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▶ Quantum advantage with shallow circuits, Bravyi et al.
(Science 2018)
▶ Unconditional separation for circuits of bounded depth and

fan-in.
▶ Introduced a shallow quantum circuit {Qn}n∈N and

relational problems {An}n∈N.

▶ The GHZ non-local game
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Overview 3

▶ Quantum non-locality can be recast with circuits

▶ Shallow classical circuits extend local hidden variables in a
“limited sense”.

▶ Detecting shallow circuits with simulations.

▶ Constructing examples.



Nonlocality and shallow circuits 4

▶ Circuits for empirical model e(x1, . . . , xn)(y1, . . . , yn):
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▶ “Shallow”: bounded lightcones:
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Detecting classical correlations 5

▶ Local vs shallow hidden variable:
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Simulations 6

▶ Simulation from n-partite e to m-partite e:
▶ Communicate inputs from [m] to [n] and outputs from [n]

to [m]:
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▶ “Communication relations”: In ⊂ [m]× [n], Out ⊂ [n]× [m]
▶ No-communication: In;Out ⊂ id[m].



Case: A particular circuit C 7
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▶ If

▶ e simulates e′

▶ C “generates” e
▶ In; LCC ; Out ⊂ id[m]

▶ Then e′ is non-contextual.



Case: A class of circuits 8
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▶ Probabilistic simulation: In and Out are sampled randomly
from a probability distribution.

▶ If:
▶ e simulates e′

▶ e is generated by some circuit C
▶ For all circuits C: Prob(In; LCC ; Out ⊂ id) ≤ ϵ

▶ Then CF(e′) ≤ ϵ.



Detecting shallow circuits 9
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▶ Lemma (adapted from BGK): If
▶ e simulates e′

▶ e is generated by shallow circuit C: |
←−
LCC(i)| ≤ K.

▶ |
←−−
Out(i)| ≤ L is small.

▶ ←−In(i) is “sufficiently uniformly distributed” when
←−−
Out(i′) is

fixed

▶ Then CF(e′) ≤ m2KLϵ.



Teleportation on a line 10
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▶ ϕ,B: maximally entangle state, Bell basis

▶ M(−p) :=W (−p)MW (−p)†
▶ W (−p) is a Weyl operator
▶ p := p1 + . . . pn−1.

▶ q′ := q − [p, p′]:
▶ [p, p′]: Symplectic product



Teleportation in shallow circuits 11
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▶ U : Prepare ψ and many
maximally entangled
states.

▶ Measurement gates:
Bell basis or Weyl
operator measurements.
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Result 12

▶ e is generated by Weyl measurements on an n-qudit state

▶ Theorem:
▶ Q(ψ,G) has “small depth and fan-in” (independent of |G|
▶ Any equivalent classical circuit has depth D and fan-in K

such that:

KD ≥ CF(e)
|G|

rad(G)n2



Beyond Weyl operator measurements 13

▶ Use two-round teleportation protocol.

▶ Interactive shallow circuits:
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