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Kochen-Specker contextuality
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Hilbert space of dimension d ≥ 3, for each set of d orthogonal directions
(a context), we associated 1-dim projections P1, . . . ,Pd , s.t.

O PiPj = 0 if i 6= j (Orthogonality);

C
∑

i Pi = 11 (Completeness).

Kochen-Specker considered 117 directions in d = 3.



Kochen-Specker contextuality
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Interpret each projection as a proposition, assign a “truth value” s.t. in
each context P1, . . . ,Pd :

O’ Pi and Pj cannot be both “true” for i 6= j ;

C’ P1, . . . ,Pd they cannot be all “false”.

Context: set of “jointly-decidable” propositions (orthogonal proj.).
Assignments must be context-independent.



Kochen-Specker contextuality

KS-theorem
Truth-value assignements to propositions associated with projectors,
with O and C rules: Impossible

I Logical impossibility proof.

I Can we pass from logical argument to statistical one and test
contextuality in the lab?



Kochen-Specker contextuality

Abstract definition
Some version of the marginal problem (many of the previous talks)

I M = {X1, . . . ,Xn} set of measurements

I C ⊂ 2M set of contexts

I pC joint observation, for all C ∈ C.

I Noncontextuality:
There exists pM such that pC is a marginal of pM, for all C ∈ C.

Not the only one
I Spekkens’ definition1: no joint measurements, no marginals, etc.

1R. W. Spekkens, Phys. Rev. A 71 (2005)



Kochen-Specker contextuality

So far no operational approach

I What to measure? How?

I How to identify contexts?

I Context-independence implies the identification of the “same
measurement” in “different contexts”. How to do that?



Two interpretations of KS

Observable and Effect Perspectives:

OP P1,P2,P3 represent three commuting observables, with effects
{Pi , 11− Pi}. I measure them together: Joint measurement has
effects {P1,P2,P3}. I can measure the same observable in different
“contexts”, e.g., P1 with P ′

2 and P ′
3.

EP {P1,P2,P3} are the effects of a joint measurements. The same
effect P1 may appear in different measurements, e.g., {P1,P

′
2,P

′
3}.

OP is (arguably) the original formulation (“something about
simultaneously decidable propositions”),
EP is how KS theorem became popular (“something about orthogonal
vectors”).

Equivalent interpretations for ideal measurements.



Two interpretations of KS

Observable and Effect Perspectives (abstract version):

OP The basic objects of contextuality are observables and their
compatibility (joint measurability) relations. A context is defined by
a set of compatible observables. A noncontextual hidden variable
theory is one that assigns values to each observable independently of
which joint measurement they appear in.

EP The basic objects of contextuality are effects and their relation of
being part of the same observable. A context is defined by a single
observable. A noncontextual hidden variable theory is one that
assigns values to each effect independently of which observable they
appear in.



Experimental tests of contextuality (EP)

Effect perspective (ideal case):

I Each context corresponds to a measurement (PVM) M = {Pi}i
I We want to identify effects in different contexts, e.g.,

Pi ∈M,P ′
i ∈M′ with Pi = P ′

i .

I In QM: Pi = P ′
i ⇔ tr[ρPi ] = tr[ρP ′

i ] for all states ρ.

I We extract an operational rule for identifying “the same effect in
different contexts”: same statistics ⇒ same effect.



Experimental tests of contextuality (EP)

Possible operational definition via statistical identification:
Measurement noncontextuality2

ξ(k |λ,M) = ξ(k|λ,M′) ∀λ if p(k |P,M) = p(k|P,M′) ∀P

Where classical theories (ontological models) compute probabilities as

p(k |P,M) :=
∑
λ

µ(λ|P)ξ(k |λ,M)

2R. W. Spekkens, Phys. Rev. A 71 (2005)



Experimental tests of contextuality (EP)

Measurement noncontextuality

ξ(k |λ,M) = ξ(k|λ,M′) ∀λ if p(k |P,M) = p(k|P,M′) ∀P

Can we use this definition to experimental test Kochen-Specker?

In this language value assignements for M = {P1,P2,P3} satisfy

ξ(i |λ,M) = 0, 1;

ξ(i |λ,M)ξ(j |λ,M) = 0 for i 6= j ;∑
i

ξ(i |λ,M) = 1



Experimental tests of contextuality (EP)

Measurement noncontextuality (MNC)

ξ(k |λ,M) = ξ(k|λ,M′) ∀λ if p(k |P,M) = p(k|P,M′) ∀P

Problem with determinism
Assuming MNC, if measurements are not ideal (i.e., they contain noise)
the functions ξ will not be in {0, 1}. We are no longer comparing
{0, 1}-valued assignments following O, C rules3.

[Idea: noisy effect convex mixture of projectors, statistical identification
implies same mixture at the HV level. No longer {0, 1}-valued response
function.]

We cannot experim. test KS contradiction with this assumption!

3R. W. Spekkens, Found. Phys. 44, 1125 (2014).



Experimental tests of contextuality (EP)

Spekkens solution: different notion of contextuality, not only for
measurements, but also for preparations.

P ∼ P ′ ⇐⇒ p(k |P,M) = p(k |P ′,M),

for all measurements and outcomes k,M,

(M, k) ∼ (M ′, k ′)⇐⇒ p(k |P,M) = p(k ′|P,M ′),

for all preparations P.

Assumption on HV [ p(k|P,M) =
∑
λ µP(λ)ξM,k(λ) ]

I P ∼ P ′ ⇒ µP = µP′ preparation noncontextuality

I (M, k) ∼ (M ′, k ′) ⇒ ξM,k = ξM′,k′ measurement noncontextuality

From this conditions it is possible to derive noncontextuality inequalities
(of the Spekkens type)4

4e.g., Mazurek et al., Nat. Commun. 7, 11780 (2016)



Experimental tests of contextuality (OP)

Observable perspective (math. formulation)

I M = {X1, . . . ,Xn} set of measurements

I C ⊂ 2M set of contexts

I pC joint observation, for all C ∈ C.

I Noncontextuality:
There exists pM such that pC is a marginal of pM, for all C ∈ C.

I Contexts normally “given” or identified assuming QM (”commuting
operators”)

Operational definition?
I Test of classical vs. quantum theory → remove any QM assumption



Experimental tests of contextuality (OP)

Given some measurement boxes, how do we find contexts?
(with no QM assumptions)

A
B

C

a

b

c α

β
γ



Experimental tests of contextuality (OP)
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Easy example: Bell scenario
I Contexts: joint measurements of (Ax ,By ) (locality assumption).

I Identification of same measurement in different context: same local
“black-box”.

I “Noncontextuality assumption”: the choice of measurement on B
does not influence the outcome of A.

Local hidden variable theory

p(ab|xy) =
∑
λ

p(λ)p(a|x , λ)p(b|y , λ)



Experimental tests of contextuality (OP)

Generalization?
Analogous expression in terms of probabilities

p(abc|xyz) =
∑
λ

p(λ)p(a|x , λ)p(b|y , λ)p(c |z , λ)

Can we interpret measurements as black-boxes? What are the physical
assumptions?



Experimental tests of contextuality (OP)

Identification of measurements and contexts
Intuition (ideal case):

I Repeatable measurements: we are measuring a “property” of the
system (not a random signal/outcome)

I Nondisturbing measurements: measurements do not influence
each other.

QM perspective: we recover the ideal case of commuting projective
measurements (sharp, repeatable, nondisturbing).



A simple example: Peres-Mermin square

Abstract formulationA B C
a b c
α β γ


I Compatible observables along rows and columns

I Possible to measure them jointly (contexts are “given”)

I Assuming a noncontextual value (±1) for A,B, . . . , γ 5

〈PM〉 ≡ 〈ABC 〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉 − 〈Ccγ〉 ≤ 4.

5A. Cabello, PRL 101 (2008)



A simple example: Peres-Mermin square

Quantum realizationA B C
a b c
α β γ

 =

 σz ⊗ 11 11⊗ σz σz ⊗ σz
11⊗ σx σx ⊗ 11 σx ⊗ σx
σz ⊗ σx σx ⊗ σz σy ⊗ σy


For this specific realization: ABC = abc = . . . = −Ccγ = 11

〈PM〉 = 〈ABC 〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉 − 〈Ccγ〉 = 6 > 4,

independently of the initial state.



A simple example: Peres-Mermin square

Experimental realization

or ”more abstractly”

A B C
𝝆

A a α
𝝆

to measure 〈ABC 〉, 〈Aaα〉, . . . , 〈Ccγ〉.

5Picture from Kirchmair et al. Nature 460 (2009)



A simple example: Peres-Mermin square

How do we know that A,B,C , . . . , γ are the right measurements?
(without assuming QM)

Properties:

I Nondisturbance (outcome of A confirmed by measurement after B)

I Repeatability (outcome of A confirmed by later measurements)

A B
𝝆

A

A A
𝝆

A

and so on for longer sequences and permutations.

We still need a (more detailed) classical model to interpret this.



A simple example: Peres-Mermin square

Common misconceptions
I Assumptions from QM are needed to define NCHV model:

I The hidden variable description assumes ABC = +1, etc.
I The product AB (in QM σz ⊗ 11 · 11 ⊗ σz) is equal to C (in QM:

σz ⊗ σz)
I I substitute the ABC measurement with just a measurement of 11.

I The measurement, e.g., σx ⊗ σx is given by two single-qubit
measurements with four outcomes (±1,±1).

I I need to assume determinism.



A simple example: Peres-Mermin square

Common misconceptions
I Assumptions from QM are needed to define NCHV model:

I The hidden variable description assumes ABC = +1, etc. (no need)
I The product AB (in QM σz ⊗ 11 · 11 ⊗ σz) is equal to C (in QM:

σz ⊗ σz) (no need)
I I substitute, e.g., ABC measurement with just a measurement of 11

(no contradiction).

I The measurement, e.g., σx ⊗ σx is given by two single-qubit
measurements with four outcomes (±1,±1) (the PVMs are
noncommuting).

I I need to assume determinism (no statistical identification).

ALL THE ABOVE ARE WRONG!



Dealing with experimental noise

No general recipe
Several approaches, with different physical assumptions, e.g.,

I O. Gühne et al. Phys. Rev. A, 81(2), 022121, (2010) [disturbance]

I J. Szangolies et al. Phys. Rev. A, 87(5), 050101, (2013)
[noncontextual evolution]

I J. V. Kujala et al. Phys. Rev. Lett. 115, 150401 (2015)
[disturbance]

I Liang et al. Phys. Rep. 2011 [sharpness, but very different
framework]

I Shane’s talk? [disturbance and sharpness]



Noise assumptions

Examples of physical assumptions
I Noise quantification under assumption of cumulative noise

(correction terms to the classical bound of the form perr[BAB]) 6.

6Kirchmair et al. Nature 460 (2009). Gühne et al. Phys. Rev. A, 81, (2010)



Summary of procedure (OP)

Experimental test in observable perspective (OP):

S.1 Define experimental measurement procedures and associate to
each one a classical random variable with same values as possible
outcomes.

S.2 Identify contexts in terms of outcome-repeatable and
statistical-nondisturbing measurements.

S.3 Perform measurements in different sequences, according to the
defined contexts. For each measurement the same procedure is
repeated in different contexts.

S.4 Compare the observed statistics for contexts (sequences) with the
one predicted by the NCHV for the corresponding classical variables.



Summary of procedure (OP)

What if measurements are not ideal?

They must introduce some disturbance, we can try to quantify it

S.5 Quantify deviations from ideal (outcome-repeatable and
nondisturbing) measurements, performing additional experimental
runs, and compare with the classical models accordingly.



Conclusions and outlook

Summary
I Difficult to move from logical contradiction/ideal case to

experiments

I Different approaches possibles (Effects and Observables)

I In many (theor.) approaches context are “given” (by QM?).
How to identify them in experiments?

I Conceptual role of disturbance and sharpness

I No general solution (specialized models for each setup)

Open problems
I Role of sharpness? (Quantitative)

I Most general noise model?

I Possible to make a (reasonable) loophole-free experiment?


