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The Classical Agreement Theorem 

Alice and Bob possess a common prior probability distribution on a state space 

They each then receive different private information about the true state  

They form their conditional (posterior) probabilities  and  of an underlying 
event of interest 

Theorem (Aumann, 1976): If these two values  and  are common knowledge 
between Alice and Bob, they must be equal 

Here, an event  is common knowledge between Alice and Bob if they both 
know it, both know they both know it, and so on indefinitely

qA qB

qA qB

E

R. Aumann, “Agreeing to Disagree,” Annals of Statistics, 4, 1976, 1236-1239
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Applications 

The agreement theorem is considered a basic requirement in classical epistemics 

It has been used to 

show that two risk-neutral agents, starting from a common prior, cannot 
agree to bet with each other 
(Sebenius and Geanakoplos, 1983) 

prove “no-trade” theorems for efficient markets 
(Milgrom and Stokey, 1982) 

establish epistemic conditions for Nash equilibrium 
(Aumann and Brandenburger, 1995)

J. Sebenius and J. Geanakoplos. “Don’t Bet on It: Con:ngent Agreements with Asymmetric Informa:on, Journal of the American 
Sta2s2cal Associa2on, 78, 1983, 424-426; P. Milgrom and N. Stokey, “Informa:on, Trade, and Common Knowledge,” Journal of 
Economic Theory, 26, 1982, 17–27; R. Aumann and A. Brandenburger, “Epistemic Condi:ons for Nash Equilibrium,” Econometrica, 
63, 1995, 1161–1180



4J. Geanakoplos and H. Polemarchakis, “We Can’t Disagree Forever,” Journal of Economic Theory, 
28, 1982, 192–200; this variant is due to John Geanakoplos (private communica:on)
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Non-Classical Settings 

What is the status of the Agreement Theorem when classical probability theory 
does not apply? 

In the physical domain, the canonical case is quantum mechanics, where a 
fundamental result (Bell’s Theorem, 1964) says that no local hidden-variable 
theory can model the results of all quantum experiments 

This implies that the classical Bayesian model does not apply 

In decision theory, there are proposals for non-classical alternatives with 
quantum features (e.g., La Mura, 2009; Busemeyer and Bruza, 2012; and Haven, 
Khrennikov, Ma, and Sozzo, 2018), which have been used to offer resolutions of 
anomalies in choice such as Ellsberg’s Paradox (Ellsberg, 1961) 

Perhaps, there is also an interesting non-classical decision theory with signed 
probabilities

J. Bell, “On the Einstein Podolsky Rosen Paradox," Physics Physique Fizika, 1, 1964, 195-200; P. La Mura, “Projec:ve Expected U:lity,” 
Journal of Mathema2cal Psychology, 53, 2009, 408-414; J. Busemeyer and P. Bruza, Quantum Models of Cogni2on and Decision, 
Cambridge University Press, 2012; E. Haven, A. Khrennikov. C. Ma, and S. Sozzo, “Introduc:on to Quantum Probability Theory and its 
Economic Applica:ons,” Journal of Mathema2cal Economics, 78, 2018, 127-130; D. Ellsberg, “Risk, Ambiguity, and the Savage Axioms,” 
Quarterly Journal of Economics, 75, 1961, 643-669
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General Set-up 

There is a finite abstract state space  

Alice and Bob have partitions  and  of  representing their private 
information         

There is a common — possibly signed — prior probability measure  on  

Observability: 

Assume throughout that all members of the partitions  and  receive 
probability in the interval  

Assume, too, that all events of interest receive probability in 

Ω

𝒫A 𝒫B Ω

p Ω

𝒫A 𝒫B
(0,1]

(0,1]
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A Warm-Up Example 

Alice’s (Bob’s) partition is red (blue) 

The event of interest is 
 

The true state is  

At , Alice assigns (conditional) 
probability  to     

At , Bob assigns (conditional) 
probability  to  

The event that Bob assigns probability 
0 to  is 

 

At , Alice assigns probability  to  

Call this singular disagreement 

It is impossible classically!

E = {ω1, ω3, ω4}
ω1

ω1
1 E

ω1
0 E

E
G = {ω1, ω2, ω3}

ω1 1 G

●

●

●

●

(−1/4)

(+1/4)

(+1/2)

(+1/2)

ω1

ω3

ω2

ω4

Note: All partition cells (even events in 
the join) and     receive strictly positive 
probability and are therefore observable

E
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From Knowledge to Certainty 

Definition: Alice knows an event  at state  if  

Definition: Alice is certain of an event  at a state  if  

Fix an event  and probabilities  and , and let 

for all  

Definition: It is common certainty at a state  that Alice assigns probability  
to  and Bob assigns probability  to  if  

E ω 𝒫A(ω) ⊆ E

E ω p(E |𝒫A(ω)) = 1

E qA qB

n ≥ 0

ω* qA
E qB E ω* ∈ ∩∞

n=0 An ∩ ∩∞
n=0Bn

A0 = {ω ∈ Ω : p(E ∣ 𝒫A(ω)) = qA}
B0 = {ω ∈ Ω : p(E ∣ 𝒫B(ω)) = qB}

An+1 = An ∩ {ω ∈ Ω : p(Bn ∣ 𝒫A(ω)) = 1}
Bn+1 = Bn ∩ {ω ∈ Ω : p(An ∣ 𝒫B(ω)) = 1}
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Relationship Between Knowledge and Certainty 

If Alice knows an event  at state , then she is certain of  at  

It is also true that common knowledge of  implies common certainty of  

(Proof: If Alice knows Bob knows , then she knows Bob is certain of , since 
knowledge is monotonic.  From this, Alice is certain Bob is certain of .  The 
argument continues to higher levels.) 

Arguably, the distinction between these modalities is “small” in the classical 
domain (arguably, not!) 

Also, in the classical domain, there is an Agreement Theorem for common 
certainty 

Theorem (classical): Fix a (non-negative) common prior and an event .  
Suppose at a state  it is common certainty that Alice’s probability of  is  
and Bob’s probability of  is .  Then . 

But what happens in the non-classical world?

E ω E ω

E E

E E
E

E
ω* E qA

E qB qA = qB
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Non-Classical Agreement with Knowledge 

Even without our observability conditions, we get a non-classical analog to the 
classical Agreement Theorem 

Theorem (non-classical): Fix a signed common prior and an event .  Suppose at 
a state  it is common knowledge that Alice’s probability of  is  and Bob’s 
probability of  is .  Then . 

Proof: Follow closely the classical argument.  Consider the (equal) conditional 
probabilities  for Alice, calculated for cells of her partition that are contained 
in the cell  of the meet.  This time, we take an affine rather 
than convex combination of this constant probability to get 

.  Then run the same argument for Bob. 

But let’s see what happens with common certainty …

E
ω* E qA

E qB qA = qB

qA
(𝒫A ∧ 𝒫B)(ω*)

p(E | (𝒫A ∧ 𝒫B)(ω*)) = qA

https://www.xixilogic.org/events/wp-content/uploads/2022/05/lfdsn2019-proceedings.pdf; see also M. Leifer and C. Duarte, 
“Generalizing Aumann’s Agreement Theorem,” 2022, at https://arxiv.org/abs/2202.02156



Common Certainty of Disagreement 

The event of interest is 

 

The true state is  

At , it is common certainty that Alice assigns probability  to  while 
Bob assigns probability  to  

That is, there is common certainty of disagreement!

E = {ω2, ω4, ω5, ω6}
ω5

ω5 1 − 2ϵ E
1 − 2η E
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● ●

● ●

●

●

 and  are small with ϵ η ϵ ≠ η

ω1

(+ϵ)

(+1/2)

ω2

(−ϵ)

ω5

(+1/2)

ω6

ω3

(+η)

(−η)
ω4



Communication 

The event of interest is 

 

The true state is  

Alice communicates her probability  to Bob (cf. Geanakoplos and 
Polemarchakis, 1982), which tells him she has information  

Bob’s information is then , so he forms a (new) probability of , 
which is not well-defined!

E = {ω2, ω4, ω5, ω6}
ω1

1 − 2ϵ
{ω1, ω2, ω5}

{ω1, ω2} −ϵ/0
12

● ●
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(+1/2)
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(−ϵ)
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Communication-Enabled Structures 

Define a sequence of partitions for Alice, corresponding to announcements she 
could make about her probability of , her certainty of Bob’s probability, etc., 
and likewise for Bob 

 

 

For any , say  is regular with respect to  if  and 
 

A structure  is communication-enabled with respect to  if 
for each , each  and each  is regular with 

respect to  

Note: This property fails in the previous example

E

ℳ(n)
A = {An, Ac

n}

ℳ(n)
B = {Bn, Bc

n}

π, E ⊆ Ω π E p(π) ≥ 0
0 ≤ p(π ∩ E) ≤ p(π)

(Ω, p, 𝒫A, 𝒫B) E
n ≥ 0 π ∈ 𝒫A ∨ ℳ(n)

B π ∈ 𝒫B ∨ ℳ(n)
A

E
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A New Agreement Theorem 

Theorem: Fix a structure that is communication-enabled with respect to     
and suppose at a state  it is common certainty that Alice’s probability of     
is  and Bob’s probability of  is . Then .            

Notice that Alice’s potential announcements are made relative to her (initial) 
partition ; and likewise for Bob 

This is different from Geanakopolos and Polemarchakis (1982) where the (actual) 
announcements are made relative to updated partitions 

Alternatively put, the mere ability to “confirm” the epistemic state (here, the 
state is common certainty of the posteriors) is enough to rule out disagreement 
— the confirmation need not actually be carried out

E
ω* E

qA E qB qA = qB

𝒫A
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Realizability of Common Certainty of Disagreement? 

In the physical domain, it can be shown that common certainty of disagreement 
(CCD) is impossible when observing quantum systems but possible for 
superquantum (no-signaling) systems 

The impossibility of CCD can therefore be proposed as a physical axiom 

In decision theory, if we equip agents with signed probability measures, it seems 
we can get highly non-classical behavior, such as betting between risk-neutral 
agents 

Or, should the impossibility of CCD be elevated to an (epistemic) decision-
theoretic principle? 

If yes, what non-classical behavior is then allowed?  This appears to be an open 
direction …

P. Contreras-Tejada, G. Scarpa, A. Kubicki, A. Brandenburger, and P. La Mura, “Observers of Quantum Systems Cannot 
Agree to Disagree,” Nature Communications, 12, 2021, at https://doi.org/10.1038/ s41467-021-27134-6
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Two Alternative Models 

1. Khrennikov and Basieva (2014) and Khrennikov (2015) consider quantum-like 
observers of a quantum system who employ either the knowledge or certainty 
modality 

This approach allows CCD even for quantum systems 

2. We could strengthen* the belief modality to say: 

Alice is fully certain of  if all events in the complement of  receive 
probability  

We could investigate this route by developing a preference-based definition of 
full certainty (analogous to defining Savage-null events) from a decision theory 
with signed probabilities 

This appears to be an interesting open direction …

E E
0

*Our thanks to Miklós Pintér for this suggestion; A. Khrennikov and I. Basieva, “Possibility to Agree on Disagree from Quantum 
Information and Decision Making,” Journal of Mathematical Psychology, 62, 2014, 1-5; A. Khrennikov, “Quantum Version of 
Aumann’s Approach to Common Knowledge: Sufficient Conditions of Impossibility to Agree on Disagree,” Journal of 
Mathematical Economics, 60, 2015, 89-104
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