Synchronous observation of Bell nonlocality and state-dependent contextuality

Rafael Rabelo

Instituto de Física Gleb Wataghin State University of Campinas rabelo@ifi.unicamp.br | ime.unicamp.br/~mfq arXiv:2204.05385

Joint work with Peng Xue 1 , Lei Xiao 1 , Gabriel Ruffolo 2 , André Mazzari 2 , Tassius Temistocles 3 , and Marcelo Terra Cunha 2 .

¹Beijing Computational Science Research Center

²State University of Campinas

³Federal Institute of Alagoas

Behavior of the boxes:

• Behavior of the boxes:

Noncontextual behaviors:

$$p(b, b'|y, y') = \int p(b|y, \lambda)p(b'|y', \lambda)p(\lambda)d\lambda$$

KCBS inequality [Klyachko et al. (2008)]:

$$\langle B_0 B_1 \rangle + \langle B_1 B_2 \rangle + \langle B_2 B_3 \rangle + \langle B_3 B_4 \rangle - \langle B_0 B_4 \rangle \le 3$$

KCBS inequality [Klyachko et al. (2008)]:

$$\langle B_0 B_1 \rangle + \langle B_1 B_2 \rangle + \langle B_2 B_3 \rangle + \langle B_3 B_4 \rangle - \langle B_0 B_4 \rangle \le 3$$

Correlators:

$$\langle B_y B_{y'} \rangle = p(b = b'|y, y') - p(b \neq b'|y, y')$$

n-cycle inequality [Araújo etal (2013)]:

$$\sum_{i=0}^{n-2} \langle B_i B_{i+1} \rangle - \langle B_0 B_{n-1} \rangle \le n-2$$

n-cycle inequality [Araújo etal (2013)]:

$$\sum_{i=0}^{n-2} \langle B_i B_{i+1} \rangle - \langle B_0 B_{n-1} \rangle \le n-2$$

Correlators:

$$\langle B_y B_{y'} \rangle = p(b = b'|y, y') - p(b \neq b'|y, y')$$

• Behavior of the boxes:

• Behavior of the boxes:

Local behaviors:

$$p(a, b|x, y) = \int p(a|x, \lambda)p(b|y, \lambda)p(\lambda)d\lambda$$

• CHSH inequality [Clauser etal (1969)]:

$$\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2$$

• CHSH inequality [Clauser etal (1969)]:

$$\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2$$

Correlators:

$$\langle A_x B_y \rangle = p(a = b|x, y) - p(a \neq b|x, y)$$

• Behavior of the boxes:

Behavior of the boxes:

Marginal behaviors:

$$p(a, b|x, y) = \sum_{b'} p(a, b, b'|x, y, y') \qquad p(b, b'|y, y') = \sum_{a} p(a, b, b'|x, y, y')$$

• Behavior of the boxes:

Marginal behaviors:

$$p(a,b|x,y) = \sum_{b'} p(a,b,b'|x,y,y') \qquad p(b,b'|y,y') = \sum_{a} p(a,b,b'|x,y,y')$$
 Locality

Behavior of the boxes:

Marginal behaviors:

$$p(a,b|x,y) = \sum_{b'} p(a,b,b'|x,y,y') \qquad p(b,b'|y,y') = \sum_{a} p(a,b,b'|x,y,y')$$
 Locality Noncontextuality

• There is no quantum behavior p(a,b,b'|x,y,y') such that [Kurzynski etal (2014)]:

- There is no quantum behavior p(a,b,b'|x,y,y') such that [Kurzynski etal (2014)]:
 - p(a,b|x,y) violate the CHSH inequality; and

- There is no quantum behavior p(a,b,b'|x,y,y') such that [Kurzynski etal (2014)]:
 - p(a,b|x,y) violate the CHSH inequality; and
 - p(b, b'|y, y') violate the KCBS inequality.

Locality in extended Bell scenarios

Locality in extended Bell scenarios

Locality in extended Bell scenarios

• Behavior of the boxes:

Locality in extended Bell scenarios

• Behavior of the boxes:

Locality [Temistocles etal (2019)]:

$$p(a, b, b'|x, y, y') = \int p(a|x, \lambda)p(b, b'|y, y', \lambda)p(\lambda)d\lambda$$

CHSH_1 inequality (alternative version 1):

$$\langle A_0 B_0 \rangle + \langle A_0 B_2 B_3 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_2 B_3 \rangle \le 2$$

• CHSH_1 inequality (alternative version 1):

$$\langle A_0 B_0 \rangle + \langle A_0 B_2 B_3 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_2 B_3 \rangle \le 2$$

• CHSH_2 inequality (alternative version 2):

$$\langle A_0 B_0 B_1 \rangle + \langle A_0 B_2 B_3 \rangle + \langle A_1 B_0 B_1 \rangle - \langle A_1 B_2 B_3 \rangle \le 2$$

• There are quantum behaviors p(a,b,b'|x,y,y') such that:

- There are quantum behaviors p(a, b, b'|x, y, y') such that:
 - $p(a,b,b^{\prime}|x,y,y^{\prime})$ violate the CHSH_1 inequality; and

- There are quantum behaviors p(a,b,b'|x,y,y') such that:
 - $p(a,b,b^{\prime}|x,y,y^{\prime})$ violate the CHSH_1 inequality; and
 - p(b, b'|y, y') violate the KCBS inequality.

• We fixed the measurements of Alice and Bob:

- We fixed the measurements of Alice and Bob:
 - Alice performs two anti-commuting measurements;

- We fixed the measurements of Alice and Bob:
 - Alice performs two anti-commuting measurements;
 - Bob performs the optimal measurements for the violation of KCBS.

- We fixed the measurements of Alice and Bob:
 - Alice performs two anti-commuting measurements;
 - Bob performs the optimal measurements for the violation of KCBS.
- Then, we found a one-parameter family of pure states such that, for a specific range of the parameter, both CHSH_1 and KCBS are simultaneously violated.

Photonic implementation

Results

• There are quantum behaviors $p(a,b,b^{\prime}|x,y,y^{\prime})$ such that:

- There are quantum behaviors $p(a,b,b^{\prime}|x,y,y^{\prime})$ such that:
 - $p(a,b,b^{\prime}|x,y,y^{\prime})$ violate the CHSH_2 inequality; and

- There are quantum behaviors p(a,b,b'|x,y,y') such that:
 - p(a,b,b'|x,y,y') violate the CHSH_2 inequality; and
 - p(b, b'|y, y') violate the n-cycle inequality (for n<10000).

• We fixed the measurements of Alice and Bob:

- We fixed the measurements of Alice and Bob:
 - Alice performs two anti-commuting measurements;

- We fixed the measurements of Alice and Bob:
 - Alice performs two anti-commuting measurements;
 - Bob performs the optimal measurements for the violation of the n-cycle inequality.

- We fixed the measurements of Alice and Bob:
 - Alice performs two anti-commuting measurements;
 - Bob performs the optimal measurements for the violation of the n-cycle inequality.
- Then, we numerically optimized the violation of the CHSH_2
 inequality, over quantum states, imposing that the n-cycle inequality
 is violated by, at least, 0.001.

Results

• In scenarios where nonlocality and contextuality are possible, a more general definition of locality may be necessary.

- In scenarios where nonlocality and contextuality are possible, a more general definition of locality may be necessary.
- By using a standard definition of locality, quantum systems cannot concomitantly violate the CHSH and the KCBS inequalities.

- In scenarios where nonlocality and contextuality are possible, a more general definition of locality may be necessary.
- By using a standard definition of locality, quantum systems cannot concomitantly violate the CHSH and the KCBS inequalities.
- By using a more general definition of locality, quantum systems can concomitantly violate the CHSH_1 and the KCBS inequalities.

- In scenarios where nonlocality and contextuality are possible, a more general definition of locality may be necessary.
- By using a standard definition of locality, quantum systems cannot concomitantly violate the CHSH and the KCBS inequalities.
- By using a more general definition of locality, quantum systems can concomitantly violate the CHSH_1 and the KCBS inequalities.
- This has been experimented and observed in a photonic implementation.

- In scenarios where nonlocality and contextuality are possible, a more general definition of locality may be necessary.
- By using a standard definition of locality, quantum systems cannot concomitantly violate the CHSH and the KCBS inequalities.
- By using a more general definition of locality, quantum systems can concomitantly violate the CHSH_1 and the KCBS inequalities.
- This has been experimented and observed in a photonic implementation.
- More generally, quantum systems can concomitantly violate the CHSH_2 and the n-cycle inequalities (up to n<10000).

Thank you for your attention!

