Contextuality-by-Default (CbD) description of Bell tests

Marian Kupczynski

Université du Québec en Outaouais (UQO)

http://arxiv.org/abs/2104.11555

(121 references)

Araujo M., M. T. Quintino M.T., Budroni C., Cunha M.T., and Cabello A., All noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 88, 022118 (2013)

Kujala, J.V., Dzhafarov, E.N., Larsson, J-Å (2015). Necessary and sufficient conditions for extended non-contextuality in a broad class of quantum mechanical systems. Physical Review Letters 115:150401

Kupczynski M.2017 Is Einsteinian no-signalling violated in Bell tests? *Open Physics* 15, 739-753, DOI: <u>https://doi.org/10.1515/phys-2017-0087</u>

Motivation: troubling anomalies

- Adenier and Khrennikov 2007 discovered the dependence of marginal single count frequencies on distant settings in Weihs et al. data.
- Anomalies were confirmed by De Raedt, Jin and Michielsen 2012, 2013
- Adenier and Khrennikov 2017 and Bednorz 2015 reported similar anomalies in Hensen et al. data .
- Liang, at FQMT2017, reported that p-value of observing some data points under the assumption of non-signaling was smaller than 3.17×10⁻⁵⁵ (Schalm et al. data)
- We explain using CbD , why in spite of these anomalies,
 Einsteinian non-signaling is not violated .

Plan of our talk

- Introduction: statistical populations, random variables and their measurements
- Bohr- and Kochen Specker- contextuality
- Non-contextual inequalities for n-cycle scenarios (NCI)
- CbD approach and modified NCI
- Ideal EPR-B experiment and spin polarization correlation experiments (SPCE)
- Inconsistent connectedness and a modified CHSH inequality.
- New tests of contextuality in SPCE.

Statistical populations

- A set of physical systems, objects, animals or people (whose properties, behaviour and opinions at a given moment of time) we want to investigate
- An infinite set of outcomes which might have been obtained in subsequent repetitions of a random experiment
- The information about statistical populations is inferred from properties of finite simple random samples drawn from these populations

Properties and random variables

- Macroscopic objects have predetermined/noncontextual properties.
- Non-contextual properties can be 'measured' jointly or in any order.
- Measurement outcomes are coded using a set of random variables.
- In mathematical statistics populations are described by joint probability distributions of non-contextual random variables.

Measurements in classical physics

- Non-contextual properties "exist" independently of the fact of being measured (length of a table, colour of eyes, Corona virus ADN code, ...).
- In statistical physics we use joint probability distributions of, <u>impossible to measure</u>, positions, linear momenta and energies of invisible molecules in order to describe thermodynamics of materials.
- Classical Filters are selectors of preexisting properties.

Measurements in quantum physics

- We observe only the macroscopic effects of interactions between invisible physical systems and measuring instruments or environment:
 - traces in ionization chambers, clicks on detectors
- Contextual properties are created in the interaction of a physical system with a measuring instrument in a well-defined experimental context .(e.g. spin projection)
- Values of complementary properties may not be assigned 'to a physical system at the same time'

Three Principles

- 1. Bohr-contextuality: The output of any quantum observable is indivisibly composed of the contributions of the system and the measurement apparatus.
- 2. Bohr-complementarity: There exist incompatible observables (complementary experimental contexts).
- Kochen-Specker (KS)-contextuality:
 A measurement of an observable does not need to yield the same value independently of what other measurements may be made simultaneously
- Khrennikov A., Can there be given any meaning to contextuality without incompatibility? Int. J. Theor. Phys., 2020; https://doi.org/10.1007/s10773-020-04666-z .'

Contextuality as the rule not an exception

- KS- contextuality is not limited to quantum mechanics (QM)
- In behavioral sciences answers to Yes-or-NO questions depend on which other questions and in which order are asked at the same time
- Therefore in CbD random variables are labelled not only by a 'measured' content but also by a context of the experiment.

Dzhafarov, E.N., Kujala, J.V. (2014). Contextuality is about identity of random variables. Physica Scripta T163:014009.

Kujala, J.V., Dzhafarov, E.N., Larsson, J-Å (2015). Necessary and sufficient conditions for extended noncontextuality in a broad class of quantum mechanical systems. Physical Review Letters 115:150401

Contextuality and non-contextuality

- A set X of random variables is contextual, if a studied population may not be described by a joint probability distribution of all these variables.
 Otherwise X is non-contextual.
- A set X of dichotomous random variables, taking values ±1, is contextual, if and only if noncontextuality inequalities (NCI) are violated.
- Cabello A, Experimentally testable state-independent quantum contextuality. Physical Review Letters, 101(21):210401, 2008.
- Cabello A., Simple explanation of the quantum violation of a fundamental inequality. Physical Review Letters, 110:060402, 2013.

NCI for n-cycle scenarios

• A simple inequality is satisfied by x_i=±1:

 $x_0x_1 + x_1x_2 + \dots x_{n-2}x_{n-1} - x_{n-1}x_0 \le n-2$ the maximal value of the <u>blue sum</u> is n-1

• NCI are satisfied by pair-wise expectations :

 $< X_0 X_1 > + < X_1 X_2 > \ldots - < X_{n-1} X_0 > \le n-2$

 For n=3 we have one of Boole or Suppes-Zanotti-Legett-Garg (SZLG) inequalities . For n=4 we obtain Clauser-Horn-Shimony-Holt (CHSH) inequality and for n=5 we obtain Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality

Generalized NCI

Generalized n-cyclic NCI for $n \ge 3$ and $\gamma_i = \pm 1$:

$$\sum_{i=0}^{n-1} \gamma_i < X_i X_{i+1} > \le n-2$$

where $X_n = X_0$ and such that the number of $\gamma_i = -1$ is odd.

- Araujo M., M. T. Quintino M.T., Budroni C., Cunha M.T., and Cabello A., All noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 88, 022118 (2013)
- Dzhafarov, E.N., & Kujala, J.V., & Larsson, J.-Å. (2015). Contextuality in three types of quantum-mechanical systems. Foundations of Physics 7, 762-782.

Contextuality –by- default

Let us consider n-cycle scenario of binary random variables X={X₀,...X_{n-1}} such that only all successive pairs {X_i, X_{i+1}} are commeasurable and X_n = X₀.

 Each pair of random variables defines a different experimental context.

In CbD : X_i and X'_i measure the same content in two contexts ,thus we have a system containing 2n binary random variables X'={X₀, X'_{0...}X_{n-1}, X'_{n-1}}.

M.K, CbD description of Bell Tests, arXiv:2104.11555 [quant-ph]

Inconsistent connectedness

We have still *n* measurable pairwise expectations
 < X_i X'_{i+1}>, but random variables X_i ≠ X '_i are stochastically unrelated (our system is not cyclic) and we may not derive NCI.

 $X_0 - X'_1 \quad X_1 - X'_2 \quad \dots \quad X_{n-2} - X'_{n-1} \quad X_{n-1} - X'_0$

- If marginal expectation values of random variables measuring the same content depend on the experimental context: < X_i >_m ≠ <X'_i>_m, then they are inconsistently connected (NCC).
- CbD proposes a new method for studying the contextuality of NCC system.

New extended 2n-cyclic system

- CbD **imposes** a counterfactual joint probability distribution upon the system X'
- If such probability distribution is imposed, the expectations < X_i X'_i> are defined and we have a new <u>2n</u>-cyclic system/scenario :

$$\sum_{i=0}^{n-1} \gamma_i < X'_i X_{i+1} > + \sum_{i=0}^{n-1} < X_i X'_i > \leq 2n-2$$

Maximal and identity couplings

Random variables X_i and X'_i should be as similar
 as possible what imposes constraints on <X_i X '_i >.

 In CbD we impose the maximal coupling on each pair of random variables {X_i, X'_i} replacing < X_i X'_i> by its maximal value :

$$1 - |\langle X_i \rangle_m - \langle X'_i \rangle_m|$$

 A counterfactual joint probability distribution of 2n variables, consistent the constraints and experimental data, does not always exist.

Modified NCI in CbD

 $< X_0 X'_0 > + < X'_0 X_1 > \dots - < X'_{n-1} X_0 > \le 2n-2$

 $S_n = \sum_{i=1}^{n} \gamma_i < X'_i X_{i+1} > + \sum_{i=1}^{n} |\langle X_i \rangle - \langle X'_i \rangle| \le n - 2$ i=0i=0

EPR-B (1951) Experiment

- Twin-electron or twin-photon pairs are prepared in a singlet state
- 'Particles' are allowed to separate
- Spin components on different directions , measured by Alice and Bob, are strongly correlated

$$\Psi = (|+>_{\hat{p}} \otimes |->_{\hat{p}} - |->_{\hat{p}} \otimes |+>_{\hat{p}})/\sqrt{2}$$

where $|+>_{\hat{p}}$ and $|->_{\hat{p}}$ are state vectors corresponding to the particle states in which the spin is "up" or "down" in the direction of \hat{p} respectively.

Experimental Protocol of ideal EPR-B

- A stationary flow of pairs of entangled spins .
- No losses of pairs, the outcomes are coded by two random variables (A ,B) where A=±1 and B=±1.
- An experimental run is described by 3 samples $S_{A=} \{a_1,...,a_n\}, S_{B=} \{b_1,...,b_n\}, S_{AB=} \{a_1,b_1,...,a_n,b_n\}$
- One may estimate : P (A=a, B=b|x, y) and marginal distributions P (A=a|x, y), P (B=b|x,y) do not depend on distant settings.

Non-signaling is strictly obeyed.

Non-signaling = marginal distributions do not depend on distant settings

$$P(A = a | x, y) = \sum_{b} P(A = a, B = b | x, y) = P(A = a | x)$$

$$P(B = b | x, y) = \sum_{a} P(A = a, B = b | x, y) = P(B = b | y)$$

Spin polarization correlation experiments (SPCE) Bell-Tests with twin-photon-beams

 Two correlated signals are sent to Alice and Bob in distant laboratories

 The signals after passing by PBS-detector modules produce two time series of clicks registered by Alice's and Bob's online computers .

 One has to identify the clicks produced by entangled 'photon-pair'. Correlated clicks are rare events **3 step** experimental protocol for (x,y)

1. Raw time-tagged data (a $_{k} = \pm 1$ and b $_{m} = \pm 1$):

$$S_A(x, y) = \{(a_k, t_k) | k=1, ..., x\}, S_B(x, y) = \{(b_m, t'_m) | j=1, ..., y\}$$

2.Using synchronized time-windows of width W and keeping only those with no click at all or a click on one of Alice's or/and Bob's detectors new samples are constructed:

$$S_A(x, y, W) = \{a_s \mid s=1,...N_x\}, S_B(x, y, W) = \{b_t \mid t = 1,...N_y\}$$

 $a_s=0,\pm 1 \text{ and } b_t=0,\pm 1.$

3. Keeping only synchronized time-windows in which both Alice and Bob observed a click a new sample is constructed:

 $S'_{AB}(x, y, W) = \{(a_r, b_r) | r=1,...N_{xy}\} a_r=\pm 1 and b_r=\pm 1.$

Data analysis and non—signaling • If samples constructed in the step 2 are used: <A |x, y, W>≈<A| x, y', W> ; <B |x, y, W>≈<B| x, y, W> Einsteinian non -signaling (parametric independence)

is not violated in SPCE

 To test CHSH inequality we have to estimate :
 <A'B' | x, y, W>, <A'B' | x, y', W>,
 <A'B' | x', y, W> and <A'B' | x', y', W'>

 using samples constructed in the step 3.
 Now <A'> and <B'> depend on distant settings:

 $<A' | i, j > \neq <A' | i, j' > and <B' | i, j > \neq <B' | i, j >$ where i=x or x' and j=y or y'

Standard CHSH

 If there exists a joint probability distribution of dichotomic random variables (A₁, A₂, B₁, B₂) then:

$$S = < A_1 B_1 > + < A_1 B_2 > + < A_2 B_1 > - < A_2 B_2 > \leq 2$$

Since $\langle A_i B_j \rangle = \langle B_j A_i \rangle$, CHSH inequality is NCI for a 4-cyclic system :

$$B_2 - A_1 - B_1 - A_2 - B_2$$

 $S = < B_2 A_1 > + < A_1 B_1 > + < B_1 A_2 > - < A_2 B_2 > \le 2$

CbD description of SPCE
We have 4 experimental contexts (11)...(22): A'₁B'₁, A'₁B'₂, A'₂B'₁ and A'₂B'₂

Thus: A'₁B'₂= A₁₂B₁₂ ...where 'red labels' indicate the contents measured in the context (12).

- The variables : A₁₁ and A₁₂; A₂₁ and A₂₂; B₁₁ and B₂₁; B₁₂ and B₂₂ are stochastically unrelated
- Moreover : we have a system of inconsistently connected random variables (NCC)

$$_{m} \neq _{m}, _{m} \neq _{m}$$

For a NCC system CHSH does not exist

Instead of a 4-cyclic system (A₁, A₂, B₁, B₂), we have a non-cyclic system X' of 8 different random variables labelled by their contexts:

 $A_{11} - B_{11}$; $A_{12} - B_{12}$; $A_{21} - B_{21}$; $A_{22} - B_{22}$

• The only inequality which may be derived without additional assumptions is:

$$S' = < A_{11}B_{11} > + < A_{12}B_{12} > + < A_{21}B_{21} > - < A_{22}B_{22} > \le 4$$

Maximal coupling

- CbD imposes a counterfactual joint probability distribution upon the system X'
- If such probability distribution is imposed, the expectations < A₁₁ A₁₂ > , <A₂₁ A₂₂ > , <B₁₁B₂₁ > , <B₁₂B₂₂ > are defined and we have a new 8-cyclic system:

$$A_{11} - B_{11} - B_{21} - A_{21} - A_{22} - B_{22} - B_{21} - A_{21} - A_{11}$$

 CbD imposes maximal couplings between stochastically unrelated variables

$$\langle A_{11}A_{12}\rangle = 1 - |\langle A_{11}\rangle_m - \langle A_{12}\rangle_m |$$
etc

Modified CHSH in CbD

• We start with NCI for our 8-cyclic system:

$$S_4 = S' + \langle A_{11}A_{12} \rangle + \langle A_{21}A_{22} \rangle \dots + \langle B_{12}B_{22} \rangle \leq 8 - 2$$

 After replacing <A₁₁A₁₂>,... <B₁₂B₂₂> by maximal couplings we obtain the modified CHSH inequality:

$$S_4 = < A_{11}B_{11} > + < A_{12}B_{12} > + < A_{21}B_{21} > - < A_{22}B_{22} > + D_4 \le 2$$

 $D_4 = \mid < A_{11} > - < A_{12} > \mid + \ldots + \mid < B_{12} > - < B_{22} > \mid$

Testing the contextuality of X'

 Following Kujala-Dzhafarov-Larsson we construct a conservative Bonferroni confidence interval for S₄:

$$I_{\alpha}(S_{4}) = I_{\frac{\alpha}{8}}(\langle A_{11}B_{11} \rangle) + \dots I_{\frac{\alpha}{8}}(\langle A_{21}B_{21} \rangle) - I_{\frac{\alpha}{8}}(\langle A_{22}B_{22} \rangle) + I_{\frac{\alpha}{2}}(D_{4}) \le 2$$

- If I_α (S₄)=[I_α, u_α] is an estimated (1-α)100% confidence interval then there is (1-α)100% chance that the value of S₄ is included in I_α (S₄).
- [a, b] + [c, d]=[a + c, b+ d] , -[a, b]= [-b, -a]

Kujala, J.V., Dzhafarov, E.N., Larsson, J-Å (2015). Necessary and sufficient conditions for extended noncontextuality in a broad class of quantum mechanical systems. Physical Review Letters 115:150401.

Significance test

- If the lower bound of I_α (S₄)=[I_α,u_α] is greater than
 2, then with (1-α)100% confidence, we conclude that X' is not only inconsistently connected (NCC) but also contextual (does not allow a maximal non-contextual description).
- If the upper bound of I_α (S₄) is smaller than 2 then we conclude with (1-α) 100% confidence that X' allows the maximal non-contextual description.
- Inconsistent connectedness is already the first manifestation of contextuality <u>as we define it</u>.

Contextuality as the rule not the exception

- In SPCE the context dependent step 3 of experimental protocol does not depend on <u>how signals are correlated at the source.</u>
- Bohr- contextuality does not depend <u>on particular</u> chosen experimental settings.
- New SPCE experiments using non-entangled photonic sources should give the answer to the following question : What is more important cause of the violation of Belltype inequalities: an entanglement of the incoming signals and a choice of particular settings or Bohrcontextuality and context dependent experimental protocols?

Contextuality confirmed by an Italian group

The results of the experiment performed by lannuzzi, Francini, Messi and Moricciani seem to confirm our intuition.

"We present a **Bell-type polarization experiment using two independent sources** of polarized optical photons, and detecting the temporal coincidence of pairs of uncorrelated photons which have never been entangled in the apparatus. **The outcome of the experiment gives evidence of violation of the Bell-like inequalities**."

M. Iannuzzi, R. Francini, R. Messi, D. Moricciani:Bell-type Polarization Experiment With Pairs Of Uncorrelated Optical Photons, Physics Letters A 384 (2020) 126200;Doi:10.1016/j.physleta.2019.126200 (arXiv:2002.02723 [quant-ph])

Realism versus contextuality

 Realism or counterfactual definiteness (CDF): measuring devices register values of physical observables existing independently whether they are measured or not.(They are ontic)

 Contextuality: the values of contextual physical observables such as a spin projections are created in the interaction of the physical system with the measuring apparatus and they do not exist before the measurement. (They are epistemic)

Conclusions

- The results of Bell tests , analyzed using CbD , confirm the importance of contextuality
- Einsteinian non-signaling is not violated .
- The inconsistent connectedness and the violation of Bell-type inequalities does not allow to make any statements about local causality, non-locality of Nature, superdeterminism and experimenters' freedom of choice.

Kupczynski M., Can we close the Bohr-Einstein quantum debate?, Phil.Trans.R.Soc.A., 2017, 20160392., DOI: 10.1098/rsta.2016,0392

Kupczynski M., Is the Moon there when nobody looks: Bell inequalities and physical reality, Front. Phys., 23 September 2020 | https://doi.org/10.3389/fphy.2020.00273

Thank you

Supplementary material

Contextual causally local explanation of correlations

a=±1 or 0 is <u>determined</u> locally by the values of λ_1 and λ_x describing the signal S_1 and the measuring device x. Similarly b =±1 or 0 is <u>determined</u> by λ_2 and λ_y .

Experimenter has a free will: the settings (x, y) are chosen in any way he wants but parameters Λx and Λy depend on settings (x , y) chosen.

Simple contextual probabilistic model

- (λ_1, λ_2) describe correlated signals arriving to PBS-D
- (λ_x, λ_y) describe PBS-D modules at a moment of interaction.
- Click or no click are produced in locally causal way and are coded by: $A_x(\lambda_1, \lambda_x)=0, \pm 1$ and $B_y(\lambda_2, \lambda_y)=0, \pm 1$

Setting-dependent expectation values :

$$E(A, B | \mathbf{x}, \mathbf{y}) = \sum_{\lambda \in \Lambda_{xy}} \mathbf{A}_{x}(\lambda_{1}, \lambda_{x}) \mathbf{B}_{y}(\lambda_{2}, \lambda_{y}) P_{x}(\lambda_{x}) P_{y}(\lambda_{y}) \mathbf{P}(\lambda_{1}, \lambda_{2})$$

where $\lambda = (\lambda_1, \lambda_2, \lambda_x, \lambda_y)$, $\lambda \in \Lambda_{xy} = \Lambda_1 \times \Lambda_2 \times \Lambda_x \times \Lambda_y$

CHSH-BELL PROOFS

FATAL CONTEXTUALITY LOOPHOLE THE EXISTENCE OF A COMMON PROBABILITY IS TAKEN FOR GRANTED **BUT**

$$\Lambda_{xy} \neq \Lambda_{x'y} \neq \Lambda_{xy'} \neq \Lambda_{x'y'} \neq \Lambda$$

In our model experiments in different settings are described by **disjoint** probability spaces and **dedicated** probability distributions Describing the data using our model Samples obtained in the step 2 of the protocol

Setting independent single counts of Alice

(1)
$$E(A \mid \mathbf{x}) = \sum_{\lambda_1, \lambda_x, \lambda_2} A_x(\lambda_1, \lambda_x) P_x(\lambda_x) P(\lambda_1, \lambda_2)$$

and Bob

(2)
$$E(\mathbf{B} | \mathbf{y}) = \sum_{\lambda_1, \lambda_y, \lambda_2} \mathbf{B}_y(\lambda_2, \lambda_y) P_y(\lambda_y) P(\lambda_1, \lambda_2)$$

No violation of Einsteinian non-signaling.

Inconsistent connectedness of the data obtained in the step 3 explained

Setting dependent marginal expectations (1')

(2')
$$E(A | \mathbf{x}, \mathbf{y}) = \sum_{\lambda \in \Lambda'_{xy}} A_x(\lambda_1, \lambda_x) P_x(\lambda_x) P_y(\lambda_y) P(\lambda_1, \lambda_2)$$
$$E(B | \mathbf{x}, \mathbf{y}) = \sum_{\lambda \in \Lambda'_{xy}} B_y(\lambda_2, \lambda_y) P_x(\lambda_x) P_y(\lambda_y) P(\lambda_1, \lambda_2)$$

where $\Lambda'_{xy} = \{\lambda \in \Lambda_{xy} | A_x(\lambda_1, \lambda_x) \neq 0 \text{ and } B_y(\lambda_2, \lambda_y) \neq 0\}$. In general $E(A|x,y) \neq E(A|x,y')$ and $E(B|x,y) \neq E(B|x',y)$ Our model contains a sufficient number of **free parameters** to explain any correlations.

Details may be found in

Kupczynski M., Can we close the Bohr-Einstein quantum debate?, Phil.Trans.R.Soc.A., 2017, 20160392., DOI: 10.1098/rsta.2016,0392

Kupczynski M., Is the Moon there when nobody looks: Bell inequalities and physical reality, Front. Phys., 23 September 2020 | https://doi.org/10.3389/fphy.2020.00273