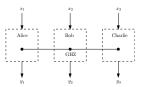
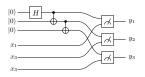
From contextuality to quantum advantage with shallow circuits

Sivert Aasnæss

- Quantum advantage with shallow circuits, Bravyi et al. (Science 2018)
 - Unconditional separation for circuits of bounded depth and fan-in.
 - ► Introduced a shallow quantum circuit $\{Q_n\}_{n\in\mathbb{N}}$ and relational problems $\{A_n\}_{n\in\mathbb{N}}$.
- ▶ The GHZ non-local game





- ▶ Quantum non-locality can be recast with circuits
- Shallow classical circuits extend local hidden variables in a "limited sense".
- Detecting shallow circuits with simulations.
- ► Constructing examples.

Nonlocality and shallow circuits

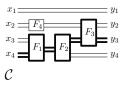
• Circuits for empirical model $e(x_1, \ldots, \underline{x_n})(y_1, \ldots, y_n)$:

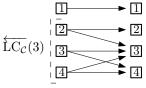


quantum circuit

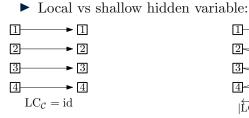
"hidden variable model"

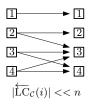
► "Shallow": bounded lightcones:





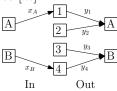
Detecting classical correlations





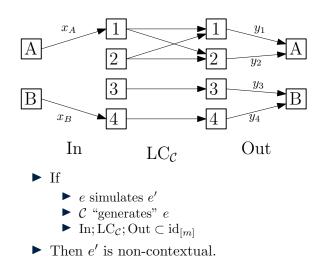
• Simulation from n-partite e to m-partite e:

Communicate inputs from [m] to [n] and outputs from [n] to [m]:

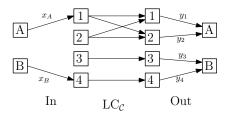


Communication relations": In ⊂ [m] × [n], Out ⊂ [n] × [m]
No-communication: In; Out ⊂ id_[m].

Case: A particular circuit \mathcal{C}

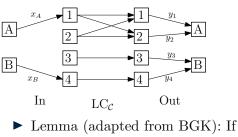


Case: A class of circuits



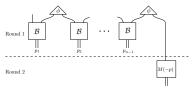
- Probabilistic simulation: In and Out are sampled randomly from a probability distribution.
- ► If:
 - \blacktriangleright e simulates e'
 - e is generated by *some* circuit C
 - ► For all circuits C: Prob(In; LC_C; Out \subset id) $\leq \epsilon$
- ► Then $CF(e') \leq \epsilon$.

Detecting shallow circuits

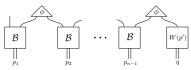


- \blacktriangleright e simulates e'
- e is generated by shallow circuit C: $|\overleftarrow{\mathrm{LC}}_{\mathcal{C}}(i)| \leq K$.
- $|\overleftarrow{\operatorname{Out}}(i)| \le L$ is small.
- $\overline{\ln}(i)$ is "sufficiently uniformly distributed" when $\overline{\operatorname{Out}}(i')$ is fixed
- ▶ Then $CF(e') \le m^2 K L \epsilon$.

Teleportation on a line



Two-round teleportation protocol



Single-round teleportation protocol.

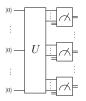
φ, *B*: maximally entangle state, Bell basis
M(−*p*) := *W*(−*p*)*MW*(−*p*)[†]

$$W(-p)$$
 is a Weyl operator

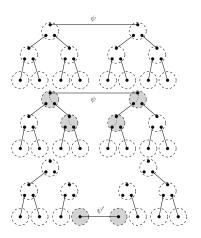
$$p := p_1 + \dots p_{n-1}$$

$$\bullet q' := q - [p, p']:$$

▶ [p, p']: Symplectic product



- U: Prepare ψ and many maximally entangled states.
- Measurement gates: Bell basis or Weyl operator measurements.



- $\blacktriangleright~e$ is generated by Weyl measurements on an n-qudit state
- ► Theorem:
 - ▶ $\mathcal{Q}(\psi, G)$ has "small depth and fan-in" (independent of |G|
 - Any equivalent classical circuit has depth D and fan-in K such that:

$$K^D \ge \operatorname{CF}(e) \frac{|G|}{\operatorname{rad}(G)n^2}$$

- ▶ Use two-round teleportation protocol.
- ▶ Interactive shallow circuits:

