graph influence the quantum set. To explore
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Some edge removing may not 
affect (these directions) coloured 
theta…



Wrap up

• We show that the Quantum Set of the 
Shadow of CHSH is strictly larger than the 
Quantum Set of original CHSH

• There are many coloured graphs in between 
CHSH and its shadow

• Are there as many different quantum sets?

• Or quantum sets of different coloured graphs 
can coincide?



Open Questions

• Is there a graph characterisation of 
(possibly) removable edges?

• Is it true that                      ?

• Why??

• To complete the “quasi-empirical”* version 
of here shown results

𝒬33,33 ⊂ 𝒬44,1111

* in Svozil terms, earlier



Thank you, organisers 
and participants!


