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A Photonic Experiment at Quandela
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Chip, Abstract Description, Empirical Data

meas.

mA ∈ {a,a′}

oA ∈ {0,1}

meas.

mB ∈ {b,b′}

oB ∈ {0,1}

prep.

in\out (0,0) (0,1) (1,0) (1,1)
(a,b) 0.418 0.083 0.084 0.415
(a,b′) 0.090 0.416 0.410 0.084
(a′,b) 0.085 0.418 0.418 0.079
(a′,b′) 0.077 0.429 0.423 0.071
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Formalising Empirical Data – Abramsky–Brandenburger

A measurement scenario X = 〈X ,Σ,O〉:
• X – a finite set of measurements
• Σ – an abstract simplicial complex on X

faces are called the measurement contexts

• O = (Ox)x∈X – for each x ∈ X a finite
non-empty set of possible outcomes Ox

An empirical model e = {eσ}e∈Σ on X:
• Each eσ is a prob. distribution over joint

outcomes for σ

• Marginals are well-defined; i.e. ∀σ ,τ ∈ Σ.

eσ |σ∩τ = eτ |σ∩τ

(generalised no-signalling property)

in\out (0,0) (0,1) (1,0) (1,1)
(a,b) − − − −
(a,b′) − − − −
(a′,b) − − − −
(a′,b′) − − − −

•a
• b

• a′
•b′

•0

•1
•

•

• 0

• 1

•

•
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Quantifying Contextuality

• Empirical models for our ‘CHSH’ scenario live in an 8
dimensional Euclidean space
• Non-contextual polytope: convex hull of the

deterministic models
• If e is outside NC, quantify its degree of contextuality

by ‘how far’ outside it is?
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Quantifying Contextuality

e = NCF(e)eNC +CF(e)eSC

• NCF is optimised for such decompositions
• CF Corresponds to the normalised violation of an

optimal Bell inequality
• Master inequality for witnessing contextuality

CF(e)> 0
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Ideal Data versus Lab Data
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Signalling

eσ |σ∩τ 6= eτ |σ∩τ

• Signalling arises due to cross-talk
• Can also arise due to finite statistics
• First: introduce a signalling fraction to empirically quantify signalling
• Next: the Abramsky–Brandenburger framework neatly abstracted away from hidden variable

models, CbD allows for measures in the presence of signalling, but to address the issue in
certification protocols we will need to get our hands dirty with HVMs again. . .
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Quantifying Signalling

e = NSF(e)eNS +SF(e)eSC

• NSF is optimal for such a decomposition
• SF is an irreducible amount of signalling

(Measures above from works with Rui and Samson)
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Quantifying “Quantum” Signalling

How far we are from a quantum-NS model?

e = NSFl(e)eQl +SFl(e)e′

• eQl in the lth level of the NPA hierarchy;
i.e. approximately in the (bipartite) quantum set
• NSFl is optimal for such a decomposition

Will be useful later to rule out quantum adversaries in randomness certification
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Hidden Variable Models

• Postulate a (finite) set Λ of hidden variables
• The hidden variable should determine empirical behaviour

i.e. to each λ ∈ Λ corresponds a notional empirical model hλ

• But we might only have probabilistic knowledge of the HV via a distribution µ ∈D(Λ)

• An empirical model e is realised by a hidden variable model 〈Λ,(hλ )λ∈Λ,µ〉 iff

e = ∑
Λ

µ(λ )hλ

• IDEA: explain empirical behaviour via hλ s with nicer properties
(e.g. determinism, independence,. . . )
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Noncontextual Hidden Variables

Noncontextuality can be expressed as the conjunction of two HV assumptions:
1. Determinism

∀λ ∈ Λ,σ ∈ Σ . ∃o ∈ Oσ . hλ = δo

2. Parameter Independence

∀λ ∈ Λ,σ ,τ ∈ Σ . hλ
σ |σ∩τ = hλ

τ |σ∩τ

• An empirical model e is noncontextual if it can be realised by a noncontextual HV model
• This matches the definition from earlier
• To see this, note that together the above assumptions imply that

∀λ ∈ Λ . ∃g ∈∏
x∈X

Ox . hλ = g
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Questioning the Validity of the Assumptions

Determinism
∀λ ∈ Λ,σ ∈ Σ . ∃o ∈ Oσ . hλ = δo

• Valid to the extent that measurements are empirically sharp

• A measurement is sharp if upon repeating it we always obtain the same outcome
• Or if for each outcome there exists a preparation from which it deterministically results

ρ

Parameter Independence
∀λ ∈ Λ .∀σ ,τ ∈ Σ . hλ

σ |σ∩τ = hλ
τ |σ∩τ

• Valid to the extent that the empirical model is no-signalling/no-disturbing

• Recall e is NS iff
∀σ ,τ ∈ Σ . eσ |σ∩τ = eτ |σ∩τ
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Weakening the HV Assumptions

Parameter Independence

A HV model is (1−σ) parameter-independent if for all λ , there exists a decomposition of hλ of
the form

hλ = cλ
NShλ

NS +(1− cλ
NS)h

′λ

with hλ
NS parameter-independent, and cλ

NS ≥ 1−σ .

Determinism
A parameter-independent HV model is (1−η) deterministic if for all λ , there exists a
decomposition of hλ of the form

hλ = cλ
ODhλ

OD +(1− cλ
OD)h

′′λ

with hλ
OD outcome deterministic and no-signalling, and cλ

OD ≥ 1−η .
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Contextuality in Non-Ideal Data

• Allow HV models some ‘signalling’ and ‘unsharpness’
• Master inequality for escaping HV explanations:

CF(e)> σ + ε−σε

• Constraints: (1−σ) Parameter Independence,
(1−η) Determinism

Proof Sketch
Decomposing the HV model as in the diagram, it’s possible
to extract a weight of (1−σ)(1− ε) on vertices of NC,
which lower bounds NCF, and results in the above bound
on CF.
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Empirical Data from Quandela

• CF≈ 0.34
• Tsirelson bound: CF≈ 0.41
• Observed signalling: SF,SFl=3 < 0.005
• Estimated unsharpness: ηemp < 0.00001

in\out (0,0) (0,1) (1,0) (1,1)
(a,b) 0.418 0.083 0.084 0.415
(a,b′) 0.090 0.416 0.410 0.084
(a′,b) 0.085 0.418 0.418 0.079
(a′,b′) 0.077 0.429 0.423 0.071
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Randomness Certification

• Adapted the Miller–Shi protocol to certify
generation of private unpredictable
randomness

• (Un)sharpness becomes irrelevant
• Need only a gap between observed CF and

the maximal score for admissible HVMs
• For idealised non-signalling data need

CF> 0
• Modified protocol can certify randomness

whenever CF> σ

in\out (0,0) (0,1) (1,0) (1,1)
(a,b) 0.418 0.083 0.084 0.415
(a,b′) 0.090 0.416 0.410 0.084
(a′,b) 0.085 0.418 0.418 0.079
(a′,b′) 0.077 0.429 0.423 0.071

• Secure against quantum side-information
• Guaranteed up to an amount of information

leakage parametrised by σ , which also
affects the generation bitrate

• Assuming σ = SFl=3, current bitrate is
21.2bit/s
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Protocol
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Try it for yourself
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Bonus Slides



Factorisable Hidden Variables

Noncontextuality can also be expressed the following HV assumption:
• Factorisability

∀λ ∈ Λ,σ ∈ Σ . hλ
σ = ∏

x∈σ

hλ
σ |{x}

• Factorisability implies parameter independence
• (Fine–Abramsky–Brandenburger Theorem) The following are equivalent:

I Realisability by a factorisable HV
I Realisability by a deterministic parameter independent HV
I CF= 0

• Factorisability is what’s meant by ‘locality’ in discussions of Bell’s Theorem
• Perhaps Bell’s theorem is most interesting for the violation of locality
• But we’re more interested by the applications accessible through violations of determinism



Classical Correlations

(0,0) (0,1) (1,0) (1,1)
(a,b) 1/2 0 0 1/2

(a,b′) 1/2 0 0 1/2

(a′,b) 1/2 0 0 1/2

(a′,b′) 0 1/2 1/2 0

‘Classical’ premises:
• Observable properties have definite values
• Measurements reveal these
• Without disturbing the state

Thus classical data should arise as (a convex combination of) global value assignments:

(a,a′,b,b′) 7→ (0,0,0,0),
(a,a′,b,b′) 7→ (0,0,0,1),

. . . ,
(a,a′,b,b′) 7→ (1,1,1,1) •a

• b

• a′
•b′

•0
•1

•
•

• 0
• 1

•
•

Some empirical correlations cannot be obtained as a convex combination of global assignments?!
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Classical Correlations
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Classical Correlations

(0,0) (0,1) (1,0) (1,1)
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(a,b′) 0 0 0 1
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(a′,b′) 0 0 0 1
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• Without disturbing the state
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•
•
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•
•

Some empirical correlations cannot be obtained as a convex combination of global assignments?!
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Contextuality Analogy & Definition

•a
• b

• a′
•b′

•0

•1
•

•

• 0

• 1

•

•

6 ∃d ∈D(∏
x∈X

Ox). ∀σ ∈ Σ. d|σ = eσ


