Converting contextuality into nonlocality

(From nonlocality to contextuality and back)
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Bell nonlocality experiment
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Composite systems needed
Spacelike separation needed
Entanglement needed
Measurements can be destructive




Geometry of the sets of behaviors
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Bell inequalities
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Kochen-Specker contextuality exp
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Composite systems not needed
Spacelike separation not needed
Entanglement not needed

Sharp measurements needed




Sharp (aka ideal) measurements

= Yield the same result when repeated
= Do not disturb compatible observables

=  Compatible (aka joint measurable) = having a common refinement




Why measurements should be

=  Because otherwise the assumption of outcome noncontextuality for
contexts made of compatible observables is not justified appealing to
classical physics

R. W. Spekkens, Phys. Rev. A 71, 052108 (2005); Found. Phys. 44, 1125 (2014)
T. Fritz, Rev. Math. Phys. 24, 1250012 (2012)

J. Henson and A. B. Sainz, Phys. Rev. A 91, 042114 (2015)

R. Kunjwal, Quantum 4, 219 (2020)

C. Budroni et al., arXiv: 2102.13036




Geometry of the sets of behaviors

Nondisturbing

Quantum
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Noncontextuality inequalities

Nondisturbing

Quantum
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Noncontextual




Iff measurements are sharp

=  Then, for any scenario whose graph of compatibility is completely n-
partite and each part has at least two incompatible observables (e.g., the
scenario whose graph of compatibility is a square)
=  Local set = noncontextual set

=  Quantum Bell nonlocal = quantum KS contextual

=  Tight Bell inequality = tight noncontextuality inequality




Vorob'yev's theorem

Theorem 1. [7] The only contextuality scenarios that
admit contextual behaviors are those in which the graph
of compatibility is nonchordal. That is. it contains. as in-
duced subgraph, at least one cycle of four or more vertices
(i.e.. squares. pentagons, hexagons. etc.).

Definition 8. An induced subgraph of a graph G is a
graph formed from a subset of the vertices of G and all
of the edges connecting pairs of vertices in that subset.




KS contextuality scenarios

Colloraly 1. The simplest scenario in which contextual-
ity with ideal measurements is possible is the one consist-
ing of four dichotomic observables whose graph of com-
patibility is a square. The Clauser-Horne-Shimony-Holt
(8] Bell scenario has this graph of orthogonality.

Theorem 3. [I0, 1] In quantum theory. contextuality
for ideal measurements requires quantum systems of di-
mension three or higher.

Theorem 4. [12] The simplest scenario in which con-
textuality with ideal measurements on qutrits is pos-
sible is the one consisting of five dichotomic observ-
ables whose graph of compatibility is a pentagon. This
is the Klyachko-Binicioglu-Can-Shumovsky (KCBS) sce-
nario [12].




Why focusing on KS scenario

=  To understand why quantum theory

=  Quantum theory produces contextuality in all scenarios in which Vorob’yev’s
theorem allows for contextuality

=  Most scenarios for which Vorob’yev’s theorem allows for contextuality are
not Bell scenarios

= |f we understand which principle singles out quantum contextuality we will
understand much more than Bell nonlocality (without assuming quantum
theory)

Z.-P. Xu and A. Cabello, Necessary and sufficient condi-
tion for contextuality from incompatibility, Phys. Rev. A

99, 020103 (2019).
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How to attract Bell nonlocalit

=  Many people that love Bell nonlocality have never been interested in KS
contextuality

. They may argue that sharp measurements are “unphysical” (and therefore that
guantum theory is a theory about unphysical measurements)

. They may argue that compatibility cannot be granted for sequential
measurements

. They may argue that KS contextuality for single systems can be classically
simulated

=  How to attract Bell nonlocality fans to KS contextuality?

= Answer: By converting any example of quantum KS contextuality into a related
example of quantum Bell nonlocality




Given any set S of sharp measurements producing a violation Q of a
noncontextuality inequality with noncontextual bound k

Can two parties, each of them having S, produce a violation Q of a Bell
inequality (formally identical to the previous noncontextuality inequality)
with local bound k?

Answer: No




Given any S that violates a noncontextuality inequality

There is always S’ such that S U S’ produce a state-independent
violation Q of a noncontextuality inequality with noncontextual bound k

and two parties, one of them having S U S’ and the other the transpose
projectors, can produce a violation Q of a Bell inequality (formally
identical to the previous noncontextuality inequality) with bound k

The state-independent violation and the Bell violation disappear if we
remove any elementof SU S’




Contextuality and graphs

Theorem 5. [1.3, 1/] Every quantum contextual behavior
produced by a set of projectors S = {11;,...,11,,} violates
a noncontextuality (NC') inequality of the form

NCHV
Y wP@i=1)- Y  max(w,w;)PI;=1I=1) < oG, w)
i€V (Q) (1,J)EE(G)

where G is the graph of orthogonality of S. E(G) is the
set of edges of G. w = (wy,...,w,) are nonnegative
numbers, and o(G,w) is the independence number of the
weighted graph (G.w) (i.e., of the graph G in which ver-
tex i has associated weight w; ).

[13] A. Cabello, S. Severini, and A. Winter, Graph-theoretic
approach to quantum correlations, Phys. Rev. Lett. 112,
040401 (2014).

[14] A. Cabello, Simple method for experimentally testing any
form of quantum contextuality, Phys. Rev. A 93, 032102

(2016).




Take out message

= Any example of quantum KS contextuality can be
converted into a violation of a noncontextuality
Inequality whose bound is the independence

number of the graph of orthogonality of a set S of
projectors




State-independent contextuality Se

Definition 14. A state-independent contextuality (SI-

C) set is a set of projectors that produces contextual
behaviors for any initial state.

Remark 10. To every SI-C' set of rank-n projectors one
can associate a SI-C set of rank-one projectors.

Remark 11. [31, 39] Every proof of state-independent
contextuality made of self-adjoint operators which are not

rank-n projectors (e.g., [40, 41]) has associated a SI-C set
of rank-one projectors.

Theorem 7. [17] A set of projectors S = {11;,...,11,,} is
a SI-C' set if and only if there are nonnegative numbers
w = (wi,...,wy,) and a number 0 < y < 1 such that
Z_ieI w; <y for all Z, where L is any independent set

of the graph of orthogonality of S, and ), w;11; > 1.

[17] A. Cabello, M. Kleinmann, and C. Budroni, Neéessar-y

and Sufficient Condition for Quantum State-Independent

Contextuality, Phys. Rev. Lett. 114, 250402 (2015).
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SI-C inequalities

In particular, w gives rise to a NC inequality violated
by any quantum state, inequality that can be written as

NCHV
Z wiP(Hz- - 1) s Z max(wz-,wj)P(Hz- - - I,Hj — 1) S a(g,w)
i€V (G) (2,5)€E(G)




Observation

Definition 18. A Kochen-Specker (KS) assignment to
a set of rank-one projectors is an assignment of 0 or 1
satisfying that: (I) two orthogonal projectors cannot both
have assigned 1, (II) for every set of mutually orthogonal
projectors summing the identity, one of them must be
assigned 1.

Definition 19. A KS set is a set of rank-one projectors
which does not admit a KS assignment.

= All KS sets are SI-C sets

= Most SI-C sets are not KS sets




Definition 20. A KS set S is critical if by removing any
element of S the resulting set is not a KS set.

Remark 7. [25] The original KS set [11] is critical.

Definition 21. A SI-C set S is critical if by removing
any element of S the resulting set is not a SI-C set.

J. Zimba and R. Penrose, On Bell non-locality without

probabilities: More curious geometry, Stud. Hist. Philos.

Sci. A 24, 697 (1993).
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True-implies-false sets

Definition 22. A set of projectors S = {llx =
[Va)(Wa|} U{TL, ... I} U{Ilg = [¥B){(¥pB|} in dimen-
sion d > 3, where 114 and Ilg are nonorthogonal and
{IL;,... 1L, } are not necessarily rank-one projectors, is
a true-implies-false set (TIFS) if. for any KS assign-
ment f, f(Il4) + f(Ilg) < 1. Therefore, f(Il4) = 1
implies f(Ilg) =0, and f(Ilg) = 1 implies f(I14) = 0.

TIFSs made of
rank-one projectors are called definite prediction sets in

[43], 01-gadgets in [44], and Hardy-like proofs in [19] (after




True-implies-false sets




From state-dependent contextualty to

Theorem 27. Any SD-C set S of projectors can be ex-

tended to a critical SI-C' set containing all the projectors
of S.




From critical SI-C to Bell nonloce

= Physical implementation (the same as in Stairs 1983)

1 d—1
) = ﬁkg"““

= Alice has S

= Bob has the transpose projectors




The Bell inequality

LHV

Y wP@=11f=1)- ¥ “‘a"(";""“”-f) [P = 1,112 = 1) + P17 = 1,11 = 1)] < a(G,w)
ieV(g) (i.J)EE(Q)

= Formally identical to the SI-C inequality

> wPi=1)- Y max(w,w))PM;=1I;=1) < oG, w)
i€V (Q) (1,J)EE(G)




Examples of SI-C producing Belln

A. Stairs, Quantum logic, realism, and value definiteness,
Philos. Sci. 50, 578 (1983).

P. Heywood and M. L. G. Redhead, Nonlocality and the
Kochen-Specker paradox, Found. Phys. 13, 481 (1983).

H. R. Brown and G. Svetlichny, Nonlocality and Glea-

son’s lemma. Part 1. Deterministic theories, Found. Phys.
20, 1379 (1990).

A. Cabello, *All versus nothing’ inseparability for two
observers, Phys. Rev. Lett. 87, 010403 (2001).

P. K. Aravind, Bell’'s theorem without inequalities and
only two distant observers, Found. Phys. Lett. 15, 397
(2002).




Examples of SI-C producing Belln

G. Brassard, A. Broadbent, and A. Tapp, Quantum
pseudo-telepathy, Found. Phys. 35, 1877 (2005).

P. J. Cameron, A. Montanaro, M. W. Newman, S, Sev-
erini, and A. Winter, On the quantum chromatic number
of a graph. Electronic Journal of Combinatorics 14, R81
(2007).

R. Cleve and R. Mittal, Characterization of binary con-
straint system games, in Automata, Languages, and Pro-
gramming. ICALP 2014, edited by J. Esparza, P. Fraig-
niaud, T. Husfeldt, and E. Koutsoupias, Lecture Notes in
Computer Science 8572 (Springer, Berlin, 2014), p. 320.

S. Abramsky, R. Soares Barbosa, N. de Silva, and O.
Zapata, The quantum monad on relational structures, in
42nd International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2017), edited by K.
G. Larsen, H. L. Bodlaender, and J.-F. Raskin (Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, Saarbriicken,
2017) Leibniz International Proceedings in Informatics

83, p. 35:1.
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Examples of SI-C producing Bt

= Convert some SI-C sets into nonlocal games
= Do not use SI-C inequalities
= Do not preserve k and Q

= Some add constraints (in addition to the assumption
of outcome noncontextuality)




Example of how the method wo

= We are given a set S of measurements which (for
the right states) violate a noncontextuality inequality

=  Example: (1| =(1,0,0),
(v2] =25 (0,1,1),
11; = |vz><vz| (v3] =7 (1, -1,1),
(v4 :—}-(1 1,0),
(vs| =(0,0,1),




Example of how the method wo

= We are given a set S of measurements which (for
the right states) violate a noncontextuality inequality

=  Example: (1| =(1,0,0),
(v2] =25 (0,1,1),
11; = |vz><vz\ (v3] =7 (1, -1,1),
(v4 :—}_—(1 1,0),
(W= > (1,1,1) (vs| =(0,0,1)
=1)— ) PI;=1,I1; =1)<2




= Extend S to a minimal critical S-IC set




It IS the Yu-Oh set

Yu, S., and C. H. Oh (2012), Phys. Rev. Lett. 108 (3),
030402.




The Yu-Oh set Is the minimal SI-C

Yu, S., and C. H. Oh (2012), Phys. Rev. Lett. 108 (3),
030402.

Cabello, A., M. Kleinmann, and J. R. Portillo (2016a), J.
Phys. A: Math. Theor. 49, 38LTO01.




* Find the weights leading to the optimal state-
iIndependent violation of

NCHV
Y wP@;=1)- Y max(w,w)PI;=11=1) < oG w)
i€V (G) (1,7)EE(Q)

a(G,w) < Q(G,w) =tr | — Z w;ll; | = = Z w;

1€V(G) 1eV(G)
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= Inject

1 d—1
) = ﬁgkm

= Allow Alice to perform the “first” measurement and
Bob the (transpose of the) “second” measurement




= Then, the correlations between Alice and Bob
violate the Bell inequality

| ax(w;, w; : , . LHV
Y wiP(f=1,1P=1~ Y "“‘('_,; wj) [P = 1,18 = 1) + P14 = 1,117 = 1)] < a(G,w)
ieV(g) (i.4)EE(G) -

= Which has as local bound the bound of the original
noncontextuality inequality

= As quantum value the original quantum value




Virtues of the method

=  Works for any quantum contextual correlations

= Convert quantum violation of noncontextuality
Inequalities that might only be testable by performing
sequential measurements on single systems into Bell
Inequalities that can be tested with local
measurements on spatially separated systems

= The compatibility/sharpness loophole in contextuality
experiments with sequential measurements disappears
In the Bell test, as there, measurements are not need to
be ideal and measurements on different locations are
automatically compatible




Virtues of the method

= The quantum/local gap for the violation of the Bell
Inequality is the same as the
guantum/noncontextual gap of the S-IC

iInequality. And both are produced using the same
measurements

= Nonlocality vanishes whenever we remove any
element of S




Virtues of the method

= Allows for tests of the SI-C inequality and the Bell

iInequality

B U Ve  anwaN - ~d
Alice 2 Alice 1 Source

=  SI|-C between Alice 1 and Alice 2
=  S|-C between Bob 1 and Bob 2
=  Bell nonlocality between Alice 1 and Bob 1

//.- A ~ 4

Bob 1

Bob 2

=  Bell nonlocality between Alice 1 and Bob 2

=  Bell nonlocality between Alice 2 and Bob 1

=  Bell nonlocality between Alice 2 and Bob 2

= |n all cases the same classical bounds and the same quantum values
B 0




Virtues of the method

= Allows for simultaneous tests of the SI-C inequality
and the Bell inequality

Alice 2 Alice 1 Source Bob 1 Bob 2

= There is no “contextuality-nonlocality tradeoff”.
The quantum violations of the SIC inequality and
the Bell inequality can be tested simultaneously in
the same experiment

P. Kurzynski, A. Cabello, and D. Kaszlikowski, Funda-
mental Monogamy Relation between Contextuality and
Nonlocality, Phys. Rev. Lett. 112, 100401 (2014).




Limitations of the method

Except for the case of S-IC sets, the nonlocal
correlations resulting from the application of the
method do not have the same quantum/local gap
than the quantum/noncontextual gap of the original
state-dependent contextual correlations
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