State-independent contextuality with nonunit rank

Matthias Kleinmann University of Siegen

with Pascal Höhn, Zheng-Peng Xu, Xiao-Dong Yu

arXiv:2207.11183

NJP 23 (2021)

State-independent contextuality with nonunit rank, p. 1

Motivation

Why state-independent contextuality (SIC)?

- Characteristic part of quantum **theory**.
- Property of **projective** measurements.

🖙 Why nonunit rank?

- Theory of **degenerate** measurements is poorly developed.
- The **smallest** SIC scenario might require nonunit rank.
- Useful for device-independent **certification** of nonunit-rank measurements?

Motivation

Why state-independent contextuality (SIC)?

- Characteristic part of quantum **theory**.
- Property of **projective** measurements.

₩ Why nonunit rank?

- Theory of **degenerate** measurements is poorly developed.
- The **smallest** SIC scenario might require nonunit rank.
- Useful for device-independent **certification** of nonunit-rank measurements?

SIC inequalities

• The exclusivity graph G of $(\Pi_k)_k$ satisfies

(k,l) is an edge $\rightarrow \Pi_k \Pi_\ell = 0.$

• The **stable set** STAB(G) is the convex hull of all { 0, 1 }-vectors *x* with

(k, l) is an edge $\rightarrow x_k x_\ell = 0.$

• SIC requires

 $\{(\operatorname{tr}(\rho \Pi_k))_k \mid \rho \text{ is a state }\}$ is disjoint from $\operatorname{STAB}(G)$.

 \hookrightarrow Hyperplane separation by a vector w,

$$\sum_{k} w_k \operatorname{tr}(\rho \Pi_k) > \sum_{k} w_k x_k \text{ for all states } \rho \text{ and } \boldsymbol{x} \in \operatorname{STAB}(G).$$

SIC inequalities

• The exclusivity graph G of $(\Pi_k)_k$ satisfies

(k,l) is an edge $\rightarrow \Pi_k \Pi_\ell = 0.$

• The **stable set** STAB(G) is the convex hull of all { 0, 1 }-vectors *x* with

(k, l) is an edge $\rightarrow x_k x_\ell = 0$.

SIC requires

 $\{(\operatorname{tr}(\rho \Pi_k))_k \mid \rho \text{ is a state }\}$ is disjoint from $\operatorname{STAB}(G)$.

 \hookrightarrow Hyperplane separation by a vector w,

$$\sum_{k} w_k \operatorname{tr}(\rho \Pi_k) > \sum_{k} w_k x_k \text{ for all states } \rho \text{ and } \boldsymbol{x} \in \operatorname{STAB}(G).$$

SIC inequalities

• The exclusivity graph G of $(\Pi_k)_k$ satisfies

(k,l) is an edge $\rightarrow \Pi_k \Pi_\ell = 0.$

• The **stable set** STAB(G) is the convex hull of all { 0, 1 }-vectors *x* with

(k, l) is an edge $\rightarrow x_k x_\ell = 0$.

SIC requires

 $\{(\operatorname{tr}(\rho \Pi_k))_k \mid \rho \text{ is a state }\}$ is disjoint from $\operatorname{STAB}(G)$.

\hookrightarrow Hyperplane separation by a vector w,

$$\sum_{k} w_k \operatorname{tr}(\rho \Pi_k) > \sum_{k} w_k x_k \text{ for all states } \rho \text{ and } \boldsymbol{x} \in \operatorname{STAB}(G).$$

SIC ratio

$$\sum_{k} w_k \operatorname{tr}(\rho \Pi_k) > \sum_{k} w_k x_k$$

SIC ratio $\eta = \max_{\boldsymbol{w}} \frac{\min \left\{ \sum_{k} w_k \operatorname{tr}(\rho \Pi_k) \mid \rho \text{ is a state} \right\}}{\max \left\{ \sum_{k} w_k x_k \mid \boldsymbol{x} \in \operatorname{STAB}(G) \right\}}$

- $\, \hookrightarrow \, (\Pi_k)_k$ features SIC if and only if $\eta > 1.$
 - w^* yields the **optimal** SIC inequality.

SIC ratio

$$\sum_{k} w_k \operatorname{tr}(\rho \Pi_k) > \sum_{k} w_k x_k$$

SIC ratio $\eta = \max_{\boldsymbol{w}} \frac{\min \left\{ \sum_{k} w_k \operatorname{tr}(\rho \Pi_k) \mid \rho \text{ is a state} \right\}}{\max \left\{ \sum_{k} w_k x_k \mid \boldsymbol{x} \in \operatorname{STAB}(G) \right\}}$

$\, \hookrightarrow \, (\Pi_k)_k \text{ features SIC if and only if } \eta > 1.$

• w^* yields the **optimal** SIC inequality.

SIC ratio

$$\sum_{k} w_k \operatorname{tr}(\rho \Pi_k) > \sum_{k} w_k x_k$$

SIC ratio $\eta = \max_{\boldsymbol{w}} \frac{\min \left\{ \sum_{k} w_k \operatorname{tr}(\rho \Pi_k) \mid \rho \text{ is a state } \right\}}{\max \left\{ \sum_{k} w_k x_k \mid \boldsymbol{x} \in \operatorname{STAB}(G) \right\}}$

 $\, \hookrightarrow \, (\Pi_k)_k \text{ features SIC if and only if } \eta > 1.$

• w^* yields the **optimal** SIC inequality.

 \mathfrak{W} η can be computed by a semi-definite program. see also: [MK, Budroni, Larsson, Gühne & Cabello, PRL 2012]

Conditions for SIC

For G and $\operatorname{rank} \Pi_k = r_k$ define

- $d_{\pi}(G, \boldsymbol{r})$ as the minimal dimension
- $\eta(G, \boldsymbol{r})$ as the maximal SIC ratio

over all $(\Pi_k)_k$ with corresponding exclusivity graph G.

Theorem

$$\chi_{\rm f}(G,\boldsymbol{r}) \ge \eta(G,\boldsymbol{r}) d_{\pi}(G,\boldsymbol{r})$$

Necessary condition for SIC

$$\chi_{\mathbf{f}}(G, \mathbf{r}) > d_{\pi}(G, \mathbf{r}).$$

see also: [Ramanathan & Horodecki, PRL (2014)]

Conditions for SIC

For G and $\operatorname{rank} \Pi_k = r_k$ define

- $d_{\pi}(G, \boldsymbol{r})$ as the minimal dimension
- $\eta(G, \boldsymbol{r})$ as the maximal SIC ratio

over all $(\Pi_k)_k$ with corresponding exclusivity graph G.

Theorem

$$\chi_{\rm f}(G,\boldsymbol{r}) \geq \eta(G,\boldsymbol{r}) d_{\pi}(G,\boldsymbol{r})$$

Necessary condition for SIC

$$\chi_{\mathbf{f}}(G, \mathbf{r}) > d_{\pi}(G, \mathbf{r}).$$

see also: [Ramanathan & Horodecki, PRL (2014)]

Conditions for SIC

For G and $\operatorname{rank} \Pi_k = r_k$ define

- $d_{\pi}(G, \boldsymbol{r})$ as the minimal dimension
- $\eta(G, \boldsymbol{r})$ as the maximal SIC ratio

over all $(\Pi_k)_k$ with corresponding exclusivity graph G.

Theorem

$$\chi_{\rm f}(G,\boldsymbol{r}) \geq \eta(G,\boldsymbol{r}) d_{\pi}(G,\boldsymbol{r})$$

Necessary condition for SIC

$$\chi_{\mathrm{f}}(G,\mathbf{r}) > d_{\pi}(G,\mathbf{r}).$$

see also: [Ramanathan & Horodecki, PRL (2014)]

- How to compute $d_{\pi}(G, r)$?
 - $d_{\pi}(G, \mathbf{r}) \geq \vartheta(\bar{G}, \mathbf{r})$
 - d_π(G, r) = d_π(G^r, 1) where in G^r, every vertex k is replaced by a clique of size r_k.

See-saw optimization

 $d_{\pi}(G,1) \leq d$ if and only if there exists a matrix M with

- $M_{k,l} = 0$ if (k, l) is an edge.
- $M \ge 0$ and $\operatorname{rank} M = d$

- **1** Set $M_{k,l} = 0$ according to G.
- ② Set all eigenvalues to 0 except at most d positive eigenvalues.
- Fast and reliable.

- How to compute $d_{\pi}(G, r)$?
 - $d_{\pi}(G, \mathbf{r}) \geq \vartheta(\bar{G}, \mathbf{r})$
 - d_π(G, r) = d_π(G^r, 1) where in G^r, every vertex k is replaced by a clique of size r_k.

See-saw optimization

 $d_{\pi}(G,1) \leq d$ if and only if there exists a matrix M with

- $M_{k,l} = 0$ if (k,l) is an edge.
- $M \ge 0$ and $\operatorname{rank} M = d$

- Set $M_{k,l} = 0$ according to G.
- ② Set all eigenvalues to 0 except at most d positive eigenvalues.
- Fast and reliable.

- How to compute $d_{\pi}(G, r)$?
 - $d_{\pi}(G, \mathbf{r}) \geq \vartheta(\bar{G}, \mathbf{r})$
 - d_π(G, r) = d_π(G^r, 1) where in G^r, every vertex k is replaced by a clique of size r_k.

See-saw optimization

- $d_{\pi}(G,1) \leq d$ if and only if there exists a matrix M with
 - $M_{k,l} = 0$ if (k, l) is an edge.
 - $M \ge 0$ and $\operatorname{rank} M = d$

- Set $M_{k,l} = 0$ according to G.
- ② Set all eigenvalues to 0 except at most d positive eigenvalues.
- Fast and reliable.

- How to compute $d_{\pi}(G, r)$?
 - $d_{\pi}(G, \mathbf{r}) \geq \vartheta(\bar{G}, \mathbf{r})$
 - d_π(G, r) = d_π(G^r, 1) where in G^r, every vertex k is replaced by a clique of size r_k.

See-saw optimization

- $d_{\pi}(G,1) \leq d$ if and only if there exists a matrix M with
 - $M_{k,l} = 0$ if (k, l) is an edge.
 - $M \ge 0$ and $\operatorname{rank} M = d$

- **1** Set $M_{k,l} = 0$ according to G.
- **2** Set all eigenvalues to 0 except at most d positive eigenvalues.
- ✔ Fast and reliable.

Search for the smallest SIC scenario

[Yu & Oh, PRL (2012)]

- There are **13** rank-1 projectors featuring SIC.
- For homogeneous rank 1,2,3, no smaller set exists.
- At least 9 projectors are necessary.

Can higher rank help, at all?

[Toh, Chin. PL (2013)]

- Projective representation featuring SIC needs rank 2.
 - X Proof is complicated and particular.

OR-product

Idea: Use the OR-product of graphs, $G \lor F$.

Intuitively:

- G is exclusivity graph of $(\Pi_k)_k$
- F is exclusivity graph of $(\Gamma_{\ell})_{\ell}$
- $\hookrightarrow G \lor F$ is exclusivity graph of $(\Pi_k \otimes \Gamma_\ell)_{k,\ell}$

Definition

 $G \lor F$ is the graph with

• vertices $V(G) \times V(G)$

• edges [(u, v), (u', v')] where (u, u') is an edge of G or (v, v') is an edge of F.

OR-product

Idea: Use the OR-product of graphs, $G \lor F$.

Intuitively:

- G is exclusivity graph of $(\Pi_k)_k$
- F is exclusivity graph of $(\Gamma_{\ell})_{\ell}$
- $\hookrightarrow G \lor F$ is exclusivity graph of $(\prod_k \otimes \Gamma_\ell)_{k,\ell}$

Definition

$G \vee F$ is the graph with

- vertices $V(G) \times V(G)$
- edges [(u, v), (u', v')] where (u, u') is an edge of G or (v, v') is an edge of F.

General construction

Theorem

- Assume $\omega(G) < \chi_{\mathrm{f}}(G) < \omega(G) + \frac{1}{2}$ and $\eta(G, 1) > 1$.
- For any $r < rac{1}{\kappa}$, where $\kappa = 2(\chi_{\mathrm{f}}(G) \omega(G))$,
- choose k such that $k(1 r\kappa) \ge r\chi_{\rm f}(F)$.

 $\hookrightarrow F = G \lor C_{2k+1}$ enjoys

 $\eta(F,r) \leq 1 \quad \text{while} \quad \eta(F,k) > 1.$

Examples

Graph	V(G)	$\eta(G,1)$	k_1	k_2	k_3	k_4	k_5
$G_{\rm BBC}$	21	$1 + \frac{1}{9}$	10	-	-	-	-
$G_{\rm YO}$	13	$1 + \frac{2}{33}$	5	24	-	-	-
G_{H}	18	$1 + \frac{1}{75}$	6	17	50	-	-
$G_{\rm X}$	18	$1 + \frac{1}{42}$	6	20	87	-	-
$G_{\rm BBCr}$	17	$1 + \frac{1}{78}$	4	10	21	46	170

- G_{YO} Yu & Oh, PRL (2012)
- $G_{
 m BBC}$ Bengtsson, Blanchfield & Cabello, PRA (2012)
- G_H, G_X new SIC graphs
- G_{BBCr} is G_{BBC} with 4 vertices removed

Numerical examples

Graph	r	$ V(\mathcal{G}) $	$\chi_{\mathrm{f}}(\mathcal{G})$	$\eta(\mathcal{G},r)$	d
$G_{\rm YO} \lor {\rm AR}(2)$	2	65	$7 + \frac{21}{22}$	$1 + \frac{2}{33}$	15
$\mathcal{R}(G_{\mathrm{YO}} \lor AR(2))$	2	39	$7 + \frac{71}{88}$	$1 + \frac{2}{65}$	15
$G_{\rm CEG} \lor {\rm AR}(2)$	2	90	$11 + \frac{1}{4}$	$1 + \frac{1}{8}$	20
$\mathcal{R}(G_{\text{CEG}} \lor AR(2))$	2	54	$10 + \frac{3}{4}$	$1 + \frac{1}{17}$	20
$G_{\rm YO} \lor {\rm AR}(3)$	3	104	$8 + \frac{16}{33}$	$1 + \frac{2}{33}$	24

- G_{YO} Yu & Oh, PRL (2012)
- $G_{\rm CEG}$ Cabello, Estebaranz & García-Alcaine, PRA (1996)

•
$$AR(2) = C(5, (2, 3) = C_5)$$

• AR(3) = C(8, [3, 4, 5])

Summary

- SIC ratio η decides SIC for any set of projectors (SDP).
- $d_{\pi}(G)$ can be computed via a **see-saw** algorithm.
- Smallest SIC set: Still Yu&Oh.
- **OR-product** generates graphs requireing nonunit rank for SIC.

arXiv:2207.11183

NJP 23 (2021)