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Motivation

Goal: To characterise untrusted devices C

i

| I

Bell non-locality based self-testing can
be employed to characterise quantum
devices via measurement statistics.

[s it possible to extend the notion of self-testing to local contextuality
scenarios?



Results

* A graph-theoretic framework to render local self-testing statements.

* The generalized KCBS inequalities admit robust self-testing.
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Results

* The non-contextuality inequalities corresponding to the family of
odd anti-cyclic graphs with at least five vertices are self-testable.

 Given an anti-cycle non-contextuality inequality with an odd number
of n measurement events, the quantum system achieving the optimal
quantum bound must be at least (n—2) dimensional.

 Not all graphs with a non-zero gap between NCHV bound (given by
the independence number) and the maximum quantum bound
(given by the Lovdsz theta number) for the corresponding canonical
non-contextuality inequality admits self-testing.
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Results

Presented a graph-theoretic framework to render Bell scenario-based
self-testing statements.

Recovered some old self-testing statements in our framework.

Additionally presented a self-testing statement for a previously
unknown case.

In the process of proving self-testing statements, we furnished proof
for a conjecture in discrete mathematics employing ideas from
quantum foundations
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Robust Self Testing in Bell Scenario

o Self Testing: Given access to only the statistics of a quantum test, the measurement settings
and state can be uniquely determined up to local isometry.

(QS) + (RS5) + (RT) — (QT) < 2
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Quantum bound = 2v/2

If a CHSH test achieves the quantum bound, it admits self testing.



Robust Self Testing in Bell Scenario

Bell Inequality

Z B:Byp (ablxy) < By

a,b,x,y

Geometrically, a Bell inequality corresponds to a hyperplane that separates the set of local
behaviours from nonlocal behaviours.

p(ablzy) = (Y|Agja ® Byp|th)
< Quantum Behaviours
V) € Ha ® Hp

We will denote the maximum quantum value by Bq



Robust Self Testing in Bell Scenario

Self-Testing

(H.Aa HB) W% {A:Jc|a}7 {By|b}) (/H./A? HE%? ‘¢/>7 {A;m}, {Bg;|b}) Bq
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Robust Self Testing in Bell Scenario

Robust Self-Testing

(Ha He, [0), {Asia}s {Byp}) (H0 Hiss [8), {Ap1a}, {By})

157, B e

[V (Agja ® Byp)lY') — ljunk)(Agja ® Byp)[9)|| < O(€")



Contextuality

Context: a set of compatible observables

A B, C
* Context 1: {A, B}

* Context 2: {A, C}

Given a theory, if the value assigned to an observable does not depend on the context in
which it has been measured, then the theory is called non-contextual. Otherwise, the
theory is contextual.

Quantum mechanics is a contextual theory.  KS67



Exclusivity Graph Approach

CSW14
Measurement events: €1,.-.,€En

Mutually exclusive events: = Same measurement but correspond to different outcomes

Events denoted by nodes
Exclusivity graph:

Exclusive events share an edge

€1 ~ €9 e Bxclusivity

Example: 5 9




Exclusivity Graph Approach

CSW14

Another example: Exclusivity Graph for CHSH Scenario

{1,2,---n} = [n]

p - n] o [Ov 1]

Behaviour

Wi A e ]

A deterministic noncontextual behavior p is a mapping p : [n] — {0,1},
where p; +p; < 1, for all 7« ~ j. The polytope of noncontextual behaviors, de-
noted by B,,.(G), is the convex hull of all deterministic noncontextual behaviors.
Behaviors that do not lie in B,,.(G) are contextual.

Z w;ip; < Bipe p € By (G) w e R Non-contextuality inequalities
i€[n]



Exclusivity Graph Approach

CSW14

Quantum Behaviour

p - [n] 7 [07 1]

p

i I

p; — Tx(pll;) vi e | and Te(ILH) =0, foro o9

Quantum description for the preparation

Projectors acting the Hilbert space ~ H

oo

By(G)

150

1 Ensemble for the behaviour P

The set of quantum behaviours

The quantum value corresponding to the non-contextuality inequality




Robust Seli-Testing

Self-Testing

us) e {‘“Q . ch

Vi) (uil VI = ug)(ui] 0<i<n

Robustness

Z\ e =B,

[V ]ws) (s VT = Jui)(ui]| < O(€7), 0<i<n



How to Show Robust Seli-Testing

max {Z w;p; i P E Bq(G)}

=l

(G, w) = max sz’Xii
1=

Stibjectto X = Xy, 1 =4~ n
X =0 0
Xog— Xxecs 2

Primal

By - Z()\i — w;) By — Z Nk Z pij by = 0 Dual



How to Show Robust Seli-Testing

Consider a noncontextuality inequality > ., w;p; < By, and let {|v;)}7,
be a quantum ensemble achieving the corresponding quantum value B,., and
moreover (vg|v;) # 0, for all 1 < ¢ < n. Say that there exists a dual optimal
solution Z* for the SDP such that the homogeneous linear system

MZ* = (M, Ey;) = (M, E;;) = (M, E;;) = 0,

in the symmetric matrix variable M only admits the trivial solution M = 0.

Then, the noncontextuality inequality is an (e, 5 )-robust self-test for {|v;)}7 .



Proof Technique

v
G 2

GG max Y X, X eSS Xon =1, X = Xoy X -0, jc B

e} J

TH(G)={z e RT : X e SIt" X, ; = x;, Xoo = 1, Xii = Xy, X5 = 0,¥ij € E}

l

Uniqueness of optimal X

Error bound analysis for SDPs

l

The non-contextuality inequality admits robust self testing.



Example: Generalized KGBS Inequalities

Odd number of measurement events eq, ..., e, 1
e; and e;; 1 are exclusive, where indices are taken modulo n |5 9
s W
i - Bnc Cn = 4 3
max {;p pE ( )} 5
s i o n cosT/n ¢ o T
i:1pz.p - 1+ cosm/n L = 1+ cosm/n’ =

For any odd integer n, the KCBS,, inequality is an (e, %)—robust self-test for

the ensemble |vg) = (1,0,0) and |v;) = (cos(f),sin(f)sin (¢;),sin(f) cos (¢;))

where cos?(0) = 1ff;(8727/321) and ¢; = jw(z_l) ol =) .




Anu-Cycles

Theorem: For any odd n, the non-contextuality
iInequality corresponding to the anti-n-cycle graph

1
admits (6,5 -robust self-test.



Strategy

e Pe,
Idea : Relate primal solution of (Primal : Cycle) (Primal : Anti-cycle)
cycles to dual solution of
anti-cycles.
D, De,
(Dual : Cycle) (Dual : Anti-cycle)

Theorem : Let X* = Gram(vy, vy, **,Vv,) be the unique optimal
solution for P . Then, Z* = I(C,)Gram(—v,, vy, **+,V,) is a dual

—el
circ(u)

optimal solution for D¢ .
’ (C)

—€

9
Z* can also be expressed as : Z* = [

where u = (1,9(C,){(v; | v,), -+, 3(C,){v;|v,))



Applicaton - Certafy high dim

Claim : For all odd n, the dimension in which the quantum realisations
corresponding to the anti-n-cycle graph achieves the maximum (Lovasz theta) is

| e 9(C) n—9(C) n—9(C,)

» X* = — with u = ( , ,0,0,---,0,0, )
3, n 29(C,)? 29(C,)?

P circ(u)

Is the unique primal optimal.

1 n-9, 2rj —1 1
» Eig(circ(u)) = {8 + 3 COsS <ij> ] E [n]} #+ 0 unless j=n2 or n—;

n
wel>  Rank(X*) > n—2

» Explicit construction exists for dim = n-2




Device Certification

Select a self- Program the
testable optimal
graph configuration

experiment (X*, Z%)
and generate
statistics

Perform the [ Given a pair of primal dual optimal solutions J

Y

Does strict-
complimentarity
hold ?

Is Z* non- No
degenerate?

[ X* is unique ]

Is Z* non- No
degenerate? \ 4
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Inconclusive*
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[ X* is unique ] |, X* is not unique ]
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Discussion

. Not all graphs can be self-tested.

A complete characterisation of all self-testable
graphs ?

Explicit robustness bounds.

Large gaps between 3(G) and a(G) ?

Possible direction : Results on verifying quantum
computation by classical verifier leverages self-
testing results. Can local self-testing schemes
help ?




