From contextuality to quantum advantage
with shallow circuits
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Background 2
—

» Quantum advantage with shallow circuits, Bravyi et al.
(Science 2018)
» Unconditional separation for circuits of bounded depth and
fan-in.
» Introduced a shallow quantum circuit {Q,, }nen and
relational problems {A, }nen.

» The GHZ non-local game




Overview 3

—

» Quantum non-locality can be recast with circuits

» Shallow classical circuits extend local hidden variables in a
“limited sense”.

» Detecting shallow circuits with simulations.

» Constructing examples.
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Nonlocality and shallow circuits

—

» Circuits for empirical model e(x1,...,2n) (Y1, ., Yn):
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Detecting classical correlations

» Local vs shallow hidden variable:
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Simulations 6

—

» Simulation from n-partite e to m-partite e:
» Communicate inputs from [m] to [n] and outputs from [n]

to [m]:
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> “Communication relations”: In C [m] x [n], Out C [n] x [m]
» No-communication: In; Out C id[,-
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Case: A particular circuit C 7

» ¢ simulates €’
> C “generates” e
» In; LC¢; Out C id[m]

» Then €’ is non-contextual.
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Case: A class of circuits 8

In LC¢ Out

» Probabilistic simulation: In and Out are sampled randomly
from a probability distribution.
> If:

» ¢ simulates e’
» ¢ is generated by some circuit C
» For all circuits C: Prob(In; LC¢; Out C id) < e

» Then CF(¢/) <e.
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Detecting shallow circuits 9
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» Lemma (adapted from BGK): If
> e simulates e’
» e is generated by shallow circuit C: |]<Ec (1) < K.
> |m(z)| < L is small.
> In(é) is “sufficiently uniformly distributed” when m(z’ ) is
fixed

» Then CF(e') < m?K Le.
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Teleportation on a line 10

Single-round teleportation

Two-round teleportation
protocol
> ¢, B: maximally entangle state, Bell basis
> M(—p) := W (=p)MW (=p)f
> W(—p) is a Weyl operator
> p:=p1+...Pn-1.
> ¢ =q—[p.p)
> [p,p']: Symplectic product

protocol.
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Teleportation in shallow circuits 11

» U: Prepare 1) and many
maximally entangled
states.

» Measurement gates:
Bell basis or Weyl
operator measurements.
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Result 12
—

P> ¢ is generated by Weyl measurements on an n-qudit state
» Theorem:

> O(v, @) has “small depth and fan-in” (independent of |G|
» Any equivalent classical circuit has depth D and fan-in K
such that:

G
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Beyond Weyl operator measurements 13

» Use two-round teleportation protocol.

» Interactive shallow circuits:
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