Bounds on overlaps give us
coherence, contextuality and non-
locality inequalities

[EG, Brod, PRA 101, 062110 (2020)]
and work in progress
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Outline

* Relational quantities among a set of states — overlaps
* Overlap inequalities for general states

* Overlap inequalities for coherence-free states — coherence
witnesses

* Relationship between inequalities and non-contextuality/locality
* Some examples

* Conclusion



Projective-unitary invariant properties of a set of quantum states

* Properties that are invariant under:
* unitary transformations
* physically meaningless choice of global phases (gauge degree of freedom in QM)
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* Geometrical in character — pertain to the R
relative orientation of the states
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* Mathematical result: projective-unitary invariant properties only depend on k-state
Bargmann invariants:

g« = AIBICRIOCAD- CKIAS

[Chien, Waldron. SIAM J. DISCRETE MATH. 30 (2), 976 (2016)]

* Bargmann invariants related to geometric phases, photonic indistinguishability

[Bargmann, J. Math. Phys. 5, 862 (1964 )] [Simon, Mukunda, PRL 70, 880 (1993)]
[Menssen et al., Phys. Rev. Lett. 118, 153603 (2017)]



Overlaps

* Here we're interested in the two-state overlap:
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* Equals the probability of preparing A, projecting onto B (and vice-versa)

* Can be measured using SWAP test circuit:

0) - H] 1A Epm):“‘“j‘”»z
0)
)

SWAP




Overlaps among 3 arbitrary quantum states

* Let's consider a set of 3 arbitrary pure quantum
states: C

* |f we have sources of states A, B, C, we can use  _.
SWAP tests to estimate overlaps, writing the triple 77 = (TA B YAC) rBC)

= |<ilj >

(a) (1,1,1)

(0,0,1) /

* Non-trivial boundaries of quantum set:

rap + rpc + rac — 24/Taprscrac < 1

[EG, Brod, PRA 101, 062110 (2020)]

* What can we compare these bounds to?

»

Classical states: coherence-free states,
diagonal in a single reference basis

(1,0,0)



Classical = incoherent states

* Qur definition of classical states = diagonal, incoherent mixtures of states in a fixed,
reference basis:
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I/'pa — Tlf'(pd) — IOiiGii = probability of equal outcomes from measurements

_ of reference observable on the two subsystems
l

* Note that diagonal density matrices are just a quantum way of parameterizing a
general joint probability distribution of measurement outcomes



Overlaps among 3 arbitrary classical states

* Let (b) @ (1,1,1)

r = (145, Tac, TBC)
with r,; .= p(A=B), etc.

(0,0,1)

* In 7"-space, we obviously cannot
have vertices

(1,1,0), (1,0,1), (0,1,1)

* So the only logically allowed states
are convex combinations of the (0.0.0)
remaining 5 extremal states:

0,0,0), (1,1,1),
(O,E),1), ()O,(’I,O), ()1,0,0) :> ﬁrhat’s the polyhedron aboveﬁ
Lj; + ﬂs - RK <1

(1,0,0)

Now we have 3 non-trivial facets:
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Overlap measurements give us coherence withesses

* If we measure r and get a point outside the classical set, we know the three states
cannot be diagonal in any single basis.

» Basis-independent coherence witness

[EG, Brod, PRA 101, 062110 (2020)]
(a) (1,1,1) (b) (1,1,1)

(0,0,1)

(1,0,0) (1,0,0)

* These witnesses have been measured experimentally in a photonic set-up
[Giordani et al., Phys. Rev. Res. 3, 023031 (2021)]



Overlap inequalities are contextuality inequalities

* Weighted graph describing general scenario:

* Vertex v;: probabilistic process yielding outcomes o,

with probability p;,

* Edge weight r; = probability that v; and v; yield equal

outcomes

* |Classical model:
* Global pdf for all v, with correct marginals

context pdfs => correct overlaps r;
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for single vertices and and two-vertex

* Quantum realization of classical model: diagonal density matrices, reference

observables reveal pre-existing properties

* Note that the classical model is non-contextual — quantum realization with diagonal
states is a way of parameterizing general non-contextual model

»Classical overlap inequalities are contextuality/non-locality inequalities



Overlap facet inequalities

- V.
* Weighted graph describing general scenario: Vy - Ll
* Vertex v;: probabilistic process yielding outcomes o,
with probability p,, iy &
* Edge weight r; = probability that v; and v; yield equal
outcomes
Vi Mg Vy
* Overlap inequalities forthe /4
k-cycle scenario:
g Zﬂj ~ Nk ¢ K-2 o
- ~
d
’ K wihas

[EG, Brod, PRA 101, 062110 (2020)]
Check [Hardy, Abramsky, PRA 85, 062114 (2012)], [Araujo et al., PRA 88, 022118 (2013)]

* Computationally obtaining all facet inequalities for general scenarios:

* List all sets of deterministic 0/1 assignments for entries of overlap m-tuple r =(r,, r,, r5, ..., ,);
* Delete m-tuples forbidden by transitivity of equality;
* Determine facets of convex hull of remaining, allowed deterministic m-tuples.

* Violation of inequalities witnesses coherence/contextuality/non-locality



Examples: 4-cycle
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4-cycle overlap inequality & CHSH inequality



Examples: 5-cycle
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5-cycle overlap inequality

o

KCBS inequality
Klyachko et al., PRL101, 020403 (2008)]



Examples: 3-cycle

* Simplest non-trivial overlap scenario: 3-cycle
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Examples: K, - complete graph with 4 vertices
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* Only new type of facet of K, that is not a

cycle inequality:
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Examples: two facets from K,
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Unifying non-classicality: contextuality and coherence

* This approach promises to unify two notions of non-classicality: coherence, and
contextuality/non-locality

* Qverlap inequalities are quite broad — we can use them to represent compatibility
and probabilities in QM.

* Example: a different derivation of the CHSH inequality
ARy Ny AB,

* Center vertex: singlet state

* Other vertices: projective measurements

jointly measured by Alice and Bob
ﬂﬁ RA J y y
* Settings at A and B define r,, rg.
* 3-cycle inequalities yield the CHSH inequality.
o AR yele Inequalies y uality

* There's plenty to explore: Tsirelson bounds, equivalences between protocols,
unified resource theories...



Conclusions

* We've introduced basis-independent coherence withesses based on overlaps
* Bounds on overlaps for coherence-free states = non-contextuality inequalities

* Contextuality and coherence described in a single framework — helpful to discuss
resources for quantum computational advantage

* Some thoughts for the workshop:

Relationship with PBR theorem?

Describing this in the CbD framework?

Finding new Bell/contextuality inequalities and their quantum bounds
Foundational importance of higher-order Bargmann invariants

Thank you for your attention!



Extra slides



Logically impossible deterministic assignments
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