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Theorem (Kochen and Specker, Bell). There are sets of atomic propositions represented in quantum

theory by vectors 7" := {|vy),....|v,)} C C? d > 3 that do not admit a deterministic non-contextual

assignment f : 7" — {0,1} satisfying

(i) Exclusivity: Z f(]v)) <1 for every subset € of mutually orthogonal vectors, and
vyeecv

(ii) Completeness: Z f(|v)) =1 for every subset € of d mutually orthogonal vectors.
vyeec?

The map f satisfying exclusivity and completeness is called a {0,1} coloring of set 7”.

S. Kochen and E. P. Specker. “The problem of hidden variables in quantum mechanics”. Journal of Mathematics and

Mechanics 17, 59 (1967).




Statistical Proofs of Contextuality

An interesting class of statistical state-dependent proofs was studied by Clifton, Stairs, Hardy and others.

In these, a prediction occurs with certainty in non-contextual theories while this is not the case quantumly.

Considering each vector as an atomic proposition, studied sets are of the form P - Q or P — Q,

and have been termed as definite-prediction sets, true-implies-true (true-implies-false) sets, bugs or gadgets.
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R. K. Clifton. American Journal of Physics 61: 443 (1993). A. Cabello, J. R. Portillo, A. Solis, K. Svozil. Phys. Rev. A 98, 012106 (2018).

R. R. et al. Quantum 4, 308 (2020).




Orthogonality Graph: Represent each vector |v;) by a vertex v; of a graph.
Connect any two vertices v; and v, by an edge if (v, |v,) = 0.

d(G) > w(G) denotes the minimum dimension of an orthogonal representation of G.

Faithful Orthogonal Representation: v; ~ v, < (v;|v,) =0and v; # v, & |v)) # |v,).

d*(G) denotes the minimum dimension of a faithful orthogonal representation of G.
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L. Lovasz, M. Saks and A. Schrijver. Linear Algebra and its Applications. 4, 114/115, 439 (1987).

A. Cabello, S. Severini and A. Winter. arXiv: 1010.2163 (2010). Phys. Rev. Lett. 112 040401 (2014).




Gadgets

Definition 1. /8] A 01-gadget in dimension d is a {0,1}-
colorable set 3,44 C C? of vectors containing two distin-
guished non-orthogonal vectors |u) and |v) that nevertheless

satisfy f(u)+ f(v) <1 in every {0,1}-coloring f of Sgua.
Equivalently, a 01-gadget in dimension d is a {0, 1}-colorable
graph Gy with faithful dimension d*(Gguq) = O(Ggaa) = d
and with two distinguished non-adjacent vertices u and v such
that f(u) + f(v) < 1inevery {0, 1}-coloring f of Ggaq.

(-1.1,1)
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R. R. et al. “Gadget structures in proofs of the Kochen-Specker Theorem”. Quantum 4, 308 (2020).




Definition 2. A gadget of order (m,k) in dimension d
is a {0,1}-colorable set of vectors 8, C C? containing

m distinguished mutually non-orthogonal vectors S, =
{Ivi),...,|vin) }, such that

o for every subset R C 8, 1 of size k, there exists a {0,1}-
coloring which attributes 1 to all vectors in R, and

o for any subset R C 8, ;. of size greater than k, no {0, 1 }-
coloring exists that attributes 1 to all vectors in R.

In words, gadgets of order (m, k) consist of m mutually non-orthogonal vectors such that

at most k vectors can be assigned 1 in any {0,1} coloring.

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139




Significance of Gadgets in Contextuality - I

We show that Gadgets are a necessary ingredient in KS proofs.

Theorem 1. Every KS set in dimension d contains a gadget
of order (k,k — 1) for some k satisfying 2 < k < d.

We also show a constructive proof that higher-order (k, kK — 1) gadgets for arbitrary k with the

feature that the k distinguished vectors are arbitrarily close, (m;|m;) — 1.

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139

E. Hrushovski and I. Pitowsky. “Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem”.

Studies in Historv and Philosovhy of Science Part B. 35(2):177-194



Significance of Gadgets in Contextuality - 11

We show that order (k,k — 1) Gadgets can be used as building builds to construct novel KS proofs

Fix a value of k in the range {2,...,d}.

Construction 1. The gadgets of order (k,k — 1) can be used as building blocks (together with a set of bases) to construct Kochen
Specker proofs in dimension d.

Step 1 We begin with k bases sets in dimension d, denoted as By, B3, ...,B;. We choose these sets such that no two vectors in
different bases sets are identical or orthogonal to each other (one can do this by picking a single basis set By and applying
a suitable unitary matrix Uy to By).

Step 2 Construct all possible sets S; = {|v%p>} with p € [k] := {1,...,k} and g € [d], obtained by choosing a single vector \v%p>
from each basis set B,. In total, we thus have d* sets S; with |S;| = k for each i € [d*].

Step 3 Construct for each i € [d¥] an order (k,k — 1) gadget in dimension d with the vectors in the set S; being the distinguished
vectors. Such a gadget can be built following the construction in the previous section, notice that an order (k,k — 1) gadget
in dimension k serves also as an order (k,k — 1) gadget in all dimensions d > k by the addition of computational basis
vectors [k+1),...,|d).

All the vectors in By UBy U ---UB; US form a KS proof, where § denotes all the high-order gadgets used in Step 3. This
follows from the fact that assigning a single value 1 to each of the bases Bj,...,Bj_; forces all the vectors in the basis set By, to
be assigned value O giving rise to a contradiction. ]

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139

R. R. et al. “Gadget structures in proofs of the Kochen-Specker Theorem”. Quantum 4, 308 (2020).




We also show that order (k, k — 1) Gadgets can be used as building builds to construct novel general

Significance of Gadgets in Contextuality - III

SIC proofs, a la Yu and Oh.

S. Yu and C. H. Oh. “State-Independent Proof of Kochen-Specker Theorem with 13 Rays”. Physical Review Letters 108, 030402 (2012).

Construction 2. Order (k,k — 1) gadgets can be used as
building blocks to construct general SIC sets in dimension d.

To realize the general SIC set, we first construct a set
of r-2" distinct unit vectors |u;) in dimension d satisfying

Y2 ) (us| = %151, where r > max{d(gl) ,4} is an even

[log, 4511, disodd
[log, 4527, diseven
vectors form a set §;, we first delete all the mutually orthog-
onal vectors in the set S; and construct an order (|S;|,[S;| — 1)
gadget in dimension d with the vectors in S; being the dis-
tinguished vectors. As a result, in any {0, 1 }-assignment f,
the sum of assignments of these r-2" vectors is smaller than
k. On the other hand, in quantum theory we obtain the value
r'gn > k for every state in dimension d, so that the union of
all the vectors gives a proof of state-independent contextual-

integer and n = . Then any k of these

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139.
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Figure 4: Graphs with the dashed edges denoting 01-gadgets.
(a) In any {0, 1}-coloring of the graph Gy, the central vertex
is necessarily assigned value 0. (b) Three copies of G with
the central vertices forming a basis in C* so that the resulting
graph Gks:1 forms a Kochen-Specker proof. (c) Another
proof of the KS theorem G g2 is obtained by connecting
every pair of vectors in two bases by a 01-gadget.

R. R. et al. “Gadget structures in proofs of the Kochen-Specker Theorem”. Quantum 4, 308 (2020).

A. Cabello. “Converting contextuality into nonlocality”. Phys. Rev. Lett. 127, 070401 (2021).




Applications




1) Entanglement-Assisted Advantage in Zero-Error Capacity-I

We consider a discrete, memoryless classical channel ./ connecting sender Alice and receiver Bob.

Given a single use of such a channel, the maximum number of messages that Alice can send to Bob

under the constraint that there be no error is known as the one-shot zero-error capacity of ./".

The confusability graph G(/) of channel ./ has vertex set as the set of input symbols and two vertices

connected by an edge if the corresponding symbols are confusable.

4 e
0
Classically cgp(A) = a (G(AN)).. 3 d
4 1
Cubitt et al.: for G being a class of KS graphs c¢z(/4) > a (G(/V)) . ° ‘
I b

T. Cubitt, D. Leung, W. Matthews and A. Winter. “Improving zero-error classical communication with entanglement”.

Physical Review Letters 104(23)




1) Entanglement-Assisted Advantage in Zero-Error Capacity-I1

We show that shared entanglement also provides an enhancement of a weighted version of the

zero-error communication capacity for a class of gadget graphs.

Assign weights w = {wl-}l.‘j1 to the input symbols denoting the desirability of their transmission.

The one-shot zero-error capacity is the maximum total weight of any set of non-confusable inputs.

Classically cgp(V) = a (G(N),w) . W; = VIV* i g gdi\stv
dist

On the other hand, we prove that for weights chosen as above, for gadgets of order (k,1) for k > w(G),

it holds that cg (G(/A) > a(G(A),w) . Such gadgets are {0,1} — colorable so are not KS proofs.

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139.




Fundamentally Binary Theories are an interesting class of no-signalling theories where

measurements yielding many outcomes are constructed out of binary measurements.

Kleinmann, Cabello and Vertesi constructed a Bell-type inequality to exclude the set of fundamentally

binary non-signalling correlations as an underlying mechanism behind quantum correlations.

Their proof was experimentally demanding in that [, = 2(2/3)** ~ 1.0887 versus I, , = 1.

We show that the genuinely ternary character of quantum measurements can be certified in a

robust manner in a contextuality scenario using gadgets.

M. Kleinmann and A. Cabello. Physical Review Letters 117, 150401 (2016).

Hu et al. “Observation of stronger-than-binary correlations with entangled photonic qutrits”. Phys. Rev. Lett. 120, 180402 (2018)



Definition 6. For a given orthogonality graph G = (Vg,Eg) with a set of contexts Cg = {Ay,...,Ax}, a binary consistent
assignment is a function f : Vg — [0,1] such that Vc € Cg, exists vi,vy € ¢ such that f(vi) + f(v2) = 1 and f(v;) = 0 for all
vi € ¢\ {v1,v2}. Define the set of boxes Bl(’;’”'w"s as the convex hull of boxes obtained by binary consistent assignments, i.e.,

glin-cons . — c0nv{{P(a|x)} € Bg | Ve € Cg, Is1,8 €
s.1. P(a:s1|x:c)—|—P(a:sz|x:c):1}. (S2)

The set of Fundamentally Binary boxes Bl(’;i” is defined as the set of boxes that can be obtained by local classical postprocessing
from any B € Blg”'cons :

Theorem 1. There exist inequalities bounding the set of fundamentally binary consistent correlations that admit close to alge-
braic violations in quantum theory.

Remark that such separations are not achieved with non-contextuality inequalities from KS proofs

since both sets achieve the algebraic value for such inequalities.

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139




3) Optimal Semi-device-independent randomness generation
using gadgets

In general, proofs of contextuality do not specify which observables are value-indefinite.

For a contextuality test with observables {A,, ..., A,} we want to solve

max Pyyess (AilE)
st. I(Pyy) =T,
Pyeix €9,

where I(P,x) is a non-contextuality inequality evaluated on observed Py, I* € (I, ] and

@ denotes the set of quantum boxes between Alice and adversary Eve, and

P guess

ALE = Z P(e)P,(a = e|i) is the guessing probability of Alice's outcome by Eve.

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139

S. Gupta, D. Saha, Zhen-Peng Xu, Addn Cabello, A. S. Majumdar.

“Quantum contextuality provides communication complexity advantage”. arXiv:2205.03308



3) Optimal Semi-device-independent randomness generation
using gadgets

The maximum randomness (min-entropy) per run that can be extracted from a test where the
parties perform projective measurements on a system of dimension d is log,d.
Optimal test in dimension d : (i) 3 x* s.t. Py x(a|x*) = 1/d Va € [d] when 1, is observed.

(i) the set of vectors realizing G is unique in C*“) up to unitaries.

We show that gadgets provide an ideal toolbox for this problem, by showing rigid constructions

1
with overlap | (v, |v,)| = —, thus certifying log, d bits through an inequality fP(|v,)) + P(|v,)) < .
d

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139




4) Non-Monotonicity of Faithful Orthogonal Dimension of a
Graph

Given a graph G that has a faithful orthogonal representation in R%©), we might expect that

dp+(G U {u,v}) > dp«(G) and dp«(G\{u,v}) < dp«(G).

Surprisingly we show that the answer to this question is negative:

There exist graphs with faithful orthogonal representation in R? for which deleting a particular

edge {u, v} increases the faithful orthogonal dimension.

R.R., Y. Liu and P. Horodecki. New J. Phys. 24 033035 (2022).




Free Choice/Measurement Independence




Given a set I' with an (arbitrary) causal order, we can

define the concept of a free choice as follows [12]: (( IX

A choice A € T is free if A is uncorrelated '\L @

with the set of all W € T" that satisty A A W. D
Said another way, A is free if the only variables it is ,"'\\ Supply
correlated with are those it could have caused. Note that (g’
the condition A 4 W cannot be replaced by W — A [13]. ! 4

(s

Theorem 2—There exists a protocol that takes as input ((W

S; and outputs R such that the following holds under the
assumption NS: if S; are e-free, for any ¢ < 0.058, then R
is certified to be arbitrarily free, except with arbitrarily
small probability.

R. Colbeck and R. Renner. “Free randomness can be amplified”. Nature Physics 8, 450-454 (2012).

R. Colbeck and R. Renner. “A short note on the concept of free choice”. arXiv:1302.4446.




Assumptions in deriving Bell inequalities:

® Statistical Completeness/Outcome Independence: Al statistical
correlations arise from ignorance of the underlying variable A
P(ay,az|x1,x2,Q,A) = P(ay|x1,x2, QA)P(az|x1,x2,Q, A)
° True for deterministic models. Motivation: Underlying reality with
measurement outcomes predetermined.
4 )
® Statistical Locality/Parameter Independence/No-Signaling: Distant
measurements do not influence a party’s underlying outcome prob. dist.
—>1 P(ﬂ1|X1,xz, Ql )\) = P(al|x1/ Q/)\)/
P(az|x1,%2,Q,A) = P(az|xz, Q,A).
° Justification comes from Special Relativity when measurements are spacelike
separated.
\ J

M. J. W. Hall, arXiv: 1511.007’2§ (”';




® Assumptions in deriving Bell inequalities:
4 )
. ® Measurement Independence/Free-Will: Measurement inputs

> (x1,x2) are uncorrelated with the underlying variable A.

P(Alx1,x2,Q) = P(AQ).
N J

® Reality is single valued, Fair Sampling, No Backward Causation,
etc.

® Putting it all together, we obtain the Local Hidden Variable (LHV) model:

Bl o) / dAP(A|Q)P(a;|x1, A, Q)P(az]x2, 7, Q).

“Challenging local realism with human choices”. The BI G BellTe t Col Nature 557,212 (2018).

“Cosmic Bell Test: Measurement Settings from Milky Way Stars”.‘_,.I-Iandsieiﬁér et al. Phys. Rev. Lett. 118, 060401 (2017)



Device-Independent and Semi-Device-Independent Quantum
Cryptography

Device-Independent (based on Non-locality) and Semi-Device-Independent (based on Contextuality and Steering)

Quantum Cryptography overcome the Implementation Attacks of existing Device-Dependent systems.

DI and SDI Quantum Crypto differ in their assumptions:

Characterised Trusted
Source/ Private Trusted Clocks +  Authenticated
Measurements/ Random Classical Post- Classical
Dimension/ Number processing Channel
Systems Generator

No Information
Leakage from

Measurement
Unit

Device-Independent No Yes Yes Yes Yes

Semi-Device-

Ye Ye Yo Y Y
o es es es es es




Motivation: (Semi)-Device-Independent Quantum
Cryptography

The difference in assumptions allows for different security features and different requirements in DI and SDI
protocols catering to different applications:

Ease of
Implementation

Security

High Security against | Spatially separated Requires Loophole-
Device-Independent Quantum & Super- | measurement stations Low rate free Bell tests with
Quantum Adversaries (100m) high visibility

Security against oAt el RA R Implementable in
Semi-Device-Independent | Classical & Quantum el P existing photonic
devices 10 kbps

Adversaries setups

Xu et al. “Realistic quantum key distribution with realistic devices”. Rev. Mod. Phys. 92, 025002 (2020)

Pirandola et al. “Advances in Quantum Cryptography”. arXiv:1906.01645 (2019).



DI RANDOMNESS AMPLIFICATION - STATE-OF-ART

Seed Robustness # Devices

Device

Rewer N lop N 2 e

Acin group NS SV arb. € 1/N poly Indep.
ChuntL.l Shi, Q H.i Const. poly Arbitrary

Rameir:.than NS SV arb. ¢ Const. E Indep.

F. Brandao, R.R., A. Grudka, Horodecki”™3, T. Szarek and

R. Colbeck and R. Renner. Nat. Phys. 8, 450 (2012). H. Wojewodka. Nat. Comm. 7, 11345 (2016).

K.-M. Chung, Y. Shi and X. Wu. arXiv:1402.4797 R. R. Et al. arXiv:2108.08819. o
R. Gallego et al. Nat. Comm. 4, 2654 (2013). P. Horodecki and R. R. Nature Communications

M. Kessler and R. A-Friedman. arXiv:1705.04148 (2017). 10,1701 (2019).



Towards DI-QRNG/QKD with Arbitrary Min-Entropy Seed

Goals: (i) (Further) closure of Measurement Independence in Fundamental Bell tests

(i) Achieving DI-QRNG/DI-QKD with arbitrarily weak seeds of randomness.

R. R., Michat Banacki, Ricard Ravell Rodriguez, Pawet Horodecki.

"Single trusted qubit is necessary and sufficient for quantum realisation of extremal no-signaling correlations".

npj Quantum Information volume 8, Article number: 119 (2022).

e, p(alz)}

Alice

Untrusted
device

M. Banacki, P. Mironowicz, R. Ramanathan, P. Horodecki. New J. Phys. 24 083003 (2022).




w4 Summary

Quantum Information
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Gadgets capture the essential contradiction necessary to prove the Kochen-Specker theorem, i.e,

every Kochen-Specker graph contains a gadget and from every gadget one can construct a KS proof.

Gadgets provide an ideal toolbox for contextuality applications including
(i) constructing classical channels exhibiting entanglement-assisted advantage in zero-error communication,
(i) finding optimal tests for contextuality-based randomness generation and

(iii) identifying separations between quantum theory and binary generalised probabilistic theories.

https://qici.weebly.com
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No-Signalling

®  One can ‘deduce’ the no-signalling constraints from the assumptions of measurement
independence and parameter independence

PA‘|X1,X2 (al |x1'x2) — /dAPAlxl,Xz (A lel xZ)PAllxl,Xz,A(allel'xz’A)

Eq.(5)
= /d/\PA(A)PA”xl’xz’A(al|x11x21A)

Eq.(4)
q: /d/\PA(/\)PA”Xl,A(allxIIA)

Pa,x,x,(a2]x1,%2) = /d/\PA|x1,x2(/\|x1,xz)PA2|xl,x2,A(a2|x1,xz,/\)
Eq.(5)
= /dAPA(A)PAzlxl,Xz,A(‘leler,/\)

Eq.(4)
gt / dAPA(A)Pa,x,a (2032, A)

PAZ |X2 (a2 |x2) *

P. Horodecki and R. R. Nat. Comm. 10, 1701 (2019)




Motivation for parameter independence:
Causality

® As usual in Bell non-locality, let us work within the classical spacetime of
Special Relativity.

® Causality: No causal loops. i.e. No faster-than-light transmission of information
from one spacetime location to another space-like separated location.

®  (Causality violated if an effect at spacetime location A precedes its cause at spacetime
location B (ta < tg) in some inertial reference frame.

EVERVBODY WHO WENT TO
THE MOON WAS EATEN
CWICKEN!

COOD CRIEF.
CWICKEN MAXKES
You o TO
TAE MOON!

Correlation is not causation!




No-Signaling Polytope

® Box:Set of cond. prob. dist. P(a|x) = P(ai,...,an|Xi,...,Xn).
® Non-negativity: P(a|x) = 0. Normalization: >a P(a|x) = I.

® Multi-party No-Signaling (Directly generalize from the two-party case):

ZP(al,...,aj,...,an\xl,...,xj,...,xn) = ZP(ul,...,a]-,...,an\xl,...,x;-,...,xn) Vj,xj,x;-,a\a]-,x\xj.j
aj

® | HV polytope c Quantum Correlations c No-Signaling Polytdpe

Consequence of causality?

LHV polytope

NS polytope

Quantum set




Two-party No-Signaling from Relativistic
Causality

® Formalism: Spacetime Random
Variable (strv = r.v. generated at
spacetime location (t,Fr)). : "

Alice Dave Bob Charlie

/

® Alice inputs x, obtains output a
(instantaneously) at spacetime
location A.

B(ts, r8) = (t'c,r'c)

® Bob inputs y, obtains output b
(instantaneously) at spacetime
location B.

® FreeWill + Causality =>
NoSignaling.

P(ﬂl|X1,X2, QIA) o P(a1|x1, Q//\)/
P(az|x1,x2,Q,A) = P(az|xp, Q,A).




Multi-party No-Signaling from Relativistic
Causality

® Spacetime rv’s:Alice’s measurement
input-output rv’s (x,a) at spacetime

. . C A e
location A, Bob’s (y,b) at B, Charlie’s TR ST
(z,c) at C. N B Y BGT -
\“ :):' :":l "'l
® No-Signaling: NG,
& & tA=tB=tC"-----'-““A'tf---B"X“-C“}:
Y P(ab,clx,y,z) = Y Plabclx,yz) Vz,2,a,b,xy o Y SN,
c c DA R TN
;:ZP(a, e — ;P(a, b el R U e ; ? '/' ‘;' ‘\;‘;’ \\i \\
Y P(a,b,clx,y,z) = Y P(ab,clx,y,z) Vxx,bcy,z e N S
a a
® _.ABoutput marginal independent of C's input. 0 X
" AC output marginal independent of B’s input. ' : E
e R (o RISl R g TP XA XB XC
BC output marginal independent of A’s input.
® A B, Cindividual marginals well-defined. Notice that intersection of future light cones of A and C is

contained within the future light cone of B

>

J. Grunhaus, S. Popescu and DRohrlc, j,,
S. Popescu and D. Rohrlich, Non-Locality as

N 28
L2 v -
e s b
r 1‘
p

P. Horodecki and R. R., in preparation. P Hor



Multi-party No-Signaling from Relativistic
Causality

Observation:Alice and Bob check correlations at
spacetime location AB (the correlations give rise to
the spacetime variable AB at this location). Similarly,
Alice-Charlie at AC as well as Bob-Charlie at BC.

Argument: Suppose a (superluminal) influence
propagates from B to AC, changing the correlations
AC while keeping marginals A and C fixed.

® |ustification: Spacetime random
Proof: shows that such a influence does not lead to varlabIeAC r.epresenterg

any causal loops. correlatlons is o.nl).' registered at. a
point located within the future light
cone of B. It means that effectively
information has been sent from B
to its future which ensures no
causal loops.

J. Grunhaus, S. Popescﬁ and D. Rohrl

S. Popescu and D. Rohrlich, arXiv:9605004 (199¢ el
P. Horodecki and R. R., in preparation. = P.Hor: id R.R. Nat. Comm. 10, 1701 (2019)




Modified Multi-party No-Signaling from
Relativistic Causality

® Modified 3-party constraints that prevent causality violations (when Bob is
in appropriate space-time region):

ZP(a,b,c|x,y,z) = ZP(a,b,c|x,y,z’) Vz,7z',a,b,x,y
C

c

ZP(a,b,c|x,y,z) = ZP(a,b,c|x’,y,z) Vx,x',b,c,y,z

a a

ZP(a,b,c|x,y,z) = ZP(a,b,c|x’,y’,z) Vx, x', v,y ¢,z
a,b a,b
ZP(a,b,c|x,y,z) = ZP(a,b,c|x,y’,z’) Yy,y',z,7Z ,a,x.
b,c b,c

® |n general,in the n-party scenario (for a |-D spatial arrangement of parties):
Let Sm " denote a contiguous subset of [n] with initial element m and size k.

P(asir;,k|x5;11,k) = ) P@|x)= ) P@x) Vi<k<n-1,1<m<n—k+1

g g e
for all a’,a” with a’"gn = a”qn = agr and for all
m,k m,k m,k

7o . V4 o Sy
Xt N S VAL B XTIt e et Xe i T e = GG T e
f ( Jenris Sm_,lc ) Smik £ Sm,k

e 4
.

RIS % e ot
P. Horodecki and R. R., in preparat:ion. S rodec anR R.Nat. Comm. 10, 1701 (2019)




Compatibility with Free Will

® Free-Will conditions are intimately connected with No-Signaling constraints:

P(a,c]x,y,z) — P(alc‘x/Z)P(y‘alclxlz) ?

P(y‘x,z) J”--.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.‘.‘IIIIIIIIIIIIIIII.
N |
= P(a,c|x,z) Free-Will; P(y|a, ¢, x,z) = P(y|x,z) = P(y)
" aleeremerresnenane’
L5 R P mmmeey ST
. s, e °_ - g
. aB Y BGT
. . A y ,'
> A P ’ .
C A" A ’
A Y A Y A Y
. ¢ X it
S A A ’
. Y . ‘ . 4
S o S w .,
taA = tg = tc A.)‘B}‘Cz‘
S S S
PR AS N
o8 Colis 8ok 5 O
olma gl e I 8 S
. O e < B
z A Y S A .
‘ . ! 36 L .. .
’ e ’ X .
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R. Colbeck and R. Renner, Free randomnés"’é"ééi*»” be amplif dNture Physics 8, 450-454 (2012).

R. Colbeck and R. Renner, A short note on thé concept of free choice, arXiv: 1302.4446 (2013).



Compatibility with Free Will

Colbeck-Renner (formalising Bell): A spacetime random variable is free if the
only variables it is correlated with are those it could have caused, i.e., those in its

future light cone.
Definition 4. We say that A € I' is free if

PAFA :PA XPI‘A

holds, where I'4 is the set of all RVs X &€ I' such that
A A X 12

If we modify NS constraints, should also modify free-will constraints.




Compatibility with Free-Will

® Argument: Correlations AC properly seen as spacetime r.v. generated in the
future light cone of B.

Definition 4. Let Ay, = {A;} denote a set of outputs A; such that the correlation SRV C; A} between all the A; is generated
outside the future light cone of X;. Then X; is said to be free if the following condition is satisfied.:

P(X;|X\ X;, Ax;,Sp,..p,) = P(X;). (25)

® CR:No extension of quantum theory compatible with usual notion of free-
will can have better predictive power (for instance, Bohmian theories).

P. Horodecki and R.R, in preparation. P.Horodecki and R.R. Nat. Comm. 10, 1701 (2019)
R. Colbeck and R. Renner, No extension of quantum t 20Ty canl ‘have improved predictive power, Nature Communications 2,




Finite superluminal causal influences as
explanations of quantum nonlocality

Breakthrough result of Bancal et
al. : A multi-party Bell experiment
that shows any finite-speed v-
causal model leads to signaling.

Under the restricted free-will/
relativistic causality constraints, in
the measurement configurations
considered so far, one can explain
the quantum correlations by means
of a v-causal model.

Work in progress: Can further
modified Bl’s rule out v-causal
explanations!?

A time
N

AN

3 3 5 » space
A A

FIG. 3. Four-partite Bell-type experiment characterized by
the spacetime ordering R = (A < D < (B ~ C)). Since B
and C are both measured after A and D and satisfy B ~ C,
the BC|AD correlations produced by a v-causal model are lo-
cal (see Appendix C). A violation of the inequality of Lemma 1
by the model therefore implies that the corresponding corre-
lations must violate the no-signalling conditions (1). At least
one of the tripartite correlations ABC, ABD, ACD, or BCD
must then depend on the measurement setting of the remain-
ing party. The marginal ABD (ACD) cannot depend on z
(y), since this measurement setting is freely chosen at C' (B),
which is outside the past v-cone of A, B (C) and D (see
also Appendix D). It thus follows that either the marginal
ABC must depend on the measurement setting w of system
D or that the marginal BC'D must depend on the measure-
ment setting x of system A (or both). Let the four systems




Quantum non-locality based on finite-
superluminal influences leads to signaling

Lemma 1. Let P(abcd|xyzw) be a joint probability dis-

tribution with a,b,c,d € {0,1} and x,y, z,w € {0,1} sat- S = —3(Ao) — (Bo) — (B1) — (Co) — 3(Dy)
isfying the following two conditions. — (A1Bo) — (A1B1) + (AeCo)
+2(A,Co) + (Ao Do) + (BoDy)
(a) The conditional bipartite correlations BC|AD are — (BiD1) — (CoDo) — 2(C1Ds)
local, i.e., the joint probabilities P(bclyz,axdw) + (AgBo Do) + (AgBoD1) + (Ao By Do)
for systems BC' conditioned on the measure- — (Ao B1D1) — (A1 By Do) — (A1B1Dy)
ments settings and results of systems AD admit +<7A000D0>+2<A100D0>—2<AOCID1>
< %)

a decomposition of the form P(bclyz,axdw) =
>y ¢(Aaxdw)P(bly, A\)P(c|z, ) for every a,z,d,w.
17 1 1 1
%) = 5510000} + 510011) — — J0101) + 75 0110}

1 1 1 1
—[1 — —]1011) — - |1101 —[1110).
+711000) — 5]1011) — 2 [1101) +  [1110)

(b) P satisfies the no-signalling conditions (1).

Then there exist a four-partite Bell expression S (see Ap-
pendiz B for its description) such that correlations satis-
fying (a) and (b) necessarily satisfy S < 7, while there ex- e e G St A e et S
15t local measurements on a four-partite entangled quan-

. B, =-0,Ho,,Co=-Dy=0,, Ci=D;=—0,,
tum state that yield S ~ 7.2 > 7.

J.-D. Bancal et al. Nature Physics 8,867 (2012).

P. Horodecki and R. R. Nat. Comm. 10, 701 (2019). In prep.




Device-Independent crypto against Relativistic
Eavesdroppers

® Boxes P(a|x) = P(ay,...,an|X1,...,Xn) must carry a label of space-time locations
of measurement events P(tlrD).(nrm)g | a.xi,...,Xn).

® The set of boxes P(a]X) respecting relativistic causality forms a larger
dimensional polytope containing the usual NS polytope.

® | HV polytope ¢ Quantum Correlations ¢ No-Signaling Polytope c Causality
Polytope.

® |n DIQKD against relativistic eavesdroppers, this gives a larger set of attack
strategies for Eve.

R. Colbeck and R. Renner, ‘F'eer'o"g.'s"?' n be : ified. éturehysms 8, 450-454 (2012).
R. Gallego et al., Full randomness from arbitrarily detern events, Nat. Comm. 4, 2654 (2013).

F. G. S. L. Brandao, R. R, A. Grudka, Horodeckif’f‘_ I. Szare _fle.-Wojewodka, Nat Comm. 7, 11345 (2016).



Device-Independent Randomness Amplification
against Relativistic Eve

® Randomness amplification of Santha-Vazirani sources: need Bl with algebraic
violation. Paradigmatic example: GHZ-Mermin inequality.

® We show that no randomness can be extracted from the settings that appear in
the Mermin inequality under the new constraints, even with maximal violation.

Proposition 7. Consider the n-party GHZ-Mermin Bell inequality, for odd n > 3. Suppose that in some inertial reference
frame, the n space-like separated parties are arranged in 1-D, with r1 < - -- < ry, and perform their measurements simultane-
ously, i.e., t; = --- = t,. Then for any input x* appearing in the inequality, i.e., x* € X}y, ., there exists a box P violating
the Mermin inequality maximally and obeying the relativistic causality constraints in Eq.(17), such that no randomness can be
extracted from the outputs a of the box under input x*. In other words, we have

Pla*|x*) =1, (33)

for some fixed output bit string a”*.

Zac o 4 oy 0 .

)

C. Dhara, G. de la Torfe, A Acin, Phys. ReVLe 100 2014). | P. Horodecki and R. R.
R. Gallego et al., Full randomness from arbitrarily eterministic events, Nat. Comm. 4, 2654 (2013). Nat. Comm. 10, 1701

F.G. S. L. Brandao, R. R, A. Grudka, Horodecki*3 | (2019)




DIl Randomness Amplification against relativistic

Eve

® Proof is by construction of box
P(a|x) that satisfies:

® GHZ-Mermin constraints

® (Causality constraints

® returns deterministic
output for settings
appearing in the
inequality.

P. Horodecki and R. R., in preparatioh.-

Algorithm 1 Construction of box P
1: procedure CONSTRUCTION OF P
22 Letx* € Xﬁ’;rm be given. Initiate as step 0, a' (x*) =
a’(x*) = a* (the all-0 bit string).
3 Atthe (2j+1)-thstep, 0 <j< 251, V1<ip <o <
ijr1 < m, if x;.;]_+1 = (0 define

d(x*e1he. . 121) = dxe1h e 917)
A elie. . @17) = (el @ ®1%) @1l
(46)

If on the other hand, x;.kzm = 1 define

dx* o1 e - 917) = dx ol - @1%) @17
(X @1 @ ©171) 1= A (01D 1Y)
(47)
4: Atthe2j-thstep1§j§%,Vlﬁilﬁ"'gizjgnf
if x; = 0 define
2j
(@119 01%) = A o1 e 01751) 017
A O1 @ @1%) = (X @11 P @1F1).
(43)

If on the other hand, x;.“zj = 1 define

al(x* @1i1 @oos @11'2]') o al(x* 6911'1 En gt @11'2];1)
ar(x* @1il @Yo oc @11'2]') b ar(x* EB11'1 G300y @1i2j,1) @11'2]-‘

(49)
1,
5: Vx, set
3) .
P(a (x)lx) = P’ (x)|x) = 5,
P(alx) =0, otherwise. (50)

6: end procedure

T

P. Horodecki and R. R. Nat. Comm. |0, 170 |(20I G




Device-Independent QKD against relativistic
Eve

The chained Bell inequalities I™<"ag are a family of two-party correlation Bell
inequalities (XOR games) with m inputs and 2 outputs per party.

m
Zm’Ch : Z [<A B; > =+ <AiBi—|—1>] <2m—2, L (jo0) + 1))

i—1 [p+) = N

A; := sin(a;)oy + cos(a;)0z,
QM: Im<hag = 2m Cos(TT/2m). NS: I™hag = 2m., G s

with &; : (2 —1) andﬁ )fOI‘l] 1,..., m.

In the limit m— 00, a perfect key bit between Alice and Bob is obtained
(BHK, BCK, BKYS) against the usual No-Signaling adversary. Underlying
property: Monogamy of non-local correlations.

Proposition 4 ([39]). Any no-signaling distribution for which T’ S satisfies

1
P(Ar=a) < =(1+1I%),
Sl i( ) T L (KEp) < 2m.
P(B=b) < 5(1+1),
foralla,b € {0,1} and k,1 € [m]. L{Bab e I:ngh.

J. Barrett, A. Kent and S. Pil‘o'n"id Phg :

J. Barrett, L. Hardy and A. Kent, Phy

J. Barrett, R. Colbeck and A. Kent, Phjs -:062326 (2012).



Device-Independent QKD against relativistic
Eve

® |n a Device-Independent framework, the relativistic causality conditions
allow Eve to gain maximal information about the output key bit of such a
protocol.

® Eve’s observable is maximally correlated with the chosen observable of the
honest parties even when algebraic violation is observed.

Proposition 3. Consider a three-party Bell scenario where Alice and Bob perform a test of the Braunstein-Caves chained Bell
inequality T} (17) with an arbitrary number m > 2 of inputs per party and Eve measures a single observable Eq. Suppose that
in some inertial reference frame, the three space-like separated parties are arranged in 1-D, with r4 < rp < rg and perform
their measurements simultaneously, i.e., t4 = tg = tgp. For any observable K of Bob, i.e., K € {By,..., By}, there exists a
relativistic causal box P(a, b, e|x, y, w) such that Eq is perfectly correlated with K even when the algebraic violation of I;”j;h is
attained, i.e.,

Zh"+ (KE)| =2m+1. (20)

P. Horodecki and R. R. Nat. C . 10, 17
P. Horodecki and R.R, in_




General properties of no-signaling theories

® Monogamy:Violation of CHSH Bell inequality by Alice-Bob precludes
violation by Alice-Charlie.

AC

LHV AB

EBCHSH = |E(A1, B1)Lr + E(A1, B2)Lr + E(As, B1)Lr — E(A2, Ba)Lr| < 25

Proposition 3. Consider a three-party Bell scenario, with Alice, Bob and Charlie each performing two measurements x,y,z €
{0,1} of two outcomes a, b, c € {0,1} respectively. Suppose that in some inertial reference frame, the three space-like separated
parties are arranged in 1-D, with r4 < rg < rc and perform their measurements simultaneously, i.e., t4 = tp = tc. Then,
there exists a three-party relativistically causal box P(a, b, c|x,y, z) such that

(CHSH) 4p + (CHSH)pc = 8. (19)

L. Masanes, A. Acin and N. Gisin, Ph’y's";;'-fr V. A 7¢ 112 006)

P. Horodecki and R. R., in preparation. :RT-HQI"_Odfec,kf;h;cll. R.R. Nat. Comm. 10, 1701 (2019)



Genuine multipartite nonlocality
® Multiparty non-locality: Several classes of non-local correlations including
Svetlichy S>-local, NSz-local, T2-local with NS € T2 € Ss.

® We introduce a new class of models Cs:

Definition 5. Suppose that P(a, b, c|x,y,z) can be written in the form

P(a,b,c|%,y,2) = Y 0rPa(a,blx, y)Pa(elz) + ¥ auPula, clx, v, 2)Pu(bly) + CavPo(b,cly, 2)Pu(alx)  (28)
A U 4

where the terms obey the relativistic causality constraints Eq.(12). Then the correlations P(a,b,c|x,y, z) are said to be causal
bi-local. Otherwise, we say that they are genuinely 3-way causal non-local.

J.-D. Bancal, J. Barrett, N. isin S. 1rn10 88, 014102 (2013).
G. Svetlichny, Phys. Rev. D 35, 3066 (1987). P.‘ orodecl -‘and R.R. Nat. Comm. 10, 1701 (2019)

P. Horodecki and R.R, in preparatlon P Horodecki and R. R. Nat. Comm. 10, 1701 (2019)



Genuine Multiparty Nonlocality

In the Bell scenario B(2,2,2) we give an inequality and quantum correlations
obtained by suitable measurements on W-states that lead to its violation
demonstrating genuine multiparty nonlocality.

0 < 6 —2(A1By) — 2({A2B1) — (1/2){A1C1)ye1 — (1/2){A1C1)y2 + (1/2)(A2C1)y—1 + (1/2)(A2C1)y—z — (A1B2Cy)
+(A2B2C1) — (1/2)(A1C2)y=1 — (1/2)(A1Ca)y=2 + (1/2){A2C2)y=1 + (1/2)(A2Ca)y=2 + (A1 B2C2) — (A2B2C3)

1
W) = 7 (|001) + [010) + |100)) .

A; = sin(a;)oy + cos(a;)0z, JESEL e O
B] = Sln(,B])U'x —+ COS(,B]')UZ/ N
Ci = sin(yg)ox + cos(7g) 0z

ap = 4.51,a, = —1.76, 81 = 4.81, 5 = 6.13, 71 = —1.13, 7, = 4.98.

P Horodecki and R. R. Nat. Comm. 10, 1701 (2019)

P. Horodecki and R.R,.in‘ pre




Preferred Frame of Reference

® Consider superluminal influences in a preferred frame | at speed u > c.
® Fix (ta,ra) and (tg, rg).

®  Which (tg, re) are allowed space-time region from which an Eve is able to
influence correlations without violating causality!?

Lemma 4. Relativistic causality of the events A, B and E is
satisfied if the following two conditions hold.

e Eve by her choice of input at E does not directly affect
the individual statistics of the outcomes at points A and
B separately.

e Lve by her choice of input at E is not able to signal
to any space-time point S wth Xg := (ts,rs) via her
modification of the joint distribution of the outcomes at
A and B.

P. Horodecki and R. R., in preparatioh.




Preferred frame of reference

Theorem 7. Consider measurement events A, B with cor-
responding space coordinates r4,vp in a chosen inertial ref-
erence frame 1. Then a measurement event E can superlu-
minally influence the correlations between A and B at speed
u > c without violating causality in I if and only if its space
coordinate rg satisfies

re € Seg(O(AB; ¢u)) (39)

for any circle () with AB as a chord and having angle @, as
the angle in the corresponding minor segment, where @, =
7T — 2arcsin(a) and & = ¢/ u.

O(AB, ¢,)

by >th = tE+—|rA_rE|

t%ZtB:tEJFM

If we abandon the notion of a preferred frame, the regions transform.
Consequences are still Lorentz covariant.

P. Horodecki and R. R., in preparati'oﬁ.-',




Re-examined the derivation of the no-signaling constraints from causality.

Implications in many directions, including quantum cryptographic and finite-
superluminal explanations of quantum non-local correlations.

This work is supported by the John Templeton Foundation and ERC AdG grant QOLAPS.

:;:.:_.., European o
i e — JOHN TEMPLETON

FOUNDATION




Summary and Open Questions

* Re-examine the ubiquitous no-signaling constraints from strict relativistic causality.

Superluminal travel is logically perfectly possible as long as it leads to a consistent
story that unfolds in time.

*  “Non-local yet causal” theory that is different from Bohmian: allows for a notion of
free-will.

e  Open:“Extended quantum correlations” that obey the new constraints. Principles
to rule out such correlations and dynamics.

. This work is supported by: John Templeton Foundation and ERC AdG grant QOLAPS.
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PR Box

CHSH inequality

F1G 3. Left: a caricature of the 2 x 2 x 2 case. It actually lives in 8, not 2 dimensions. Right:
caricature of the general case in which (bottom left) a further possibility is allowed: no purple
between the green and grey. Artwork: Daniel Cavalcanti

LHY c Q c NS.

In the B(2,2,2) scenario, non-local extreme box of NS is the PR box.

al ®a2 =xl| .x2




® No signal carrying information can propagate faster than light - No-
Signaling Principle.

® (Captured in the Bell scenario (n,m,k) by a set of constraints on
the P(aj,...,an|X1,...,Xn).

® E.g In the three party Bell scenario

Z P(ay, a,, a3 | x1, X5, X3) = Z P(ay, a,, az | xy, x5, X3) Vay,a,, Xy, Xy, X3, X3

as as




