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Part I

Diagrams
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Ontological diagrams
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Part II

Statement of structure
theorem



Assumption 1: Diagram preservation
(uncontroversial cases)
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Assumption 1: Diagram preservation
(controversial cases?)
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Assumption 2: Local tomography
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Assumption 2: Local tomography
(equivalent condition)

For any T there exist rTij such that

T =
∑
ij

rTij
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Pi



Structure theorem

A diagram-preserving noncontextual model M of a
locally tomographic theory can be wri�en

T
M

= T

χ

χ−1



What is χ?

T
M

= T

χ

χ−1

P
M
=

P

χ



What is χ?

T
M

= T

χ

χ−1

P
M
=

P

χ



Part III

Proof of structure theorem
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Part IV

Consequences and other
versions



Number of ontic states

Number of ontic states = dimension of state space

e.g. qudit has d2-dimensional state space =⇒ d2

ontic states
e.g. qubit has 4-dimensional state space =⇒ 4
ontic states
c.f. Hardy, Stud. Hist. Phil. Mod. Phys. 35 267
(2004)
c.f. Wallman & Bartle�, arXiv:1203.2652
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�asiprobability representations

A diagram-preserving quasiprobability
representation M of a locally tomographic theory
can be wri�en

T
M

= T

χ

χ−1



Stabilizer subtheory
ar

X
iv

:2
10

1.
06

26
3v

2 
 [

qu
an

t-
ph

] 
 2

3 
Fe

b 
20

21
The only noncontextual model of the stabilizer subtheory is Gross’s
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We prove that there is a unique nonnegative and diagram-preserving quasiprobability
representation of the stabilizer subtheory in all odd dimensions, namely Gross’s discrete Wigner
function. This representation is equivalent to Spekkens’ epistemically restricted toy theory, which is
consequently singled out as the unique noncontextual ontological model for the stabilizer subtheory.
Strikingly, the principle of noncontextuality is powerful enough (at least in this setting) to single
out one particular classical realist interpretation. Our result explains the practical utility of Gross’s
representation, e.g. why (in the setting of the stabilizer subtheory) negativity in this particular
representation implies generalized contextuality, and hence sheds light on why negativity of this
particular representation is a resource for quantum computational speedup. It also allows us to
prove that generalized contextuality is a necessary resource for universal quantum computation in
the state injection model. In all even dimensions, we prove that there does not exist any nonnegative
and diagram-preserving quasiprobability representation of the stabilizer subtheory, and, hence, that
the stabilizer subtheory is contextual in all even dimensions. Together, these results constitute a
complete characterization of the (non)classicality of all stabilizer subtheories.

I. INTRODUCTION

Quantum computers have the potential to outperform
classical computers at many tasks. One of the major
outstanding problems in quantum computing is to
understand what physical resources are necessary and
sufficient for universal quantum computation. These
resources may depend on one’s model of computation [1–
3], and in some cases it seems that neither entanglement
nor even coherence is required in significant quantities [2].

The primary obstacle to building a quantum computer
is that implementing low-noise gates is difficult in
practice. While there are no gate sets which are
easy to implement and also universal [4], the entire
stabilizer subtheory [5, 6] can in fact be implemented in
a fault-tolerant manner relatively easily. To promote the
stabilizer subtheory to universal quantum computation,
one must supplement it with additional nonstabilizer
(or ‘magic’) processes. Because these nonstabilizer
resources do not have a straightforward fault-tolerant
implementation, they are typically noisy. To get around
this problem, Bravyi and Kitaev [7] introduced the
magic state distillation scheme, whereby fault-tolerant
stabilizer operations are used to distill pure resource
states out of the initially noisy resources. However,
not every nonstabilizer resource can be distilled in this
fashion to generate a state which promotes the stabilizer
subtheory to universal quantum computation. It is a
major open question to determine which states are in

fact necessary and sufficient for this purpose.

Quasiprobability representations are a central tool
for making progress on these and related problems.
For finite-dimensional quantum systems, a number of
quasiprobability representations have been studied. For
example, Gibbons, Hoffman, and Wootters (GHW)
identified a family of representations on a discrete phase
space [8], and Gross then singled out one of these with a
higher degree of symmetry [9], by virtue of satisfying a
property known as Clifford covariance. All of these have
been used to study quantum computation [10–17].

Gross’s representation in particular has been the
most useful in understanding the resources required
for computation. For instance, Ref. [12] extended the
Gottesman-Knill theorem [6] by devising an explicit
simulation protocol for quantum circuits composed
of Clifford gates supplemented with arbitrary states
and measurements that have nonnegative Gross’s
representation. Ref. [12] also proved that every state
which is useful for magic state distillation necessarily
has negativity in its Gross’s representation. In Ref. [14],
this result was leveraged to prove that every state that
promotes the stabilizer subtheory to universal quantum
computation via magic state distillation must also exhibit
Kochen-Specker contextuality [18]. In recognition that
negativity in Gross’s representation is a resource for
quantum computation in this sense, Ref. [13] introduced
an entire resource theory [19] of Gross’s negativity.

From a foundational perspective, it is surprising that



Conclusions and outlook

I Noncontextual models (and quasiprobability
representations) of locally tomographic
theories have a very rigid structure
I Fixed number of ontic states
I Only freedom is representation of preparations

I Any model without this structure can
immediately be declared contextual

I Computational searches for noncontextual
models can leverage this structure

I First step towards unique charachterization of
noncontextual models of the Stabilizer
subtheory
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