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• “Non-local yet causal” theory that is different from Bohmian: allows for a notion of 
free-will. 

• Open: “Extended quantum correlations” that obey the new constraints. Principles 
to rule out such correlations and dynamics.
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Kochen Specker Theorem

Theorem (Kochen and Specker, Bell). There are sets of atomic propositions represented in quantum

(i) Exclusivity:  ∑
|v⟩∈𝒞⊂𝒱

f ( |v⟩) ≤ 1 for every subset 𝒞 of mutually orthogonal vectors, and

The map f satisfying exclusivity and completeness is called a {0,1} coloring of set 𝒱 .

theory by vectors 𝒱 := { |v1⟩, …, |vn⟩} ⊂ ℂd, d ≥ 3 that do not admit a deterministic non-contextual

assignment f : 𝒱 → {0,1} satisfying

(ii) Completeness: ∑
|v⟩∈𝒞⊂𝒱

f ( |v⟩) = 1 for every subset 𝒞 of d mutually orthogonal vectors.

S. Kochen and E. P. Specker. “The problem of hidden variables in quantum mechanics”. Journal of Mathematics and 
Mechanics 17, 59 (1967).



Statistical Proofs of Contextuality

An interesting class of statistical state-dependent proofs was studied by Clifton, Stairs, Hardy and others.
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Figure 1: The 8-vertex “Clifton” graph that was used by
Kochen and Specker in their construction of the 117 vector
KS set. The two distinguished vertices are u1 and u8.

In the following when we refer to a 01-gadget, we
freely alternate between the equivalent set or graph
definitions.

An example of a 01-gadget in dimension 3 is given
by the following set of 8 vectors in C3:

|u1Í = 1
Ô

3
(≠1, 1, 1), |u2Í = 1

Ô
2

(1, 1, 0),

|u3Í = 1
Ô

2
(0, 1, ≠1), |u4Í = (0, 0, 1),

|u5Í = (1, 0, 0), |u6Í = 1
Ô

2
(1, ≠1, 0),

|u7Í = 1
Ô

2
(0, 1, 1), |u8Í = 1

Ô
3

(1, 1, 1), (5)

where the two distinguished vectors are |v1Í = |u1Í

and |v2Í = |u8Í. Its orthogonality graph is repre-
sented in Fig. 1. It is easily seen from this graph rep-
resentation that the vertices u1 and u8 cannot both
be assigned the value 1, as this then necessarily leads
to the adjacent vertices u4 and u5 to be both assigned
the value 1, in contradiction with the {0, 1}-coloring
rules. This graph was identified by Clifton, following
work by Stairs [17, 26], and used by him to construct
statistical proofs of the Kochen-Specker theorem. We
will refer to it as the Clifton gadget GClif. The Clifton
gadget and similar gadgets were termed “definite pre-
diction sets” in [21].

We identify the role played by 01-gadgets in the
construction of Kochen-Specker sets via the following
theorem.

Theorem 1. For any Kochen-Specker graph GKS,
there exists a subgraph Ggad < GKS with Ê(Ggad) =
Ê(GKS) that is a 01-gadget. Moreover, given a 01-
gadget Ggad, one can construct a KS graph GKS with
Ê(GKS) = Ê(Ggad).

The demonstration of our theorem is construc-
tive, it allows to build a 01-gadget from a KS graph

Figure 2: A 16 vertex coloring gadget (also a 101-gadget)
that is a subgraph of the 18 vertex Kochen-Specker graph
in dimension d = 4 found by Cabello et al. [18]. The 9
edge colors denote 9 cliques in the graph, with the maximum
clique being of size Ê(G) = 4. The distinguished vertices
u1, u6 are denoted by black circles.

and conversely. The 01-gadget in the original 117-
vector proof by Kochen-Specker is the Clifton graph
in Fig. 1. A 16-vertex 01-gadget in dimension 4 that
is an induced subgraph of the 18-vertex KS graph in-
troduced in [18] is represented in Fig. 2.

Proof. We start by showing the first part of the The-
orem: that one can construct a 01-gadget Ggad from
any KS graph GKS. Given GKS, which by definition
is not {0, 1}-colorable, we first construct, by deleting
vertices one at a time, an induced subgraph Gcrit that
is vertex-critical. By vertex-critical, we mean that
(i) Gcrit is not {0, 1}-colorable, but (ii) any subgraph
obtained from it by deleting a supplementary vertex
does admit a {0, 1}-coloring. Observe that in the pro-
cess of constructing Gcrit we are able to preserve the
maximum clique size, i.e., Ê(Gcrit) = Ê(GKS). This
is because we are able to delete vertices from all but
two maximum cliques, simply because at least two
maximum cliques must exist in a graph that is not
{0, 1}-colorable. Observe also that Gcrit is itself a KS
graph, since the faithful orthogonal representation of
GKS in dimension d = Ê(G KS) provides an orthogo-
nal representation of Gcrit in the same dimension.

We consider three cases: (i) there exists a vertex
in Gcrit that belongs to a single maximum clique, (ii)
all vertices in Gcrit belong to at least two maximum
cliques, and there exists a vertex that belong to ex-
actly two maximum cliques; (iii), all vertices in Gcrit
belong to at least three maximum cliques. In the first
two cases, which happen to be the case encountered
in all known KS graphs, we will be able to prove that
the 01-gadget appears as an induced subgraph while
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In these, a prediction occurs with certainty in non-contextual theories while this is not the case quantumly.

Considering each vector as an atomic proposition, studied sets are of the form P → Q or P → Q,

and have been termed as definite-prediction sets, true-implies-true (true-implies-false) sets, bugs or gadgets.

R. K. Clifton. American Journal of Physics 61: 443 (1993). A. Cabello , J. R. Portillo, A. Solis, K. Svozil. Phys. Rev. A 98, 012106 (2018).  

R. R. et al. Quantum 4, 308 (2020). 



Orthogonality Graphs

Orthogonality Graph: Represent each vector |vi⟩ by a vertex vi of a graph.
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Figure 1: The 8-vertex “Clifton” graph that was used by
Kochen and Specker in their construction of the 117 vector
KS set. The two distinguished vertices are u1 and u8.

In the following when we refer to a 01-gadget, we
freely alternate between the equivalent set or graph
definitions.

An example of a 01-gadget in dimension 3 is given
by the following set of 8 vectors in C3:

|u1Í = 1
Ô

3
(≠1, 1, 1), |u2Í = 1

Ô
2

(1, 1, 0),

|u3Í = 1
Ô

2
(0, 1, ≠1), |u4Í = (0, 0, 1),

|u5Í = (1, 0, 0), |u6Í = 1
Ô

2
(1, ≠1, 0),

|u7Í = 1
Ô

2
(0, 1, 1), |u8Í = 1

Ô
3

(1, 1, 1), (5)

where the two distinguished vectors are |v1Í = |u1Í

and |v2Í = |u8Í. Its orthogonality graph is repre-
sented in Fig. 1. It is easily seen from this graph rep-
resentation that the vertices u1 and u8 cannot both
be assigned the value 1, as this then necessarily leads
to the adjacent vertices u4 and u5 to be both assigned
the value 1, in contradiction with the {0, 1}-coloring
rules. This graph was identified by Clifton, following
work by Stairs [17, 26], and used by him to construct
statistical proofs of the Kochen-Specker theorem. We
will refer to it as the Clifton gadget GClif. The Clifton
gadget and similar gadgets were termed “definite pre-
diction sets” in [21].

We identify the role played by 01-gadgets in the
construction of Kochen-Specker sets via the following
theorem.

Theorem 1. For any Kochen-Specker graph GKS,
there exists a subgraph Ggad < GKS with Ê(Ggad) =
Ê(GKS) that is a 01-gadget. Moreover, given a 01-
gadget Ggad, one can construct a KS graph GKS with
Ê(GKS) = Ê(Ggad).

The demonstration of our theorem is construc-
tive, it allows to build a 01-gadget from a KS graph

Figure 2: A 16 vertex coloring gadget (also a 101-gadget)
that is a subgraph of the 18 vertex Kochen-Specker graph
in dimension d = 4 found by Cabello et al. [18]. The 9
edge colors denote 9 cliques in the graph, with the maximum
clique being of size Ê(G) = 4. The distinguished vertices
u1, u6 are denoted by black circles.

and conversely. The 01-gadget in the original 117-
vector proof by Kochen-Specker is the Clifton graph
in Fig. 1. A 16-vertex 01-gadget in dimension 4 that
is an induced subgraph of the 18-vertex KS graph in-
troduced in [18] is represented in Fig. 2.

Proof. We start by showing the first part of the The-
orem: that one can construct a 01-gadget Ggad from
any KS graph GKS. Given GKS, which by definition
is not {0, 1}-colorable, we first construct, by deleting
vertices one at a time, an induced subgraph Gcrit that
is vertex-critical. By vertex-critical, we mean that
(i) Gcrit is not {0, 1}-colorable, but (ii) any subgraph
obtained from it by deleting a supplementary vertex
does admit a {0, 1}-coloring. Observe that in the pro-
cess of constructing Gcrit we are able to preserve the
maximum clique size, i.e., Ê(Gcrit) = Ê(GKS). This
is because we are able to delete vertices from all but
two maximum cliques, simply because at least two
maximum cliques must exist in a graph that is not
{0, 1}-colorable. Observe also that Gcrit is itself a KS
graph, since the faithful orthogonal representation of
GKS in dimension d = Ê(G KS) provides an orthogo-
nal representation of Gcrit in the same dimension.

We consider three cases: (i) there exists a vertex
in Gcrit that belongs to a single maximum clique, (ii)
all vertices in Gcrit belong to at least two maximum
cliques, and there exists a vertex that belong to ex-
actly two maximum cliques; (iii), all vertices in Gcrit
belong to at least three maximum cliques. In the first
two cases, which happen to be the case encountered
in all known KS graphs, we will be able to prove that
the 01-gadget appears as an induced subgraph while

Accepted in Quantum 2020-08-07, click title to verify. Published under CC-BY 4.0. 4

d(G) ≥ ω(G) denotes the minimum dimension of an orthogonal representation of G .

Faithful Orthogonal Representation: v1 ∼ v2 ↔ ⟨v1 |v2⟩ = 0 and v1 ≠ v2 ↔ |v1⟩ ≠ |v2⟩ .

L. Lovasz, M. Saks and A. Schrijver. Linear Algebra and its Applications. 4, 114/115, 439 (1987). 

A. Cabello, S. Severini and A. Winter. arXiv: 1010.2163 (2010). Phys. Rev. Lett. 112 040401 (2014).

Connect any two vertices v1 and v2 by an edge if ⟨v1 |v2⟩ = 0.

d*(G) denotes the minimum dimension of a faithful orthogonal representation of G .



Gadgets
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call the definition of 01-gadgets both as measurement struc-
tures (vector sets) as well as by graph-theoretic means.

Definition 1. [8] A 01-gadget in dimension d is a {0,1}-
colorable set Sgad ⇢ Cd of vectors containing two distin-
guished non-orthogonal vectors |ui and |vi that nevertheless
satisfy f (u) + f (v)  1 in every {0,1}-coloring f of Sgad.
Equivalently, a 01-gadget in dimension d is a {0,1}-colorable
graph Ggad with faithful dimension d⇤(Ggad) = w(Ggad) = d
and with two distinguished non-adjacent vertices u and v such
that f (u)+ f (v) 1 in every {0,1}-coloring f of Ggad.

In other words, 01-gadgets are particular definite-prediction
sets with a logical implication of the form P ! Q, i.e., in any
logical assignment of the set of atomic propositions, when
one of the two distinguished propositions is assigned the value
True the other is necessarily assigned value False, even though
the distinguished atomic propositions are not represented by
orthogonal vectors and are therefore not inherently exclusive
to each other. In [8], it was shown that 01-gadgets identify the
essential contradiction captured by the Kochen-Specker theo-
rem, in that every KS graph contains a 01-gadget and from
every 01-gadget one can construct a proof of the Kochen-
Specker theorem (see also [18, 19]).

Order-(m,k) gadgets.- Let us now consider general-
isations of gadget measurement structures that go be-
yond the basic ‘true-implies-false’ and ‘true-implies-true’
logical implications. Our first generalisation is to
gadgets of order (m,k) with k  m. Essentially,
these are prediction sets corresponding to the propositionh⇣Vk

i=1 Pi !
Vm

j=k+1 P j

⌘V
(permutations)

i
for m mutually

non-exclusive atomic propositions P1, . . . ,Pm. In other words,
the gadgets of order (m,k) consist of m mutually non-
orthogonal vectors such that at most k vectors can be assigned
value 1 in any {0,1}-coloring. The 01-gadgets [3, 8, 44–47]
then correspond to the special case of gadgets of order (2,1).

Definition 2. A gadget of order (m,k) in dimension d
is a {0,1}-colorable set of vectors Sm,k ⇢ Cd containing
m distinguished mutually non-orthogonal vectors Sm,k =
{|v1i, ..., |vmi}, such that

• for every subset R⇢ Sm,k of size k, there exists a {0,1}-
coloring which attributes 1 to all vectors in R, and

• for any subset R⇢ Sm,k of size greater than k, no {0,1}-
coloring exists that attributes 1 to all vectors in R.

We first study the question whether a higher order (m,k)
gadget can be constructed with any set of arbitrary vectors
{|v1i, . . . , |vmi} as the distinguished vectors. While it is pos-
sible to consider every value of k 2 [m� 1], here we focus
on the construction for the special case m = d,k = d � 1 .
As in the construction of KS sets, the construction of such
general gadgets is complicated by the fact that even deciding
the {0,1}-colorability of a general graph is an NP-complete
problem [48]. It is also hard in general to derive the faith-
ful orthogonal representation of a graph in a given dimension.
As such, there isn’t a systematic method to derive minimal

gadget structures. Nevertheless, we propose specific graphs
G with candidate vertices to play the role of the distinguished
vertices of the gadget. We then construct a symmetric ma-
trix Gram with entries Grami, j = Gram j,i = 0 corresponding
to edges (i, j) in G. The matrix Gram is meant to represent
the Gram matrix of a set of vectors realising the graph G
so that Grami, j = hvi|v ji. We study the question of finding
a positive-semi-definite matrix completion Gram ⌫ 0 with a
rank-d constraint. We thus exhibit a graph that serves as an or-
der (d,d �1) gadget for arbitrary d, with the d distinguished
vectors being |m1i, |m2i, · · · , |mdi. The feature of this con-
struction is that the distinguished vectors can be chosen to be
arbitrary close to each other, i.e., hmi|m ji ! 1 as the number
of repeating units increases. We now show an application of
the higher-order gadgets in constructing novel KS proofs as
well as general state-independent contextual (SIC) proofs.

Construction 1. Order (k,k � 1) gadgets can be used as
building blocks to construct KS proofs in dimension d.

In the construction, we start with k bases B1,B2, . . . ,Bk in
dimension d, then randomly pick one vector in each basis to
form a set Si =

�
|vq

Bp
i
 

with p 2 [k] := {1, . . . ,k} and q 2 [d].
In total, we have dk such sets Si. Then for each i 2 [dk], we
construct an order (k,k� 1) gadget in dimension d with the
vectors in Si being the distinguished vectors. Thus, assigning
a single value 1 to each of the bases B1, . . . ,Bk�1 forces all
the vectors in the basis Bk to be assigned value 0 giving a
contradiction, so that the union of all vectors is a KS proof.

Construction 2. Order (k,k � 1) gadgets can be used as
building blocks to construct general SIC sets in dimension d.

To realize the general SIC set, we first construct a set
of r · 2n distinct unit vectors |uii in dimension d satisfying
Âr·2n

i=1 |uiihui| = r·2n

d 1d , where r > max
n

d(k�1)
2n ,4

o
is an even

integer and n =

(
dlog2

d�1
2 e, d is odd

dlog2
d�2

2 e, d is even
. Then any k of these

vectors form a set Si, we first delete all the mutually orthog-
onal vectors in the set Si and construct an order (|Si|, |Si|�1)
gadget in dimension d with the vectors in Si being the dis-
tinguished vectors. As a result, in any {0,1}-assignment f ,
the sum of assignments of these r · 2n vectors is smaller than
k. On the other hand, in quantum theory we obtain the value
r·2n

d > k for every state in dimension d, so that the union of
all the vectors gives a proof of state-independent contextual-
ity. Finally, not only can the higher-order gadgets be used
as building blocks to construct KS proofs, we also show that
specific such gadgets may be found as necessary substructures
(induced subgraphs) in any proof of the KS theorem.

Theorem 1. Every KS set in dimension d contains a gadget
of order (k,k�1) for some k satisfying 2  k  d.

The intuition behind the proof is that if no {0,1}-coloring
exists for a graph G, a brute-force greedy algorithm that at-
tempts to assign 0s and 1s to its vertices must stop at some
point in its execution, before each maximum clique has a sin-
gle 1-valued vertex. Therefore, there must exist some clique
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Figure 1: The 8-vertex “Clifton” graph that was used by
Kochen and Specker in their construction of the 117 vector
KS set. The two distinguished vertices are u1 and u8.

In the following when we refer to a 01-gadget, we
freely alternate between the equivalent set or graph
definitions.

An example of a 01-gadget in dimension 3 is given
by the following set of 8 vectors in C3:

|u1Í = 1
Ô

3
(≠1, 1, 1), |u2Í = 1

Ô
2

(1, 1, 0),

|u3Í = 1
Ô

2
(0, 1, ≠1), |u4Í = (0, 0, 1),

|u5Í = (1, 0, 0), |u6Í = 1
Ô

2
(1, ≠1, 0),

|u7Í = 1
Ô

2
(0, 1, 1), |u8Í = 1

Ô
3

(1, 1, 1), (5)

where the two distinguished vectors are |v1Í = |u1Í

and |v2Í = |u8Í. Its orthogonality graph is repre-
sented in Fig. 1. It is easily seen from this graph rep-
resentation that the vertices u1 and u8 cannot both
be assigned the value 1, as this then necessarily leads
to the adjacent vertices u4 and u5 to be both assigned
the value 1, in contradiction with the {0, 1}-coloring
rules. This graph was identified by Clifton, following
work by Stairs [17, 26], and used by him to construct
statistical proofs of the Kochen-Specker theorem. We
will refer to it as the Clifton gadget GClif. The Clifton
gadget and similar gadgets were termed “definite pre-
diction sets” in [21].

We identify the role played by 01-gadgets in the
construction of Kochen-Specker sets via the following
theorem.

Theorem 1. For any Kochen-Specker graph GKS,
there exists a subgraph Ggad < GKS with Ê(Ggad) =
Ê(GKS) that is a 01-gadget. Moreover, given a 01-
gadget Ggad, one can construct a KS graph GKS with
Ê(GKS) = Ê(Ggad).

The demonstration of our theorem is construc-
tive, it allows to build a 01-gadget from a KS graph

Figure 2: A 16 vertex coloring gadget (also a 101-gadget)
that is a subgraph of the 18 vertex Kochen-Specker graph
in dimension d = 4 found by Cabello et al. [18]. The 9
edge colors denote 9 cliques in the graph, with the maximum
clique being of size Ê(G) = 4. The distinguished vertices
u1, u6 are denoted by black circles.

and conversely. The 01-gadget in the original 117-
vector proof by Kochen-Specker is the Clifton graph
in Fig. 1. A 16-vertex 01-gadget in dimension 4 that
is an induced subgraph of the 18-vertex KS graph in-
troduced in [18] is represented in Fig. 2.

Proof. We start by showing the first part of the The-
orem: that one can construct a 01-gadget Ggad from
any KS graph GKS. Given GKS, which by definition
is not {0, 1}-colorable, we first construct, by deleting
vertices one at a time, an induced subgraph Gcrit that
is vertex-critical. By vertex-critical, we mean that
(i) Gcrit is not {0, 1}-colorable, but (ii) any subgraph
obtained from it by deleting a supplementary vertex
does admit a {0, 1}-coloring. Observe that in the pro-
cess of constructing Gcrit we are able to preserve the
maximum clique size, i.e., Ê(Gcrit) = Ê(GKS). This
is because we are able to delete vertices from all but
two maximum cliques, simply because at least two
maximum cliques must exist in a graph that is not
{0, 1}-colorable. Observe also that Gcrit is itself a KS
graph, since the faithful orthogonal representation of
GKS in dimension d = Ê(G KS) provides an orthogo-
nal representation of Gcrit in the same dimension.

We consider three cases: (i) there exists a vertex
in Gcrit that belongs to a single maximum clique, (ii)
all vertices in Gcrit belong to at least two maximum
cliques, and there exists a vertex that belong to ex-
actly two maximum cliques; (iii), all vertices in Gcrit
belong to at least three maximum cliques. In the first
two cases, which happen to be the case encountered
in all known KS graphs, we will be able to prove that
the 01-gadget appears as an induced subgraph while
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Higher-Order Gadgets
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call the definition of 01-gadgets both as measurement struc-
tures (vector sets) as well as by graph-theoretic means.

Definition 1. [8] A 01-gadget in dimension d is a {0,1}-
colorable set Sgad ⇢ Cd of vectors containing two distin-
guished non-orthogonal vectors |ui and |vi that nevertheless
satisfy f (u) + f (v)  1 in every {0,1}-coloring f of Sgad.
Equivalently, a 01-gadget in dimension d is a {0,1}-colorable
graph Ggad with faithful dimension d⇤(Ggad) = w(Ggad) = d
and with two distinguished non-adjacent vertices u and v such
that f (u)+ f (v) 1 in every {0,1}-coloring f of Ggad.

In other words, 01-gadgets are particular definite-prediction
sets with a logical implication of the form P ! Q, i.e., in any
logical assignment of the set of atomic propositions, when
one of the two distinguished propositions is assigned the value
True the other is necessarily assigned value False, even though
the distinguished atomic propositions are not represented by
orthogonal vectors and are therefore not inherently exclusive
to each other. In [8], it was shown that 01-gadgets identify the
essential contradiction captured by the Kochen-Specker theo-
rem, in that every KS graph contains a 01-gadget and from
every 01-gadget one can construct a proof of the Kochen-
Specker theorem (see also [18, 19]).

Order-(m,k) gadgets.- Let us now consider general-
isations of gadget measurement structures that go be-
yond the basic ‘true-implies-false’ and ‘true-implies-true’
logical implications. Our first generalisation is to
gadgets of order (m,k) with k  m. Essentially,
these are prediction sets corresponding to the propositionh⇣Vk

i=1 Pi !
Vm

j=k+1 P j

⌘V
(permutations)

i
for m mutually

non-exclusive atomic propositions P1, . . . ,Pm. In other words,
the gadgets of order (m,k) consist of m mutually non-
orthogonal vectors such that at most k vectors can be assigned
value 1 in any {0,1}-coloring. The 01-gadgets [3, 8, 44–47]
then correspond to the special case of gadgets of order (2,1).

Definition 2. A gadget of order (m,k) in dimension d
is a {0,1}-colorable set of vectors Sm,k ⇢ Cd containing
m distinguished mutually non-orthogonal vectors Sm,k =
{|v1i, ..., |vmi}, such that

• for every subset R⇢ Sm,k of size k, there exists a {0,1}-
coloring which attributes 1 to all vectors in R, and

• for any subset R⇢ Sm,k of size greater than k, no {0,1}-
coloring exists that attributes 1 to all vectors in R.

We first study the question whether a higher order (m,k)
gadget can be constructed with any set of arbitrary vectors
{|v1i, . . . , |vmi} as the distinguished vectors. While it is pos-
sible to consider every value of k 2 [m� 1], here we focus
on the construction for the special case m = d,k = d � 1 .
As in the construction of KS sets, the construction of such
general gadgets is complicated by the fact that even deciding
the {0,1}-colorability of a general graph is an NP-complete
problem [48]. It is also hard in general to derive the faith-
ful orthogonal representation of a graph in a given dimension.
As such, there isn’t a systematic method to derive minimal

gadget structures. Nevertheless, we propose specific graphs
G with candidate vertices to play the role of the distinguished
vertices of the gadget. We then construct a symmetric ma-
trix Gram with entries Grami, j = Gram j,i = 0 corresponding
to edges (i, j) in G. The matrix Gram is meant to represent
the Gram matrix of a set of vectors realising the graph G
so that Grami, j = hvi|v ji. We study the question of finding
a positive-semi-definite matrix completion Gram ⌫ 0 with a
rank-d constraint. We thus exhibit a graph that serves as an or-
der (d,d �1) gadget for arbitrary d, with the d distinguished
vectors being |m1i, |m2i, · · · , |mdi. The feature of this con-
struction is that the distinguished vectors can be chosen to be
arbitrary close to each other, i.e., hmi|m ji ! 1 as the number
of repeating units increases. We now show an application of
the higher-order gadgets in constructing novel KS proofs as
well as general state-independent contextual (SIC) proofs.

Construction 1. Order (k,k � 1) gadgets can be used as
building blocks to construct KS proofs in dimension d.

In the construction, we start with k bases B1,B2, . . . ,Bk in
dimension d, then randomly pick one vector in each basis to
form a set Si =

�
|vq

Bp
i
 

with p 2 [k] := {1, . . . ,k} and q 2 [d].
In total, we have dk such sets Si. Then for each i 2 [dk], we
construct an order (k,k� 1) gadget in dimension d with the
vectors in Si being the distinguished vectors. Thus, assigning
a single value 1 to each of the bases B1, . . . ,Bk�1 forces all
the vectors in the basis Bk to be assigned value 0 giving a
contradiction, so that the union of all vectors is a KS proof.

Construction 2. Order (k,k � 1) gadgets can be used as
building blocks to construct general SIC sets in dimension d.

To realize the general SIC set, we first construct a set
of r · 2n distinct unit vectors |uii in dimension d satisfying
Âr·2n

i=1 |uiihui| = r·2n

d 1d , where r > max
n

d(k�1)
2n ,4

o
is an even

integer and n =

(
dlog2

d�1
2 e, d is odd

dlog2
d�2

2 e, d is even
. Then any k of these

vectors form a set Si, we first delete all the mutually orthog-
onal vectors in the set Si and construct an order (|Si|, |Si|�1)
gadget in dimension d with the vectors in Si being the dis-
tinguished vectors. As a result, in any {0,1}-assignment f ,
the sum of assignments of these r · 2n vectors is smaller than
k. On the other hand, in quantum theory we obtain the value
r·2n

d > k for every state in dimension d, so that the union of
all the vectors gives a proof of state-independent contextual-
ity. Finally, not only can the higher-order gadgets be used
as building blocks to construct KS proofs, we also show that
specific such gadgets may be found as necessary substructures
(induced subgraphs) in any proof of the KS theorem.

Theorem 1. Every KS set in dimension d contains a gadget
of order (k,k�1) for some k satisfying 2  k  d.

The intuition behind the proof is that if no {0,1}-coloring
exists for a graph G, a brute-force greedy algorithm that at-
tempts to assign 0s and 1s to its vertices must stop at some
point in its execution, before each maximum clique has a sin-
gle 1-valued vertex. Therefore, there must exist some clique

In words, gadgets of order (m, k) consist of m mutually non-orthogonal vectors such that

at most k vectors can be assigned 1 in any {0,1} coloring.
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feature that the k distinguished vectors are arbitrarily close, ⟨mi |mj⟩ → 1.

2

call the definition of 01-gadgets both as measurement struc-
tures (vector sets) as well as by graph-theoretic means.

Definition 1. [8] A 01-gadget in dimension d is a {0,1}-
colorable set Sgad ⇢ Cd of vectors containing two distin-
guished non-orthogonal vectors |ui and |vi that nevertheless
satisfy f (u) + f (v)  1 in every {0,1}-coloring f of Sgad.
Equivalently, a 01-gadget in dimension d is a {0,1}-colorable
graph Ggad with faithful dimension d⇤(Ggad) = w(Ggad) = d
and with two distinguished non-adjacent vertices u and v such
that f (u)+ f (v) 1 in every {0,1}-coloring f of Ggad.

In other words, 01-gadgets are particular definite-prediction
sets with a logical implication of the form P ! Q, i.e., in any
logical assignment of the set of atomic propositions, when
one of the two distinguished propositions is assigned the value
True the other is necessarily assigned value False, even though
the distinguished atomic propositions are not represented by
orthogonal vectors and are therefore not inherently exclusive
to each other. In [8], it was shown that 01-gadgets identify the
essential contradiction captured by the Kochen-Specker theo-
rem, in that every KS graph contains a 01-gadget and from
every 01-gadget one can construct a proof of the Kochen-
Specker theorem (see also [18, 19]).

Order-(m,k) gadgets.- Let us now consider general-
isations of gadget measurement structures that go be-
yond the basic ‘true-implies-false’ and ‘true-implies-true’
logical implications. Our first generalisation is to
gadgets of order (m,k) with k  m. Essentially,
these are prediction sets corresponding to the propositionh⇣Vk

i=1 Pi !
Vm

j=k+1 P j

⌘V
(permutations)

i
for m mutually

non-exclusive atomic propositions P1, . . . ,Pm. In other words,
the gadgets of order (m,k) consist of m mutually non-
orthogonal vectors such that at most k vectors can be assigned
value 1 in any {0,1}-coloring. The 01-gadgets [3, 8, 44–47]
then correspond to the special case of gadgets of order (2,1).

Definition 2. A gadget of order (m,k) in dimension d
is a {0,1}-colorable set of vectors Sm,k ⇢ Cd containing
m distinguished mutually non-orthogonal vectors Sm,k =
{|v1i, ..., |vmi}, such that

• for every subset R⇢ Sm,k of size k, there exists a {0,1}-
coloring which attributes 1 to all vectors in R, and

• for any subset R⇢ Sm,k of size greater than k, no {0,1}-
coloring exists that attributes 1 to all vectors in R.

We first study the question whether a higher order (m,k)
gadget can be constructed with any set of arbitrary vectors
{|v1i, . . . , |vmi} as the distinguished vectors. While it is pos-
sible to consider every value of k 2 [m� 1], here we focus
on the construction for the special case m = d,k = d � 1 .
As in the construction of KS sets, the construction of such
general gadgets is complicated by the fact that even deciding
the {0,1}-colorability of a general graph is an NP-complete
problem [48]. It is also hard in general to derive the faith-
ful orthogonal representation of a graph in a given dimension.
As such, there isn’t a systematic method to derive minimal

gadget structures. Nevertheless, we propose specific graphs
G with candidate vertices to play the role of the distinguished
vertices of the gadget. We then construct a symmetric ma-
trix Gram with entries Grami, j = Gram j,i = 0 corresponding
to edges (i, j) in G. The matrix Gram is meant to represent
the Gram matrix of a set of vectors realising the graph G
so that Grami, j = hvi|v ji. We study the question of finding
a positive-semi-definite matrix completion Gram ⌫ 0 with a
rank-d constraint. We thus exhibit a graph that serves as an or-
der (d,d �1) gadget for arbitrary d, with the d distinguished
vectors being |m1i, |m2i, · · · , |mdi. The feature of this con-
struction is that the distinguished vectors can be chosen to be
arbitrary close to each other, i.e., hmi|m ji ! 1 as the number
of repeating units increases. We now show an application of
the higher-order gadgets in constructing novel KS proofs as
well as general state-independent contextual (SIC) proofs.

Construction 1. Order (k,k � 1) gadgets can be used as
building blocks to construct KS proofs in dimension d.

In the construction, we start with k bases B1,B2, . . . ,Bk in
dimension d, then randomly pick one vector in each basis to
form a set Si =

�
|vq

Bp
i
 

with p 2 [k] := {1, . . . ,k} and q 2 [d].
In total, we have dk such sets Si. Then for each i 2 [dk], we
construct an order (k,k� 1) gadget in dimension d with the
vectors in Si being the distinguished vectors. Thus, assigning
a single value 1 to each of the bases B1, . . . ,Bk�1 forces all
the vectors in the basis Bk to be assigned value 0 giving a
contradiction, so that the union of all vectors is a KS proof.

Construction 2. Order (k,k � 1) gadgets can be used as
building blocks to construct general SIC sets in dimension d.

To realize the general SIC set, we first construct a set
of r · 2n distinct unit vectors |uii in dimension d satisfying
Âr·2n

i=1 |uiihui| = r·2n

d 1d , where r > max
n

d(k�1)
2n ,4

o
is an even

integer and n =

(
dlog2

d�1
2 e, d is odd

dlog2
d�2

2 e, d is even
. Then any k of these

vectors form a set Si, we first delete all the mutually orthog-
onal vectors in the set Si and construct an order (|Si|, |Si|�1)
gadget in dimension d with the vectors in Si being the dis-
tinguished vectors. As a result, in any {0,1}-assignment f ,
the sum of assignments of these r · 2n vectors is smaller than
k. On the other hand, in quantum theory we obtain the value
r·2n

d > k for every state in dimension d, so that the union of
all the vectors gives a proof of state-independent contextual-
ity. Finally, not only can the higher-order gadgets be used
as building blocks to construct KS proofs, we also show that
specific such gadgets may be found as necessary substructures
(induced subgraphs) in any proof of the KS theorem.

Theorem 1. Every KS set in dimension d contains a gadget
of order (k,k�1) for some k satisfying 2  k  d.

The intuition behind the proof is that if no {0,1}-coloring
exists for a graph G, a brute-force greedy algorithm that at-
tempts to assign 0s and 1s to its vertices must stop at some
point in its execution, before each maximum clique has a sin-
gle 1-valued vertex. Therefore, there must exist some clique
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where q ,f 2 (0,p/2)[ (p/2,p), and t,s denote the number of repeating units from the vertex xd and yd respectively.
In order to satisfy the orthogonality constraints of the graph, we set a = �sinq+

p
D

d�4 ;b = d�4
d�3 cosq ,c =

1
d�3 sinq �

p
D;e = d�3

(d�2)(d�4) cosq ;q = cos2 q
�1

d�3 sinq+
p

D ; p = d�3
(d�2)(d�4) sinq + cos2 q

�1
d�3 sinq+

p
D + (d�3)2

(d�2)(d�4)2 (�sinq +
p

D) and

a0 = �sinq+
p

d
d�4 ;b0 = d�4

d�3 cosf ,c0 = 1
d�3 sinq �

p
d ;e0 = d�3

(d�2)(d�4) cosf ;q0 = cos2 f
�1

d�3 sinq+
p

d
; p0 = d�3

(d�2)(d�4) sinq cosf
cosq +

cos2 f
�1

d�3 sinq+
p

d
cosf
cosq + (d�3)2

(d�2)(d�4)2 (�sinq +
p

d ) cosf
cosq , where D = sin2 q � 2(d � 4)cos2 q � 0;d = sin2 q � (d � 4)(cos2 q +

cos2 f) � 0. Remark that the vectors |n2i, |n3i, · · · , |nd�2i appear in every one of the repeating units and thus the blue ver-
tices in the figures must be identified with each other, while |n1i (the green vertices) and |nd�1i (the red vertices) appear in
alternate repeating units.

As t,s ! •, we obtain that

hv4t+3|mdi= 0

hu4s+3|mdi= p0 sin2s+3 q + p0 sin2s+1 q cos2 q � pq0

q
sin2t+1 q = 0.

(S13)

And if furthermore q ! p
2 , we obtain that

hmi|m jii6= j ! 1, (S14)

that is, the distinguished vectors tend to converge towards each other.
We omit the orthogonal representation for d = 4 here. The vectors have a similar form, but the coefficient needs to be slightly

adjusted.

S6. USING HIGHER-ORDER GADGETS TO CONSTRUCT STATE-INDEPENDENT CONTEXTUALITY PROOFS

The construction in dimension d of order (k,k�1) gadgets with 2  k  d from the previous section can be used to efficiently
build Kochen-Specker sets as well as state-independent contextual (SIC) sets of the Yu-Oh type.

Fix a value of k in the range {2, . . . ,d}.

Construction 1. The gadgets of order (k,k�1) can be used as building blocks (together with a set of bases) to construct Kochen
Specker proofs in dimension d.

Step 1 We begin with k bases sets in dimension d, denoted as B1,B2, . . . ,Bk. We choose these sets such that no two vectors in
different bases sets are identical or orthogonal to each other (one can do this by picking a single basis set B1 and applying
a suitable unitary matrix Ud to B1).

Step 2 Construct all possible sets Si =
�
|vq

Bp
i
 

with p 2 [k] := {1, . . . ,k} and q 2 [d], obtained by choosing a single vector |vq
Bp
i

from each basis set Bp. In total, we thus have dk sets Si with |Si|= k for each i 2 [dk].

Step 3 Construct for each i 2 [dk] an order (k,k�1) gadget in dimension d with the vectors in the set Si being the distinguished
vectors. Such a gadget can be built following the construction in the previous section, notice that an order (k,k�1) gadget
in dimension k serves also as an order (k,k� 1) gadget in all dimensions d � k by the addition of computational basis
vectors |k+1i, . . . , |di.

All the vectors in B1 [B2 [ · · ·[Bk [ S form a KS proof, where S denotes all the high-order gadgets used in Step 3. This
follows from the fact that assigning a single value 1 to each of the bases B1, . . . ,Bk�1 forces all the vectors in the basis set Bk to
be assigned value 0 giving rise to a contradiction.

Construction 2. The gadgets of order (k,k�1) can be used as building blocks (together with a set of bases) to construct general
SIC sets in dimension d.

To realize the construction we need the following Theorem.

Theorem 3. Set n =

(
dlog2

d�1
2 e, d is odd

dlog2
d�2

2 e, d is even
. Let r � 4 be an even integer. There exist r · 2n distinct unit vectors |uii in

dimension d satisfying

r·2n

Â
i=1

|uiihui|=
r ·2n

d
1d (S15)
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2

call the definition of 01-gadgets both as measurement struc-
tures (vector sets) as well as by graph-theoretic means.

Definition 1. [8] A 01-gadget in dimension d is a {0,1}-
colorable set Sgad ⇢ Cd of vectors containing two distin-
guished non-orthogonal vectors |ui and |vi that nevertheless
satisfy f (u) + f (v)  1 in every {0,1}-coloring f of Sgad.
Equivalently, a 01-gadget in dimension d is a {0,1}-colorable
graph Ggad with faithful dimension d⇤(Ggad) = w(Ggad) = d
and with two distinguished non-adjacent vertices u and v such
that f (u)+ f (v) 1 in every {0,1}-coloring f of Ggad.

In other words, 01-gadgets are particular definite-prediction
sets with a logical implication of the form P ! Q, i.e., in any
logical assignment of the set of atomic propositions, when
one of the two distinguished propositions is assigned the value
True the other is necessarily assigned value False, even though
the distinguished atomic propositions are not represented by
orthogonal vectors and are therefore not inherently exclusive
to each other. In [8], it was shown that 01-gadgets identify the
essential contradiction captured by the Kochen-Specker theo-
rem, in that every KS graph contains a 01-gadget and from
every 01-gadget one can construct a proof of the Kochen-
Specker theorem (see also [18, 19]).

Order-(m,k) gadgets.- Let us now consider general-
isations of gadget measurement structures that go be-
yond the basic ‘true-implies-false’ and ‘true-implies-true’
logical implications. Our first generalisation is to
gadgets of order (m,k) with k  m. Essentially,
these are prediction sets corresponding to the propositionh⇣Vk

i=1 Pi !
Vm

j=k+1 P j

⌘V
(permutations)

i
for m mutually

non-exclusive atomic propositions P1, . . . ,Pm. In other words,
the gadgets of order (m,k) consist of m mutually non-
orthogonal vectors such that at most k vectors can be assigned
value 1 in any {0,1}-coloring. The 01-gadgets [3, 8, 44–47]
then correspond to the special case of gadgets of order (2,1).

Definition 2. A gadget of order (m,k) in dimension d
is a {0,1}-colorable set of vectors Sm,k ⇢ Cd containing
m distinguished mutually non-orthogonal vectors Sm,k =
{|v1i, ..., |vmi}, such that

• for every subset R⇢ Sm,k of size k, there exists a {0,1}-
coloring which attributes 1 to all vectors in R, and

• for any subset R⇢ Sm,k of size greater than k, no {0,1}-
coloring exists that attributes 1 to all vectors in R.

We first study the question whether a higher order (m,k)
gadget can be constructed with any set of arbitrary vectors
{|v1i, . . . , |vmi} as the distinguished vectors. While it is pos-
sible to consider every value of k 2 [m� 1], here we focus
on the construction for the special case m = d,k = d � 1 .
As in the construction of KS sets, the construction of such
general gadgets is complicated by the fact that even deciding
the {0,1}-colorability of a general graph is an NP-complete
problem [48]. It is also hard in general to derive the faith-
ful orthogonal representation of a graph in a given dimension.
As such, there isn’t a systematic method to derive minimal

gadget structures. Nevertheless, we propose specific graphs
G with candidate vertices to play the role of the distinguished
vertices of the gadget. We then construct a symmetric ma-
trix Gram with entries Grami, j = Gram j,i = 0 corresponding
to edges (i, j) in G. The matrix Gram is meant to represent
the Gram matrix of a set of vectors realising the graph G
so that Grami, j = hvi|v ji. We study the question of finding
a positive-semi-definite matrix completion Gram ⌫ 0 with a
rank-d constraint. We thus exhibit a graph that serves as an or-
der (d,d �1) gadget for arbitrary d, with the d distinguished
vectors being |m1i, |m2i, · · · , |mdi. The feature of this con-
struction is that the distinguished vectors can be chosen to be
arbitrary close to each other, i.e., hmi|m ji ! 1 as the number
of repeating units increases. We now show an application of
the higher-order gadgets in constructing novel KS proofs as
well as general state-independent contextual (SIC) proofs.

Construction 1. Order (k,k � 1) gadgets can be used as
building blocks to construct KS proofs in dimension d.

In the construction, we start with k bases B1,B2, . . . ,Bk in
dimension d, then randomly pick one vector in each basis to
form a set Si =

�
|vq

Bp
i
 

with p 2 [k] := {1, . . . ,k} and q 2 [d].
In total, we have dk such sets Si. Then for each i 2 [dk], we
construct an order (k,k� 1) gadget in dimension d with the
vectors in Si being the distinguished vectors. Thus, assigning
a single value 1 to each of the bases B1, . . . ,Bk�1 forces all
the vectors in the basis Bk to be assigned value 0 giving a
contradiction, so that the union of all vectors is a KS proof.

Construction 2. Order (k,k � 1) gadgets can be used as
building blocks to construct general SIC sets in dimension d.

To realize the general SIC set, we first construct a set
of r · 2n distinct unit vectors |uii in dimension d satisfying
Âr·2n

i=1 |uiihui| = r·2n

d 1d , where r > max
n

d(k�1)
2n ,4

o
is an even

integer and n =

(
dlog2

d�1
2 e, d is odd

dlog2
d�2

2 e, d is even
. Then any k of these

vectors form a set Si, we first delete all the mutually orthog-
onal vectors in the set Si and construct an order (|Si|, |Si|�1)
gadget in dimension d with the vectors in Si being the dis-
tinguished vectors. As a result, in any {0,1}-assignment f ,
the sum of assignments of these r · 2n vectors is smaller than
k. On the other hand, in quantum theory we obtain the value
r·2n

d > k for every state in dimension d, so that the union of
all the vectors gives a proof of state-independent contextual-
ity. Finally, not only can the higher-order gadgets be used
as building blocks to construct KS proofs, we also show that
specific such gadgets may be found as necessary substructures
(induced subgraphs) in any proof of the KS theorem.

Theorem 1. Every KS set in dimension d contains a gadget
of order (k,k�1) for some k satisfying 2  k  d.

The intuition behind the proof is that if no {0,1}-coloring
exists for a graph G, a brute-force greedy algorithm that at-
tempts to assign 0s and 1s to its vertices must stop at some
point in its execution, before each maximum clique has a sin-
gle 1-valued vertex. Therefore, there must exist some clique

SIC proofs, a la Yu and Oh.
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Figure 4: Graphs with the dashed edges denoting 01-gadgets.
(a) In any {0, 1}-coloring of the graph G0, the central vertex
is necessarily assigned value 0. (b) Three copies of G0 with
the central vertices forming a basis in C3 so that the resulting
graph GKS1 forms a Kochen-Specker proof. (c) Another
proof of the KS theorem GKS2 is obtained by connecting
every pair of vectors in two bases by a 01-gadget.

5 Statistical KS arguments based on
01-gadgets
The KS theorem can be seen as a proof that no non-
contextual deterministic hidden-variable interpreta-
tion of quantum theory is possible. In a determin-
istic hidden-variable model, we aim to reproduce the
quantum probabilities

PrÂ(i|M) =
ÿ

⁄

qÂ(⁄)f⁄(i|M) (14)

in term of hidden-variables ⁄, where a distribution
qÂ(⁄) over the hidden-variables is associated to each
quantum state |ÂÍ, and where for each ⁄, the model
predicts with certainty that one of the outcomes i
will occur for each measurement M , i.e., the hidden
measurement outcome probabilities f⁄(i|M) satisfy
f⁄(i|M) œ {0, 1}. Furthermore, the model is non-
contextual if, as in the quantum case, the probabilis-
tic assignment to the outcome i of the (projective)
measurement M , only depends on the correspond-
ing projector Vi, independently of the wider context
provided by the full description of the measurement
M = {V1, V2, . . . , Vn}. In other words in a non-
contextual deterministic hidden-variable, we aim to
write for every projector V :

ÈÂ|V |ÂÍ =
ÿ

⁄

qÂ(⁄)f⁄(V ) , (15)

where f⁄(V ) œ {0, 1}. Obviously, we should also re-
quire for consistency that

q
iœO

f(Vi) Æ 1 for any set
O of mutually orthogonal projectors, with equality
when the projectors in O sum to the identity.

No-go theorems against such models, i.e., “proofs of
contextuality” , are usually obtained by considering
a finite set S = {|v1Í, . . . , |vnÍ} µ Cd of rank-one
projectors Vi, represented as vectors through Vi =
|viÍÈvi|. Specializing to this case, a non-contextual
hidden variable model should satisfy for each |viÍ in
S and each |ÂÍ in Cd,

|ÈÂ|viÍ|
2 =

ÿ

⁄

qÂ(⁄)f⁄(|viÍ) , (16)

where the f⁄ : S æ {0, 1} are {0, 1}-colorings of S.
At least three types of no-go theorems, from

strongest to weakest, against such non-contextual
hidden-variable models can be constructed.
The first types correspond to Kochen-Specker theo-

rems. They establish that for certain sets S, it is not
possible to consistently define {0, 1}-colorings f⁄ of
S, even before attempting to use them to reproduce
the quantum probabilities. This is what we have dis-
cussed until now.
In the second type of proofs, a {0, 1}-coloring

of S is not excluded. But it can be shown that
for any such coloring f⁄ of S, a certain inequalityq

i cif⁄(|viÍ) Æ c0 must necessarily be satisfied, while
in the quantum case, it happens that

q
i ci|viÍÈvi| >

c0I. In other words, though it is possible to find a
{0, 1} assignment f⁄(|viÍ) to each projector |viÍÈvi|

in S that is compatible with the orthogonality re-
lations among such projectors, any such assignment
fails to reproduce some more complex relation of
the type

q
i ci|viÍÈvi| > c0I satisfied by these pro-

jectors. This immediately implies a contradiction
with eq. (16), since in the quantum case we have
for any |ÂÍ,

q
i ci|ÈÂ|viÍ|

2 > c0, while according to
a non-contextual hidden variable model, we would
have

q
i ci|ÈÂ|viÍ|

2 =
q

⁄ qÂ(⁄) [
q

i cif⁄(|viÍ)] Æq
⁄ q|ÂÍ(⁄)c0 Æ c0. Such no-go theorems are referred

to as “statistical state-independent” KS arguments
and were introduced by Yu and Oh [25].
Finally, for certain sets S, it is possible to find valid

{0, 1}-colorings that do not lead to any type of con-
tradictions of the second type above. However, it is
not possible to take mixtures of such colorings, as in
eq. (16), to reproduce the predictions of certain quan-
tum states |ÂÍ. Such no-go theorems are referred to as
“statistical state-dependent” KS arguments and were
introduced by Clifton in [17].
While we have seen in the previous section how

proofs of the KS theorem can be constructed us-
ing 01-gadgets, in this section we show how to use
them to build statistical state-independent and state-
dependent KS arguments

5.1 State-independent KS arguments
In [25], Yu and Oh introduced a set of 13 vectors in
C3 that provides a state-independent proof of contex-
tuality, despite not being a KS set. We show how

Accepted in Quantum 2020-08-07, click title to verify. Published under CC-BY 4.0. 9

2

independent test of quantum contextuality for an indi-
visible system practical.

How can we exclude non-contextual HV models for QM
or prove the quantum contextuality? Obviously the an-
swer depends on what kinds of quantum mechanical pre-
dictions we want the HV model to reproduce. For ex-
ample if we only want the predictions on non-sequential
measurements, i.e., correlations not included, to be re-
produced, then a non-contextual HV model does exist
according to Kochen and Specker [2]. Because of this
toy model Kochen and Specker imposed a rather strong
constraint on the HV models as a way out [2]: the al-
gebraic structure of compatible observables must be pre-
served. Especially the value assigned to the product or
the sum of two compatible observables must be equal to
the product or the sum of the values assigned to these
two compatible observables, which will be referred to as
the product rule and the sum rule respectively. As we
shall see later this constraint can be lifted if we consider
sequential measurements.

As a result of the product rule the value assigned to
the product of two orthogonal rays, normalized rank-1
projections, which are compatible, must be zero. As a
result of the sum rule there is one and only one ray that
is assigned to value 1 among all the rays in a complete
orthonormal basis since the identity is always assigned
to value 1. Thus in every non-contextual HV model pre-
serving the partial algebraic structure of compatible ob-
servables there exists a KS value assignment to all rays
in the corresponding Hilbert space satisfying:

1. The value {0, 1} assigned to a ray is independent
of which bases it finds itself in;

2. One and only one ray is assigned to value 1 among
all the rays in a complete orthonormal basis.

The first condition reflects the non-contextuality and the
second condition arises from the requirement that the al-
gebraic structure of compatible observables be preserved.
For a Hilbert space of a dimension greater than 2 there
always exists a finite set of rays to which the KS value as-
signment is impossible. For qutrits, a state-independent
proof originally involves 117 rays [2] and the number is
reduced to 33 by Peres [19] and Schütte as reported by
K. Svozil in 1994 and pointed out by Bub [20]. The
best KS proof known so far is given by Conway and
Kochen [21] with 31 rays. For 4-state systems the best
state-independent proof is due to Cabello, Estebaranz,
and Garćıa-Alcaine [22] with 18 rays, the smallest state-
independent KS proof known so far.

To warm up let us present a state-independent proof
of KS theorem for qutrit using only 13 rays. In a given
basis {|0⟩, |1⟩, |2⟩} we shall represent a qutrit ray r̂ =
|r⟩⟨r|/⟨r|r⟩ by a triple r = (a, b, c) such that |r⟩ = a|0⟩+

State-independent proof of Kochen-Specker theorem with 13 rays

Sixia Yu and C.H. Oh
Centre for quantum technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

We propose a state-independent test for hidden variables (HVs) in spin-1 systems, or qutrits, via
an inequality that involves only 13 dichotomic observables. In particular, our inequality is obeyed
by all non-contextual HV models and is violated by all qutrit states, whose nonclassical nature can
thus be revealed comprehensively. Especially, our inequality provides a state-independent proof of
Kochen-Specker theorem with 13 rays and in comparison the world record is the 31-ray proof by
Conway and Kochen for qutrits and Cabello’s 18-ray proof for 4-level systems. Also our inequality
rules out those non-contextual HV models that do not preserve the algebraic structure of compatible
observables.

The predictions of quantum mechanics are probabilis-
tic and hidden variable (HV) models are intended to ex-
plain why a certain outcome appears in each run of a
measurement a possible choice. However, any HV model
that reproduces all the quantum mechanical predictions
on a system with three or more distinguishable states
is necessarily contextual: the outcome of a measurement
depends on which set of compatible measurements might
be performed alongside. This is exactly the content of
Kochen-Specker (KS) theorem [1], independently discov-
ered by Bell [2]. The quantum contextuality was initially
revealed via some logical contradictions and now it be-
comes experimentally testable via some inequalities [3–5],
referred to as KS inequalities here, that are satisfied by
all non-contextual HV models.

KS inequalities reveal the nonclassical nature of sin-
gle systems demanding neither entanglement nor space-
like separation. Since local realism is one special form
of non-contextuality Bell inequalities [6] can be regarded
as a special kind of KS inequalities. Various experiments
[7–13] have been done to test directly the quantum con-
textuality on different systems. State-independent viola-
tions are found for composite systems or for two or more
degrees of freedom. However for the simplest system ca-
pable of exhibiting contextuality, a qutrit, the quantum
contextuality is tested only in a state-dependent fashion
[13]. This is because the state-independent KS inequali-
ties for qutrit arising from existing KS proofs involve too
many observables, e.g. the best KS proof known involves
31 observables, to be tested practically.

In this Letter we shall fill the gap by proposing a state-
independent KS inequality with only 13 dichotomic ob-
servables, referred to as the magic-cube inequality, to test
the HVs for qutrit. Our inequality not only provides
a state-independent proof of KS theorem with 13 rays,
comparatively the best proof involves 31 rays, but also
rules out any non-contextual HV models that may not
preserve the algebraic structure of compatible observ-
ables. The state-independent violations of our inequality
reveal comprehensively the nonclassical nature of a single
quantum system.

z1

z2 z3

h0

h2

h3h1

y+
1y−1

y−3
y+
2

y+
3y−2

FIG. 1: The graph ∆13 = (V,Γ) whose vertices are repre-
sented by 13 hollow dots and edges are represented by either
straight lines or curves. The element of the adjacency matri
is nonzero, i.e. Γuv = 1, if and only if two vertices u, v
are connected.

Recently Klyachko, Can, Binicioglu, and Shumovskya
[3] propose a simple KS inequality, called pentagram in-
equality since it is based on the graph of a pentagon, to
test HVs for qutrits with only 5 dichotomic observables.
Being derived by assuming non-contextuality only, the
pentagram inequality is valid for all non-contextual HV
models and its violation has been verified in a recent ex-
periment [13]. However the pentagram inequality, as well
as other KS inequalities derivable from graphs [11], are
state-dependent.
Our inequality is based on the graph∆13 on 13 vertices

as shown in Fig.1. Let , h , z with = 1 3,
, and = 0 3 be its vertex set and Γ be its

adjacency matrix, which is a 13 13 symmetric matrix
with vanishing diagonal and Γuv = 1 if two vertices u, v

are connected and Γuv = 0 otherwise. For arbitrary
13 variables 1 with it holds

:=
u,v

uv (1)

which can be directly verified with the help of a laptop
by exhausting all 213 possibilities or be proved as follows.

FIG. 2: The orthogonality relationships among those 13 rays
in Eq.(1) determine a graph∆13 with 13 vertices (hollow dots)
representing those 13 rays and edges, straight or curved, link-
ing two rays that are orthogonal.

b|1⟩+ c|2⟩. Consider the following 13 rays

y−1 = (0, 1,−1) h1 = (−1, 1, 1) z1 = (1, 0, 0)
y−2 = (1, 0,−1) h2 = (1,−1, 1) z2 = (0, 1, 0)
y−3 = (1,−1, 0) h3 = (1, 1,−1) z3 = (0, 0, 1)
y+1 = (0, 1, 1) h0 = (1, 1, 1)
y+2 = (1, 0, 1)
y+3 = (1, 1, 0)

(1)

that are determined by 26 points on the surface of a 3×3
magic cube as illustrated in Fig.1. If we regard those 13
rays as 13 vertices and link two vertices if and only if the
corresponding rays are orthogonal, then we obtain the
orthogonality graph ∆13 as shown in Fig.2. Obviously a
given set of rays determines uniquely the orthogonality
graph and usually not vice versa. However those 13 rays
are determined uniquely by the orthogonality relation-
ships specified by the graph ∆13 up to a global unitary
transformation.
In fact without loss of generality we can choose zk as in

Eq.(1) since they form a basis. Because {zk, y
±
k } are mu-

tually orthogonal for each k = 1, 2, 3 there exist nonzero
t1, t2, t3 such that y+1 = (0, t1, 1) and y−1 = (0,−1, t∗1),
y+2 = (1, 0, t2) and y−2 = (t∗2, 0,−1), y+3 = (t3, 1, 0) and
y−3 = (−1, t∗3, 0). As a result we have h1 = (−t∗2, t1, 1),
h2 = (1,−t∗3, t2), and h3 = (t3, 1,−t∗1). Since hk is
orthogonal to y+k−1 for k = 1, 2, 3 we have t∗1 = t2t3,
t∗2 = t1t3, and t∗3 = t1t2 from which it follows that |tk| = 1
and t1t2t3 = 1, i.e., tk = ei(θk+1−θk+2) for some real θk.
Finally we obtain h0 = (eiθ1 , eiθ2 , eiθ3) which is orthogo-
nal to y−1,2,3. The diagonal unitary transformation taking
h0 to (1, 1, 1) leaves zk unchanged so that the standard
form of 13 rays in Eq.(1) is obtained.
The KS value assignments to the 13-ray set are pos-

sible, i.e., no logical contradiction can be extracted by
considering conditions 1 and 2 only. However in any pos-
sible KS value assignment there is at most one ray among
{ĥα|α = 0, 1, 2, 3} that can be assigned to value 1. Sup-
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1) Entanglement-Assisted Advantage in Zero-Error Capacity-I 

T. Cubitt, D. Leung, W. Matthews and A. Winter. “Improving zero-error classical communication with entanglement”.  

Physical Review Letters 104(23) 

The confusability graph G(𝒩) of channel 𝒩 has vertex set as the set of input symbols and two vertices 

We consider a discrete, memoryless classical channel 𝒩 connecting sender Alice and receiver Bob.

Given a single use of such a channel, the maximum number of messages that Alice can send to Bob 

under the constraint that there be no error is known as the one-shot zero-error capacity of 𝒩 .

connected by an edge if the corresponding symbols are confusable.

Classically cSR(𝒩) = α (G(𝒩)) .

Cubitt et al.: for G being a class of KS graphs cSE(𝒩) > α (G(𝒩)) .



1) Entanglement-Assisted Advantage in Zero-Error Capacity-II

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139. 

Assign weights w = {wi}|V|
i=1 to the input symbols denoting the desirability of their transmission.

We show that shared entanglement also provides an enhancement of a weighted version of the 

The one-shot zero-error capacity is the maximum total weight of any set of non-confusable inputs.

Classically cSR(𝒩) = α (G(𝒩), w) .

On the other hand, we prove that for weights chosen as above, for gadgets of order (k,1) for k > ω(G),

zero-error communication capacity for a class of gadget graphs.

10

In particular, they showed that such channels arise naturally from proofs of the Kochen-Specker theorem, specifically one may
take G(N) to be the (non-{0,1}-colorable) orthogonality graph of some Kochen-Specker vector set.

For the gadget-type one-shot zero-error capacity enhancement with shared entanglemen, we may also consider a weighted
version of the problem in which we assign weights wi to the input symbols (vertices of the graph) denoting the desirability of
their transmission. While the zero-error code still remains a set of non-confusable inputs, the one-shot zero-error capacity of the
channel is the maximum total weight of such a set. In this case, the one-shot zero-error capacity of the channel is the weighted
independence number of the graph cSR(N) = a (G(N),w). It is in such a weighted version of the zero-error communication
problem that channels corresponding to specific types of gadgets show an enhancement with entanglement used as a resource.

Consider a gadget in which we complete each of the bases (by addition of suitable vectors satisfying the orthogonality rela-
tions) such that a clique cover of the graph is possible in which the vertices of the graph are partitioned into q maximum cliques
(of size w(G) = d) given as Cm = {vm,1, . . . ,vm,d} for m = 1, . . . ,q (i.e., V = [q

m=1Cm). We remark that a similar completion
is required for the graphs obtained from Kochen-Specker proofs in [26], and only such Kochen-Specker proofs (such as the
Peres-Mermin proof [27] with 24 vectors partitioned into six cliques in dimension 4) display the enhancement proven there.

We construct the channel N as having inputs in [q]⇥ [d] with inputs (m, i) and (m0, i0) being confusable if and only if the
corresponding vectors are orthogonal to each other, i.e., if and only if hvm,i|vm0,i0 i = 0. G(N) has an edge between such pairs
of confusable inputs and is exactly the orthogonality graph corresponding to the (base-completed) gadget. By construction, the
vertices of G(N) can be partitioned into q maximum cliques (of size d). We now consider the weighted version of the zero-error
communication problem with Vdist denoting the set of distinguished vertices in the gadget as

wi =

⇢
w⇤ i 2Vdist
1 i 2V \Vdist

(S6)

for a parameter w⇤. The one-shot zero-error capacity when only shared randomness is available is then readily calculated to be
cSR (G(N)) = max{a (G(N))�1+w⇤,a (G(N))�3+2w⇤}. We choose w⇤ > 1 such that 2w⇤ � 3 < w⇤ � 1, i.e., 1 < w⇤ < 2
giving cSR (G(N)) = a (G(N))�1+w⇤ < q+w⇤ �1.

On the other hand, suppose Alice and Bob share a maximally entangled state |ydi = 1p
d Âd

i=1 |i, ii. Each message m that
Alice wishes to send corresponds to a maximum clique in the aforementioned clique partitioning of the graph G(N). To send
m, Alice measures in the bases given by the clique Cm and obtains an outcome k 2 [d] with probability 1/d. Her input to the
channel is then (m,k). The output of the channel at Bob’s end is one of the maximum cliques containing the vertex vm,k (not
necessarily belonging to the clique partitioning of the graph). Bob performs a projective measurement corresponding to his
received maximum clique, and his outcome reveals Alice’s input to the channel. The one-shot zero-error capacity when shared
entanglement is used as a resource is then calculated to be cSE (G(N)) = 1

d [qd � |Vdist|+ |Vdist| ·w⇤] = q+ (w⇤�1)|Vdist|
d . We see

that cSE (G(N))> cSR (G(N)) whenever |Vdist|> d, i.e., whenever we have a gadget-type graph with |Vdist| distinguished vertices
of which only one can be assigned value 1 in any non-contextual {0,1} value assignment.

We note that such a gadget-type graph does not correspond to a Kochen-Specker proof since it is {0,1}-colorable. On the other
hand, one can construct a state-independent non-contextuality inequality for the graph that is violated by all states in dimension
d, namely Âvi2Vdist P(evi) 1, where P(ei) refers to the probability of the event evi corresponding to the distinguished vertex vi.
Such graphs may therefore be said to be of the type discovered by Yu and Oh in [28], namely they exhibit state-independent
contextuality despite not corresponding to a Kochen-Specker proof. And as we have seen, we obtain an enhancement via
entanglement of the one-shot zero-error capacity for all such graphs, a much wider (and easily constructable following the
constructions in [8] and the following sections) class of graphs than was previously known.

S4. OPTIMAL SEMI-DEVICE-INDEPENDENT RANDOMNESS GENERATION USING GADGETS

The Kochen-Specker theorem shows that it is impossible to assign classical (deterministic) values to all quantum observables
in a consistent manner, i.e., independent of the context in which the observables are measured. However, as pointed out in
[36, 37], the fact that not all quantum observables can be assigned definite values does not imply that no observable can be
assigned a definite outcome. And in general, proofs of contextuality do not specify which observables are value-indefinite.
Specifically, for a contextuality test with a set of observables {A1, . . . ,Ak} we want to solve

max Pguess(Ai|E)
s.t. I(PA|X ) = I⇤,

PA,E|X 2 Q,

(S7)

where I(PA|X ) is a non-contextuality inequality evaluated on the observed conditional probability distributions PA|X , I⇤ 2 (Ic, Iq]
with classical and quantum values given by Ic and Iq respectively, and Q denotes the set of conditional distributions (boxes)
achievable by performing measurements (compatible with the test structure on Alice’s side) on quantum states shared between

it holds that cSE(G(𝒩) > α(G(𝒩), w) . Such gadgets are {0,1} − colorable so are not KS proofs.



2) Using Gadgets to Test Fundamentally Binary Theories - I

M. Kleinmann and A. Cabello. Physical Review Letters 117, 150401 (2016). 

Hu et al. “Observation of stronger-than-binary correlations with entangled photonic qutrits”. Phys. Rev. Lett. 120, 180402 (2018)

Kleinmann, Cabello and Vertesi constructed a Bell-type inequality to exclude the set of fundamentally

Fundamentally Binary Theories are an interesting class of no-signalling theories where

measurements yielding many outcomes are constructed out of binary measurements.

binary non-signalling correlations as an underlying mechanism behind quantum correlations.

Their proof was experimentally demanding in that Iq = 2(2/3)3/2 ≈ 1.0887 versus Ib−ns = 1.

We show that the genuinely ternary character of quantum measurements can be certified in a 

robust manner in a contextuality scenario using gadgets.

Quantum correlations are stronger than all nonsignaling correlations produced by
n-outcome measurements

Matthias Kleinmann⇤

Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain

Adán Cabello†
Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain

We show that, for any n, there are m-outcome quantum correlations, with m > n, which are
stronger than any nonsignaling correlation produced from selecting among n-outcome measure-
ments. As a consequence, for any n, there are m-outcome quantum measurements that cannot be
constructed by selecting locally from the set of n-outcome measurements. This is a property of the
set of measurements in quantum theory that is not mandatory for general probabilistic theories.
We also show that this prediction can be tested through high-precision Bell-type experiments and
identify past experiments providing evidence that some of these strong correlations exist in nature.
Finally, we provide a modified version of quantum theory restricted to having at most n-outcome
quantum measurements.

Introduction.—The violation of Bell inequalities [1–6]
does not only show the impossibility of local realism
[7], but also demonstrates (i) the existence of entangled
states, i.e., states which cannot be produced by choos-
ing among states produced locally, and (ii) the existence
of incompatible measurements, i.e., measurements whose
outcomes cannot be obtained from a single joint measure-
ment. Remarkably, this holds not only assuming quan-
tum theory (QT) but also holds for the much broader set
of general probabilistic theories (GPTs) [8–11]. GPTs in-
clude classical probability theory and QT, and also the-
ories admitting supraquantum nonsignaling correlations,
such as, e.g., Popescu-Rohrlich boxes [12].

Svetlichny pointed out that (i) can be refined and that
for any number of parties n, there are correlations pre-
dicted by QT that cannot be explained by any GPT in
which all states are produced by choosing among (n�1)-
partite entangled states [13–15]. Hence, the violation
of n-partite Svetlichny inequalities [16–19] demonstrates
the existence of genuinely n-partite entangled states, and
therefore puts strong constraints on which GPTs are suit-
able to describe nature.

Here we address the problem of whether there is a sen-
sible way to go beyond (ii) and, assuming that QT is
correct, constrain more rigidly the structure of the set of
measurements in any GPT describing nature. Our main
result is the proof that, according to QT, nature does pro-
duce correlations which cannot be generated by shared
randomness (e.g., by means of local hidden variables) and
nonsignaling correlations for which the number of out-
comes is limited to n. In this sense, we show that quan-
tum correlations are not n-chotomic, for any n = 2, 3, . . . .
This implies that, the same way Bell inequality exper-
iments exclude all local realistic theories, QT predicts
that certain experiments can exclude all GPTs in which

⇤ matthias_kleinmann001@ehu.eus
† adan@us.es

FIG. 1. Illustration of a three-outcome measurement which
can be explained as selecting one from three two-outcome
measurements. From the outside, the measurement appara-
tus (represented by the outer box) has three outcomes (rep-
resented by three lights of different colors). The state of a
physical system tested by the apparatus is described by ⌘↵,
where ↵ = 1, 2, 3 is a variable that is hidden to the experi-
menter but can be read off by the measurement apparatus (il-
lustrated by a robot inside the box using a magnifying glass),
without disturbing the state of the system. From the inside,
the measurement apparatus works as follows: based on the
value of ↵ (here: ↵ = 3) a corresponding two-outcome mea-
surement D↵ is selected (as the robot does by operating the
switch selecting the measurement D3).

measurements are locally selected from n-outcome mea-
surements. A possible selection mechanism, in which all
measurements are produced from two-outcome measure-
ments with the help of hidden variables, is illustrated in
Fig. 1.

However, according to our analysis, such experiments
require visibilities beyond what is currently feasible. This
motivates us to consider a particular subclass of GPTs:
those in which measurements are locally selected from
n-outcome quantum measurements. We identify past ex-
periments which, for n = 2 and n = 3 and under some
assumptions, may be taken as experimental falsifications
of this subclass of GPTs. Finally, we take the possibility
seriously that QT does not account for correlations in na-
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2) Using Gadgets to Test Fundamentally Binary Theories - II

Y. Liu, R. R. et al. “Optimal measurement structures for contextuality applications”. arXiv: 2206.13139 
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correlations and the binary consistent correlations. The price to pay for such large violations is the assumption, common to all
contextuality experiments, that the same projector is measured in different contexts.

Consider an orthogonality graph G = (VG,EG) with a set of maximum cliques (contexts) C= {A1, . . . ,Ak} where each clique
Ai is of size w(G) = d. A box B = {P(a|x)} is a set of conditional probability distributions with input x 2 {1, . . . ,k} and
output a 2 {1, . . . ,d}. A box is said to be compatible with an orthogonality graph G if it is a family of (normalized) probability
distributions such that for each c 2 {A1, . . . ,Ak}, there is a corresponding probability distribution in this family.

Definition 5. For a given orthogonality graph G = (VG,EG) with a set of contexts CG = {A1, . . . ,Ak}, a box B = {P(a|x} is said
to be a Consistent Box if for all pairs c,c0 2 CG and for sets of vertices (projectors) Sc,c0 = c\ c0 6= /0, it holds that

8s 2 Sc,c0 P(a = s|x = c) = P(a = s|x = c0). (S1)

The set of all consistent boxes B compatible with an orthogonality graph G is denoted by Bc
G.

Note that the set of non-signalling boxes is a special case of such consistent boxes.
Fundamentally binary correlations are a sub-class of consistent correlations obtained as the convex hull of consistent boxes

for which for each context c in the graph G (maximum clique of size w(G) = d) at most two projectors (vertices in the clique)
are assigned non-zero values that sum to unity and the remaining projectors in the context are assigned value 0, together with any
box obtained by local classical postprocessing of such boxes. Note that in each extremal binary consistent box, the assignment
of values to the projectors is done in a consistent manner, so that the value assigned to any projector is independent of the context
in which it is measured. Formally we define binary consistent correlations as follows.

Definition 6. For a given orthogonality graph G = (VG,EG) with a set of contexts CG = {A1, . . . ,Ak}, a binary consistent
assignment is a function f : VG ! [0,1] such that 8c 2 CG, exists v1,v2 2 c such that f (v1)+ f (v2) = 1 and f (vi) = 0 for all
vi 2 c\{v1,v2}. Define the set of boxes Bbin-cons

G as the convex hull of boxes obtained by binary consistent assignments, i.e.,

Bbin-cons
G := conv

⇢
{P(a|x)} 2 Bc

G | 8c 2 CG, 9s1,s2 2 c

s.t. P(a = s1|x = c)+P(a = s2|x = c) = 1
�
. (S2)

The set of Fundamentally Binary boxes Bbin
G is defined as the set of boxes that can be obtained by local classical postprocessing

from any B 2 Bbin-cons
G .

We now show that not only does the set of Fundamentally Binary boxes not encompass the set of quantum contextual corre-
lations, but that in fact there exist separating inequalities for which large violations by quantum contextual correlations can be
obtained.

Theorem 1. There exist inequalities bounding the set of fundamentally binary consistent correlations that admit close to alge-
braic violations in quantum theory.

Proof. The proof will make use of the idea of ‘extended 01-gadgets’ that we introduced in [8].

Definition 7. An extended 01-gadget in dimension d is a {0,1}-colorable graph Gxgad = (Vxgad ,Exgad) with faithful dimension
d⇤(Gxgad) = w(Gxgad) = d and with two distinguished non-adjacent vertices v1 ⌧ v2 such that in any assignment f : Vxgad !
[0,1], it holds that f (v1)+ f (v2)< 2.

In other words, an extended 01-gadget is similar to a normal 01-gadget except that the defining characteristic holds for arbitrary
assignments in [0,1] rather than only to {0,1} assignments.

In [8], we had proven the following statement that shows a construction of an extended 01-gadget between any two non-
orthogonal vectors in Cd .

Lemma (Theorem 4 in [8]). Let |v1i and |v2i be any two distinct non-orthogonal vectors in Cd with d � 3. Then there exists
an orthogonality graph Gxgad that constitutes an extended 01-gadget in dimension d with the corresponding vertices v1 and v2
being the distinguished vertices.

We now show that for any extended 01-gadget, the sum of the binary consistent (probability) assignments to the two distin-
guished vertices in any box B 2 Bbin-cons

G is at most 3/2. To do so, we recall the notion of the Fractional Stable-Set Polytope
(FSTAB(G)) of a graph G = (VG,Eg) which is defined as

FSTAB(G) =
�
~x 2 R|VG|

+ | xv + xw  1 8(v,w) 2 EG
 
. (S3)
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correlations and the binary consistent correlations. The price to pay for such large violations is the assumption, common to all
contextuality experiments, that the same projector is measured in different contexts.

Consider an orthogonality graph G = (VG,EG) with a set of maximum cliques (contexts) C= {A1, . . . ,Ak} where each clique
Ai is of size w(G) = d. A box B = {P(a|x)} is a set of conditional probability distributions with input x 2 {1, . . . ,k} and
output a 2 {1, . . . ,d}. A box is said to be compatible with an orthogonality graph G if it is a family of (normalized) probability
distributions such that for each c 2 {A1, . . . ,Ak}, there is a corresponding probability distribution in this family.

Definition 5. For a given orthogonality graph G = (VG,EG) with a set of contexts CG = {A1, . . . ,Ak}, a box B = {P(a|x} is said
to be a Consistent Box if for all pairs c,c0 2 CG and for sets of vertices (projectors) Sc,c0 = c\ c0 6= /0, it holds that

8s 2 Sc,c0 P(a = s|x = c) = P(a = s|x = c0). (S1)

The set of all consistent boxes B compatible with an orthogonality graph G is denoted by Bc
G.

Note that the set of non-signalling boxes is a special case of such consistent boxes.
Fundamentally binary correlations are a sub-class of consistent correlations obtained as the convex hull of consistent boxes

for which for each context c in the graph G (maximum clique of size w(G) = d) at most two projectors (vertices in the clique)
are assigned non-zero values that sum to unity and the remaining projectors in the context are assigned value 0, together with any
box obtained by local classical postprocessing of such boxes. Note that in each extremal binary consistent box, the assignment
of values to the projectors is done in a consistent manner, so that the value assigned to any projector is independent of the context
in which it is measured. Formally we define binary consistent correlations as follows.

Definition 6. For a given orthogonality graph G = (VG,EG) with a set of contexts CG = {A1, . . . ,Ak}, a binary consistent
assignment is a function f : VG ! [0,1] such that 8c 2 CG, exists v1,v2 2 c such that f (v1)+ f (v2) = 1 and f (vi) = 0 for all
vi 2 c\{v1,v2}. Define the set of boxes Bbin-cons

G as the convex hull of boxes obtained by binary consistent assignments, i.e.,

Bbin-cons
G := conv

⇢
{P(a|x)} 2 Bc

G | 8c 2 CG, 9s1,s2 2 c

s.t. P(a = s1|x = c)+P(a = s2|x = c) = 1
�
. (S2)

The set of Fundamentally Binary boxes Bbin
G is defined as the set of boxes that can be obtained by local classical postprocessing

from any B 2 Bbin-cons
G .

We now show that not only does the set of Fundamentally Binary boxes not encompass the set of quantum contextual corre-
lations, but that in fact there exist separating inequalities for which large violations by quantum contextual correlations can be
obtained.

Theorem 1. There exist inequalities bounding the set of fundamentally binary consistent correlations that admit close to alge-
braic violations in quantum theory.

Proof. The proof will make use of the idea of ‘extended 01-gadgets’ that we introduced in [8].

Definition 7. An extended 01-gadget in dimension d is a {0,1}-colorable graph Gxgad = (Vxgad ,Exgad) with faithful dimension
d⇤(Gxgad) = w(Gxgad) = d and with two distinguished non-adjacent vertices v1 ⌧ v2 such that in any assignment f : Vxgad !
[0,1], it holds that f (v1)+ f (v2)< 2.

In other words, an extended 01-gadget is similar to a normal 01-gadget except that the defining characteristic holds for arbitrary
assignments in [0,1] rather than only to {0,1} assignments.

In [8], we had proven the following statement that shows a construction of an extended 01-gadget between any two non-
orthogonal vectors in Cd .

Lemma (Theorem 4 in [8]). Let |v1i and |v2i be any two distinct non-orthogonal vectors in Cd with d � 3. Then there exists
an orthogonality graph Gxgad that constitutes an extended 01-gadget in dimension d with the corresponding vertices v1 and v2
being the distinguished vertices.

We now show that for any extended 01-gadget, the sum of the binary consistent (probability) assignments to the two distin-
guished vertices in any box B 2 Bbin-cons

G is at most 3/2. To do so, we recall the notion of the Fractional Stable-Set Polytope
(FSTAB(G)) of a graph G = (VG,Eg) which is defined as

FSTAB(G) =
�
~x 2 R|VG|

+ | xv + xw  1 8(v,w) 2 EG
 
. (S3)

Remark that such separations are not achieved with non-contextuality inequalities from KS proofs 

 since both sets achieve the algebraic value for such inequalities.
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In particular, they showed that such channels arise naturally from proofs of the Kochen-Specker theorem, specifically one may
take G(N) to be the (non-{0,1}-colorable) orthogonality graph of some Kochen-Specker vector set.

For the gadget-type one-shot zero-error capacity enhancement with shared entanglemen, we may also consider a weighted
version of the problem in which we assign weights wi to the input symbols (vertices of the graph) denoting the desirability of
their transmission. While the zero-error code still remains a set of non-confusable inputs, the one-shot zero-error capacity of the
channel is the maximum total weight of such a set. In this case, the one-shot zero-error capacity of the channel is the weighted
independence number of the graph cSR(N) = a (G(N),w). It is in such a weighted version of the zero-error communication
problem that channels corresponding to specific types of gadgets show an enhancement with entanglement used as a resource.

Consider a gadget in which we complete each of the bases (by addition of suitable vectors satisfying the orthogonality rela-
tions) such that a clique cover of the graph is possible in which the vertices of the graph are partitioned into q maximum cliques
(of size w(G) = d) given as Cm = {vm,1, . . . ,vm,d} for m = 1, . . . ,q (i.e., V = [q

m=1Cm). We remark that a similar completion
is required for the graphs obtained from Kochen-Specker proofs in [26], and only such Kochen-Specker proofs (such as the
Peres-Mermin proof [27] with 24 vectors partitioned into six cliques in dimension 4) display the enhancement proven there.

We construct the channel N as having inputs in [q]⇥ [d] with inputs (m, i) and (m0, i0) being confusable if and only if the
corresponding vectors are orthogonal to each other, i.e., if and only if hvm,i|vm0,i0 i = 0. G(N) has an edge between such pairs
of confusable inputs and is exactly the orthogonality graph corresponding to the (base-completed) gadget. By construction, the
vertices of G(N) can be partitioned into q maximum cliques (of size d). We now consider the weighted version of the zero-error
communication problem with Vdist denoting the set of distinguished vertices in the gadget as

wi =

⇢
w⇤ i 2Vdist
1 i 2V \Vdist

(S6)

for a parameter w⇤. The one-shot zero-error capacity when only shared randomness is available is then readily calculated to be
cSR (G(N)) = max{a (G(N))�1+w⇤,a (G(N))�3+2w⇤}. We choose w⇤ > 1 such that 2w⇤ � 3 < w⇤ � 1, i.e., 1 < w⇤ < 2
giving cSR (G(N)) = a (G(N))�1+w⇤ < q+w⇤ �1.

On the other hand, suppose Alice and Bob share a maximally entangled state |ydi = 1p
d Âd

i=1 |i, ii. Each message m that
Alice wishes to send corresponds to a maximum clique in the aforementioned clique partitioning of the graph G(N). To send
m, Alice measures in the bases given by the clique Cm and obtains an outcome k 2 [d] with probability 1/d. Her input to the
channel is then (m,k). The output of the channel at Bob’s end is one of the maximum cliques containing the vertex vm,k (not
necessarily belonging to the clique partitioning of the graph). Bob performs a projective measurement corresponding to his
received maximum clique, and his outcome reveals Alice’s input to the channel. The one-shot zero-error capacity when shared
entanglement is used as a resource is then calculated to be cSE (G(N)) = 1

d [qd � |Vdist|+ |Vdist| ·w⇤] = q+ (w⇤�1)|Vdist|
d . We see

that cSE (G(N))> cSR (G(N)) whenever |Vdist|> d, i.e., whenever we have a gadget-type graph with |Vdist| distinguished vertices
of which only one can be assigned value 1 in any non-contextual {0,1} value assignment.

We note that such a gadget-type graph does not correspond to a Kochen-Specker proof since it is {0,1}-colorable. On the other
hand, one can construct a state-independent non-contextuality inequality for the graph that is violated by all states in dimension
d, namely Âvi2Vdist P(evi) 1, where P(ei) refers to the probability of the event evi corresponding to the distinguished vertex vi.
Such graphs may therefore be said to be of the type discovered by Yu and Oh in [28], namely they exhibit state-independent
contextuality despite not corresponding to a Kochen-Specker proof. And as we have seen, we obtain an enhancement via
entanglement of the one-shot zero-error capacity for all such graphs, a much wider (and easily constructable following the
constructions in [8] and the following sections) class of graphs than was previously known.

S4. OPTIMAL SEMI-DEVICE-INDEPENDENT RANDOMNESS GENERATION USING GADGETS

The Kochen-Specker theorem shows that it is impossible to assign classical (deterministic) values to all quantum observables
in a consistent manner, i.e., independent of the context in which the observables are measured. However, as pointed out in
[36, 37], the fact that not all quantum observables can be assigned definite values does not imply that no observable can be
assigned a definite outcome. And in general, proofs of contextuality do not specify which observables are value-indefinite.
Specifically, for a contextuality test with a set of observables {A1, . . . ,Ak} we want to solve

max Pguess(Ai|E)
s.t. I(PA|X ) = I⇤,

PA,E|X 2 Q,

(S7)

where I(PA|X ) is a non-contextuality inequality evaluated on the observed conditional probability distributions PA|X , I⇤ 2 (Ic, Iq]
with classical and quantum values given by Ic and Iq respectively, and Q denotes the set of conditional distributions (boxes)
achievable by performing measurements (compatible with the test structure on Alice’s side) on quantum states shared between

where I(PA|X) is a non-contextuality inequality evaluated on observed PA|X, I* ∈ (Ic, Iq] and

𝒬 denotes the set of quantum boxes between Alice and adversary Eve, and

Pguess(Ai |E) = ∑
e

P(e)Pe(a = e | i) is the guessing probability of Alice's outcome by Eve.
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The maximum randomness (min-entropy) per run that can be extracted from a test where the 

Optimal test in dimension d : (i) ∃ x* s.t. PA|X(a |x*) = 1/d ∀a ∈ [d] when Iq is observed.

parties perform projective measurements on a system of dimension d is log2 d .

(ii) the set of vectors realizing G is unique in ℂω(G) up to unitaries.

We show that gadgets provide an ideal toolbox for this problem, by showing rigid constructions

with overlap |⟨v1 |v2⟩ | =
1

d
, thus certifying log2 d bits through an inequality βP( |v1⟩) + P( |v2⟩) ≤ β .



4) Non-Monotonicity of Faithful Orthogonal Dimension of a 
Graph

R.R., Y. Liu and P. Horodecki. New J. Phys. 24 033035 (2022).

Given a graph G that has a faithful orthogonal representation in ℝd*R (G), we might expect that

Is the graph property Pd,n of graphs on n vertices which admit faithful ort. rep. in ℝd monotone-decreasing?

dR*(G ∪ {u, v}) > dR*(G) and dR*(G∖{u, v}) ≤ dR*(G) .

Surprisingly we show that the answer to this question is negative: 

There exist graphs with faithful orthogonal representation in ℝ3 for which deleting a particular

 edge {u, v} increases the faithful orthogonal dimension.
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precise notion of what partially free randomness is. The
main idea is that, given a particular causal structure, a
variable is free if it is uncorrelated with all other values
except those which lie in its causal future. Our main
results are valid independently of the exact causal struc-
ture, but it is natural to consider the causal structure
arising from relativistic space time, which has the prop-
erty that Y cannot be caused by X if Y lies outside the
future lightcone of X.

Given a causal structure, we say that X is perfectly free
if it is uniformly distributed conditioned on any variable
that cannot be caused by X. This definition, together
with the relativistic understanding of cause above, cap-
tures the idea that X is free if there is no reference frame
in which it is correlated with variables in its past, which
corresponds to the notion used by Bell [2]. Note that
the definition includes that X is uniformly distributed,
as well as that it is independent of other values. While, in
other contexts, it may be useful to separate these proper-
ties, in the present work such a distinction is not needed.

We also need a notion of partial freedom. We say that
X is "-free if it is "-close in variational distance to being
perfectly free (see Methods). This measure of closeness
is chosen because of its operational significance: if two
distributions have variational distance at most ", then
the probability that we ever notice a di↵erence between
them is at most ". As an example, if a uniformly random
bit X is correlated to a pre-existing bit W such that
PX|W=0(0) =

3
4 and PX|W=1(1) =

3
4 then we say that X

is "-free for " = 1
4 .

The idea of the present work is to exploit a particu-
lar set of non-local correlations found in quantum theory
that can be quantified using the chained Bell inequali-
ties [11, 12]. If we have perfect free randomness to choose
measurements, then the violation of a Bell inequality in-
dicates that the measurement outcomes cannot be com-
pletely pre-determined [1]. Bell’s arguments have re-
cently been extended to show that, again under the as-
sumption that we have perfect free randomness, there is
no way to improve on the predictions quantum theory
makes about measurement outcomes [10]. Here, we show
that quantum correlations can be so strong that, even if
we cannot choose the measurements perfectly freely, the
outputs are nevertheless perfectly free.

To generate these correlations, we consider an exper-
imental setup where local measurements are performed
on a pair of maximally entangled qubits (see Fig. 1). We
first make the (temporary) assumption that the joint dis-
tribution of measurement outcomes conditioned on the
choices, PXY |AB , is the one predicted by quantum theory
for this setup. Crucially, however we do not require com-
pleteness of quantum theory, i.e., that quantum theory
is maximally informative about the measurement out-
comes. Instead, we consider arbitrary additional parame-
ters, W , that may be provided by a higher theory. Within
this setup, our assumptions can be stated as follows.

NS: PXY |ABW=w is no-signalling for all w (i.e.,
PX|ABW=w = PX|AW=w and PY |ABW=w = PY |BW=w).

FIG. 1: Illustration of the bipartite setup. Spacelike sep-
arated measurements are carried out using devices denoted
D. The choices of measurement, A and B, are derived from
bits generated by two sources of weak randomness, denoted
S. These bits are only partially free, i.e., they may be cor-
related (represented by the dashed line) with each other and
with some other variables W (to be interpreted as parame-
ters provided by a possible higher theory), which may also
influence the supply of states being measured. By exploiting
correlations between the outcomes, X and Y , we show that,
in spite of the lack of perfectly free randomness to choose set-
tings, the outcome X is arbitrarily close to being uniform and
uncorrelated with W .

QT: PXY |AB is that predicted by quantum theory.

Our first main result is that, under the above as-
sumptions, there exists a protocol that uses sources of
"-free bits to generate arbitrarily free bits for any " <
(
p
2� 1)2/2 ⇡ 0.086 (see Theorem 1 in the Methods).
It is natural to ask whether the assumption that quan-

tum theory correctly predicts the correlations (assump-
tion QT), is necessary, or whether, instead, the presence
of su�ciently strong correlations can be certified using
"-free bits. By certification, we mean a procedure to test
the correlations such that it is essentially impossible that
the test passes without the generated bits being arbi-
trarily free. This is also relevant in a cryptographic con-
text, where the states and measurements are not trusted,
and could have been chosen by an adversary with partial
knowledge, W , of the measurement settings.
Our second main result is that, under assumption NS

alone, there exists a protocol that uses "-free bits to
certify the generation of arbitrarily free bits for any
" < 0.058 (see Theorem 2 in the Methods). In other
words, there exists a device-independent protocol for free
randomness amplification. Clearly this second scenario,
where the assumption that the correlations are those pre-
dicted by quantum theory is dropped, is more demand-
ing, hence the smaller range of " for which free random-

A short note on the concept of free choice

Roger Colbeck and Renato Renner

Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

(Dated: 18
th

February 2013)

We argue that the concepts of “freedom of choice” and of “causal order” are intrinsically linked:

a choice is considered “free” if it is correlated only to variables in its causal future. We discuss the

implications of this to Bell-type scenarios, where two separate measurements are carried out, neither

of which lies in the causal future of the other, and where one typically assumes that the measurement

settings are chosen freely. Furthermore, we refute a recent criticism made by Ghirardi and Romano

in [arXiv:1301.5040] and [arXiv:1302.1635] that we used an unphysical freedom of choice assumption

in our previous works, [Nat. Commun. 2, 411 (2011)] and [Phys. Rev. Lett. 108, 150402 (2012)].

Consider a simple experiment in which a system is

prepared in state Z, then a measurement A is chosen

and applied to the system, and finally the outcome X is

recorded. How should we express the requirement that

A is a free choice?

We may think of Z, A, andX as random variables with

joint probability distribution PZAX . For A to be free it is

natural to demand that it can be chosen independently

of the state Z, i.e., PA|Z = PA. However, it would be

too restrictive to also require independence from X, i.e.,

PA|ZX = PA, as we expect the outcome of an experiment

to depend on how we measure. The notion of free choice

is hence intrinsically connected to a causal order: we

don’t require that the free choice A is uncorrelated with

X since X lies in the causal future of A.

This can be easily extended to scenarios involving more

than one measurement. As above, a system’s state, mea-

surement choices, and measurement outcomes may be

modeled as random variables, the collection of which we

denote by �. A causal order is then simply a preorder

relation [8] (!) on � (see Fig. 1 for examples). A ! X
should be interpreted as “X is in the causal future of

A” [9]. While the causal order may, in principle, be de-

fined arbitrarily, it is reasonable to demand that it be

compatible with time-ordering, defined as follows. For

two random variables, A and X, the order A ! X is

taken to hold if and only if A occurs at an earlier time

than the generation of X (with respect to all relativistic

frames [10]) [11].

Given a set � with an (arbitrary) causal order, we can

define the concept of a free choice as follows [12]:

A choice A 2 � is free if A is uncorrelated

with the set of allW 2 � that satisfy A 6! W .

Said another way, A is free if the only variables it is

correlated with are those it could have caused. Note that

the condition A 6! W cannot be replaced byW ! A [13].

To demonstrate the use of this definition, we consider

a Bell-type setup, where two particles are generated in

state Z and subsequently measured at two distant loca-

tions. Let A and B be the choices of the measurement

settings at the two locations, and let X and Y be the cor-

responding measurement outcomes. The two measure-

ments should be arranged such that neither lies in the

causal future of the other, as depicted in Fig. 1(b). We

H

GE

F

A

Z

B

YX

(a) (b)

FIG. 1: Two examples of a causal order. In (a), F being free

implies PF |EG = PF , while in (b), if A is free then PA|BY Z =

PA, for example.

note that, physically, this causal order can be obtained

by carrying out the two measurements in two spacelike

separated regions, and demanding that the causal order

be compatible with time-ordering. Now, assuming that

A is free means that PA|BY Z = PA.

In recent work, we have used the assumption of free

choice to show that there cannot exist any extension of

quantum theory with improved predictive power [1], and

that the quantum wave function is in one-to-one corre-

spondence with its elements of reality [2] (see also [3]).

The assumption is also used in experimental work that

provides a fundamental bound on the maximum proba-

bility by which the outcomes of measurements in a Bell-

type setup can be predicted correctly [4]. Unhappy with

these consequences, Ghirardi and Romano have, in a se-

quence of two papers [5] and [6], criticized the use of

the freedom of choice assumption in these works, calling

it “unphysical” [14]. However, the concept of free choice

used in [1–4] is precisely the one explained in this note for

a causal order compatible with time-ordering (as defined

above), and hence has a clear physical motivation.

We conclude by remarking that this notion of free

choice matches what Bell said about “free variables” [7]:

For me this means that the values of such

variables have implications only in their fu-

ture light cones.

Acknowledgements—We thank Nicolas Gisin and

Sandu Popescu for discussions on this subject.
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Hence, using the bound sinx  x for x � 0, it follows
that

D(PXW |ab, PX̄ ⇥ PW |ab) 
⇡2

16

✓
1 + 2"p
2(1� 2")

◆2r

=: �r," ,

which tends to 0 as r tends to infinity provided " < (
p
2�

1)2/2.
Note that D(PXW |ab, PX̄ ⇥ PW |ab) is equal toP
w PW |ab(w)D(PX|abw, PX̄), i.e., the expectation over

W of the amount by which the output bits are free. Using
Markov’s inequality, we have that D(PX|abw, PX̄) < ↵,
except with probability at most �r,"/↵, for any ↵ > 0.
Thus, taking ↵ =

p
�r,", if the initial sources are "-free

for " < (
p
2�1)2/2, then, in the limit of large r, their out-

puts are
p
�r,"-free, except with probability

p
�r,". The

claim then follows because �r," can be made arbitrarily
small by choosing a su�ciently large r.

In the second part of our main result, we show that
assumption QT can be omitted.

Theorem 2—There exists a protocol that takes as input
Si and outputs R such that the following holds under the
assumption NS: if Si are "-free, for any " < 0.058, then R
is certified to be arbitrarily free, except with arbitrarily
small probability.

We give a specific protocol that achieves this task and
analyse it in the Supplementary Information.

For completeness, we state our conjecture:

Conjecture 1—The restriction on " in Theorems 1 and 2
can be replaced by " < 1

2 .

It is likely that these alternative protocols need to go
beyond the bipartite setup to succeed, as discussed in the
Supplementary Information.
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(1937).

[4] Renner, R. Symmetry of large physical systems implies
independence of subsystems. Nature Physics 3, 645–649
(2007).

[5] Kofler, J., Paterek, T. & Brukner, C. Experimenter’s
freedom in Bell’s theorem and quantum cryptography.
Physical Review A 73, 022104 (2006).

[6] Hall, M. J. W. Local deterministic model of singlet
state correlations based on relaxing measurement inde-
pendence. Physical Review Letters 105, 250404 (2010).

[7] Barrett, J. & Gisin, N. How much measurement inde-
pendence is needed in order to demonstrate nonlocality?
e-print arXiv:1008.3612 (2010).

[8] Hall, M. J. W. Relaxed Bell inequalities and Kochen-
Specker theorems. e-print arXiv:1102.4467 (2011).

[9] Lorenzo, A. D. Free will and quantum mechanics. e-print
arXiv:1105.1134 (2011).

[10] Colbeck, R. & Renner, R. No extension of quantum the-
ory can have improved predictive power. Nature Com-
munications 2, 411 (2011).

[11] Pearle, P. M. Hidden-variable example based upon data
rejection. Physical Review D 2, 1418–1425 (1970).

[12] Braunstein, S. L. & Caves, C. M. Wringing out better
Bell inequalities. Annals of Physics 202, 22–56 (1990).

[13] Barrett, J., Hardy, L. & Kent, A. No signalling and
quantum key distribution. Physical Review Letters 95,
010503 (2005).

[14] Santha, M. & Vazirani, U. V. Generating quasi-random
sequences from slightly-random sources. In Proceedings of
the 25th IEEE Symposium on Foundations of Computer
Science (FOCS-84), 434–440 (1984).

[15] Colbeck, R. Quantum and Relativistic Protocols For Se-
cure Multi-Party Computation. Ph.D. thesis, University
of Cambridge (2007). Also available as arXiv:0911.3814.

[16] Pironio, S. et al. Random numbers certified by Bell’s
theorem. Nature 464, 1021–1024 (2010).

[17] Colbeck, R. & Kent, A. Private randomness expansion
with untrusted devices. Journal of Physics A 44, 095305
(2011).

[18] Trevisan, L. Extractors and pseudorandom generators.
Journal of the ACM 48, 860–879 (2001).

[19] De, A., Portmann, C., Vidick, T. & Renner, R. Trevisan’s
extractor in the presence of quantum side information. e-
print arXiv:0912.5514 (2009).

[20] Conway, J. & Kochen, S. The free will theorem. Foun-
dations of Physics 36, 1441–1473 (2006).

[21] Conway, J. H. & Kochen, S. The strong free will theorem.
Notices of the AMS 56, 226–232 (2009).

[22] Scheidl, T. et al. Violation of local realism with free-
dom of choice. Proceedings of the National Acadamy of
Sciences USA 107 (2010).

[23] Dodis, Y., Ong, S. J., Prabhakaran, M. & Sahai, A. On
the (im)possibility of cryptography with imperfect ran-
domness. In Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS-04),
Lecture Notes in Computer Science, 196–205 (2004).

[24] Barrett, J., Kent, A. & Pironio, S. Maximally non-local
and monogamous quantum correlations. Physical Review
Letters 97, 170409 (2006).

[25] Colbeck, R. & Renner, R. Hidden variable models for
quantum theory cannot have any local part. Physical
Review Letters 101, 050403 (2008).

Acknowledgements

We thank Viktor Galliard for useful discussions and
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Bell inequalities: Assumptions

• Assumptions in deriving Bell inequalities: 

• Statistical Completeness/Outcome Independence: All statistical 
correlations arise from ignorance of the underlying variable λ

• True for deterministic models. Motivation: Underlying reality with 
measurement outcomes predetermined. 

• Statistical Locality/Parameter Independence/No-Signaling: Distant 
measurements do not influence a party’s underlying outcome prob. dist.

• Justification comes from Special Relativity when measurements are spacelike 
separated.
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distributions:
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P(a2|x1, x2, Q, l) = P(a2|x2, Q, l). (23)

Measurement Independence/Free-Will: The mea-
surement inputs are uncorrelated with the underlying
variable l

P(l|x1, x2, Q) = P(l|Q). (24)
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Bell Inequalities: Assumptions

• Assumptions in deriving Bell inequalities: 

• Measurement Independence/Free-Will: Measurement inputs 
(x1,x2) are uncorrelated with the underlying variable λ. 

• Reality is single valued, Fair Sampling, No Backward Causation, 
etc.

• Putting it all together, we obtain the Local Hidden Variable (LHV) model: 
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Device-Independent and Semi-Device-Independent Quantum 
Cryptography

Characterised 
Source/ 

Measurements/ 
Dimension/

Systems

Trusted 
Private 

Random 
Number 

Generator

Trusted Clocks + 
Classical Post-

processing

Authenticated 
Classical 
Channel

No Information 
Leakage from 
Measurement 

Unit

Device-Independent No Yes Yes Yes Yes

Semi-Device-
Independent Yes Yes Yes Yes Yes

Device-Independent (based on Non-locality) and Semi-Device-Independent (based on Contextuality and Steering) 

 DI and SDI Quantum Crypto differ in their assumptions: 

Quantum Cryptography overcome the Implementation Attacks of existing Device-Dependent systems. 



Motivation: (Semi)-Device-Independent Quantum 
Cryptography

The difference in assumptions allows for different security features and different requirements in DI and SDI 
protocols catering to different applications:

Xu et al. “Realistic quantum key distribution with realistic devices”. Rev. Mod. Phys. 92, 025002 (2020) 

Pirandola et al. “Advances in Quantum Cryptography”. arXiv:1906.01645 (2019).

Security Size Rate Ease of 
Implementation

Device-Independent
High Security against 
Quantum & Super-

Quantum Adversaries

Spatially separated 
measurement stations 

(100m)
Low rate

Requires Loophole-
free Bell tests with 

high visibility

Semi-Device-Independent
Security against 

Classical & Quantum 
Adversaries

Compact (single lab) 
devices

Rate of up to 
10 kbps

Implementable in 
existing photonic 

setups



DI RANDOMNESS AMPLIFICATION - STATE-OF-ART

Eve Seed Robustness # Devices Source-
Device 

Colbeck, 
Renner NS

Public SV 
!< 0.08 1/N 2 Indep.

Acin group NS SV arb. ! 1/N poly Indep.

Kessler, A-
Friedman Q SV arb. ! Const. 2 Markov-

chain

Chung, Shi, 
Wu Q Hmin Const. poly Arbitrary

Ramanathan 
et al. NS SV arb. ! Const. 2 Indep.

R. Colbeck and R. Renner. Nat. Phys. 8, 450 (2012).  
K.-M. Chung, Y. Shi and X. Wu. arXiv:1402.4797 
R. Gallego et al. Nat. Comm. 4, 2654 (2013). 
M. Kessler and R. A-Friedman. arXiv:1705.04148 (2017).

F. Brandao, R.R., A. Grudka, Horodecki^3, T. Szarek and 
H. Wojewodka. Nat. Comm. 7, 11345 (2016). 
R. R. Et al. arXiv:2108.08819.  
P. Horodecki and R. R. Nature Communications 
 10, 1701 (2019). 



Towards DI-QRNG/QKD with Arbitrary Min-Entropy Seed

Goals: (i) (Further) closure of Measurement Independence in Fundamental Bell tests 

(ii) Achieving DI-QRNG/DI-QKD with arbitrarily weak seeds of randomness.

R. R., Michał Banacki, Ricard Ravell Rodríguez, Paweł Horodecki. 

"Single trusted qubit is necessary and sufficient for quantum realisation of extremal no-signaling correlations". 

npj Quantum Information volume 8, Article number: 119 (2022) .

M. Banacki, P. Mironowicz, R. Ramanathan, P. Horodecki. New J. Phys. 24 083003 (2022).



Summary Summary and Open Questions
• Re-examine the ubiquitous no-signaling constraints from strict relativistic causality.

• Superluminal travel is logically perfectly possible as long as it leads to a consistent 
story that unfolds in time.

• “Non-local yet causal” theory that is different from Bohmian: allows for a notion of 
free-will. 

• Open: “Extended quantum correlations” that obey the new constraints. Principles 
to rule out such correlations and dynamics.

• This work is supported by: John Templeton Foundation and ERC AdG grant QOLAPS.

Thank you!

P. Horodecki and R.R, in preparation. 
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RANDOMNESS IN QUANTUM PHYSICS AND BEYOND RANDOMNESS AMPLIFICATION WITH WEAKER ASSUMPTIONS

Gadgets capture the essential contradiction necessary to prove the Kochen-Specker theorem, i.e,

every Kochen-Specker graph contains a gadget and from every gadget one can construct a KS proof.

Gadgets provide an ideal toolbox for contextuality applications including

(i) constructing classical channels exhibiting entanglement-assisted advantage in zero-error communication, 

(ii) finding optimal tests for contextuality-based randomness generation and 

(iii) identifying separations between quantum theory and binary generalised probabilistic theories.

https://qici.weebly.com 
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No-Signalling

• One can ‘deduce’ the no-signalling constraints from the assumptions of measurement 
independence and parameter independence

P. Horodecki and R. R. Nat. Comm. 10, 1701 (2019)



Motivation for parameter independence: 
Causality

• As usual in Bell non-locality, let us work within the classical spacetime of 
Special Relativity. 

• Causality: No causal loops. i.e. No faster-than-light transmission of information 
from one spacetime location to another space-like separated location. 

• Causality violated if an effect at spacetime location A precedes its cause at spacetime 
location B (tA < tB) in some inertial reference frame. 

Non-Locality setup
• Bell scenario B(n,m,k): n parties, m settings and k outcomes.

• Box: Set of distributions P(a|x) = P(a1,...,an|x1,...,xn). Non-negativity: P(a|x) ≥ 0.                                               
Normalization: ∑a P(a|x) = 1. No-Signaling:

• Boxes obeying these form the No-Signaling Polytope NS(n,m,k).                           

I. Pitowsky, Quantum Probability - Quantum Logic, Springer-Verlag Vol. 321 (1989).
A. Peres, Foundations of Physics 29(4) 589 (1999).

2

noise, such a box exhibits non-local correlations with the
eavesdropper’s system. We conclude with some open
questions.

Extremal no-signaling correlations. Consider the n-party
Bell scenario labeled by (Ai,Xi) with i 2 [n] (with
[n] := {1, . . . , n}), where the sets Xi of size mi denote the
respective inputs xi of the n parties, while the sets Ai of
size ki denote their respective outputs ai. The number of
inputs mi and outputs ki for each party is arbitrary but
for convenience of notation we will consider mi = m
and ki = k, 8i 2 [n], whenever such a simplification
does not affect the generality of the argument. A box
P describes a set of conditional probability distributions
P (a|x) with a = {a1, . . . , an} 2 A, x = {x1, . . . , xn} 2 X
where A = A1 ⇥ . . .An and similarly X = X1 ⇥ . . .Xn;
the Bell scenario corresponding to this box is denoted
as B(n,m, k). The box P is a valid no-signaling box for
the Bell scenario if it satisfies: (i) Positivity: P (a|x) �
0 8a, x; (ii) Normalization:

P
a P (a|x) = 1 8x; and (iii)

No-signaling:
X

ai

P (a|x(i)) =
X

ai

P (a|x’(i)) 8a, x(i), x’(i), i, (1)

where x(i) = {x1, . . . , xi, . . . , xn} and x’(i) =
{x1, . . . , xi�1, x0

i
, xi+1, . . . , xn}. The set of all boxes satis-

fying the above conditions forms the no-signaling con-
vex polytope

NS(n,m, k) = {P 2 R(mk)n : A · |Pi  |bi}

of dimension D =
Q

n

i=1 [mi(ki � 1) + 1] � 1. Here the
constraints (i) - (iii) are written in terms of the matrix A
and the vector |bi, and the box P is written as a vector
of length (mk)n. Boxes that satisfy in addition the in-
tegrality constraint: (iv) Integrality: P (a|x) 2 {0, 1} are
said to be classical (deterministic) boxes Pd. The con-
vex hull of these deterministic boxes gives rise to the
classical polytope C(n,m, k) ✓ NS(n,m, k). The set of
quantum correlations Q(n,m, k) is defined as follows:
P 2 Q(n,m, k) if there exist a state | i, sets of measure-
ment operators {Exi,ai

i
} for each party such that for all

inputs and outputs

P (a|x) = h |⌦n

i=1 E
xi,ai
i

| i (2)

with the measurement operators satisfying the require-
ments of hermiticity (Exi,ai

i

†
= Exi,ai

i
, 8xi, ai), orthog-

onality (Exi,ai
i

E
xi,a

0
i

i
= �ai,a

0
i
Exi,ai

i
, 8xi) and complete-

ness (
P

ai
Exi,ai

i
= 11, 8xi). This set is convex but in

general is not a polytope, and C(n,m, k) ✓ Q(n,m, k) ✓
NS(n,m, k).

We are interested in the vertices of the no-signaling
polytope, a box P being a vertex if it cannot be ex-
pressed as a non-trivial convex combination of the boxes
in NS(n,m, k). The vertex of a polytope is a point such
that the normal cone to the point has full dimension, and

every vertex satisfies in a unique way a certain number
of the inequality constraints in A · |Pi  |bi with equal-
ity. Formally the vertex is characterized as follows [12]:

Fact 1. A box P is a vertex of the no-signaling polytope
NS(n,m, k) if any only if rank(Ã) = (mk)n where Ã de-
notes the sub-matrix of A consisting of those row vectors Ai

for which Ai · |Pi = |bii.

For two distinct vertices P and P 0, the correspond-
ing sub-matrices are not equal

⇣
Ã(P) 6= Ã(P 0)

⌘
. A non-

local vertex is one that does not belong to C(n,m, k).
We use recently discovered connections between con-
textuality and non-local game scenarios to graph theory
[6, 10, 11] to show that such a vertex also does not belong
to the quantum set Q(n,m, k).

Theorem 1. For some (arbitrary) (n,m, k), let Pnl be a
vertex of the no-signaling polytope NS(n,m, k) such that
Pnl /2 C(n,m, k). Then Pnl /2 Q(n,m, k).

Non-local games with no quantum winning strategy. An
immediate application of Theorem 1 is that if one is
able to identify a non-local game that has a single
unique winning no-signaling strategy (where by a win-
ning strategy we mean one that achieves maximal value
1), then such a strategy (being a vertex) cannot be real-
ized in quantum theory. So that denoting by !q(g) the
quantum value of the game (!c(g) denotes the classical
value), we have !q(g) 6= 1. Here, we consider a class
of Bell inequalities known as total unique games (gU ) for
multiple players, which are a family of games of great
interest in the field of hardness of approximation (in de-
termining the algorithmic complexity of finding close
to optimal solutions for optimization problems) as seen
in the famous unique games conjecture [13]. A unique
game is defined by the following winning condition: for
each x and each set of outcomes of any chosen n � 1

parties, a(j)
n�1 = a \ aj 8j, the remaining party is re-

quired to output a single unique aj specified by a func-
tion aj = �(j)

x

⇣
a(j)
n�1

⌘
with �(j)

x

⇣
a(j)
n�1

⌘
6= �(j)

x

⇣
a’(j)

n�1

⌘

for
⇣

a(j)
n�1 6= a’(j)

n�1)
⌘

; the term total refers to the fact that
such a winning constraint is imposed for every set of in-
puts x. We now introduce the notion of a no-signaling
graph associated with any non-local game.

Definition. For any non-local game g, we define the no-
signaling graph GNS(g) = (V,E) associated with the game
to have set of vertices v 2 V, each of which is labeled by a set
of inputs and outputs that wins the game, v =

�
a(v), x(v)�.

Two vertices v,v’ 2 V are connected be an edge if 9S ✓
[n] with |S| = n � 1 such that (a(v)

i
= a(v’)

i
^ x(v)

i
=

x(v’)
i

) 8i 2 S.

Lemma 2. A total multi-player unique game gU is won by a
single unique non signaling box if and only if the no-signaling

x1 x2 x3

a1 a2 a3

ai ∈ [k]

xi ∈ [m]

Correlation is not causation!

blog.lib.umn.edu



No-Signaling Polytope

• Box: Set of cond. prob. dist. P(a|x) = P(a1,...,an|x1,...,xn). 

• Non-negativity: P(a|x) ≥ 0.  Normalization: ∑a P(a|x) = 1. 

• Multi-party No-Signaling (Directly generalize from the two-party case):

• LHV polytope ⊂ Quantum Correlations ⊂ No-Signaling Polytope

LHV polytope

NS polytope

Quantum set

10

P(a1, a2|x1, x2, Q, l) = P(a1|x1, x2, Ql)P(a2|x1, x2, Q, l) (22)

Parameter Independence/No-Signaling/Statistical
Locality: Spacelike separated measurements do not

influence each other’s underlying outcome probability
distributions:

P(a1|x1, x2, Q, l) = P(a1|x1, Q, l),
P(a2|x1, x2, Q, l) = P(a2|x2, Q, l). (23)

Measurement Independence/Free-Will: The mea-
surement inputs are uncorrelated with the underlying
variable l

P(l|x1, x2, Q) = P(l|Q). (24)

Putting it all together:

P(a1, a2|x1, x2, Q) =
Z

dlP(l|Q)P(a1|x1, l, Q)P(a2|x2, l, Q).
(25)

The usual no-signaling conditions read:

Â
aj

P(a1, . . . , aj, . . . , an|x1, . . . , xj, . . . , xn) = Â
aj

P(a1, . . . , aj, . . . , an|x1, . . . , x0j, . . . , xn) 8j, xj, x0j, a \ aj, x \ xj. (26)
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Two-party No-Signaling from Relativistic 
Causality

• Formalism: Spacetime Random 
Variable (strv = r.v. generated at 
spacetime location (t,r)). 

• Alice inputs x, obtains output a 
(instantaneously) at spacetime 
location A.

• Bob inputs y, obtains output b 
(instantaneously) at spacetime 
location B. 

• FreeWill + Causality => 
NoSignaling.

4

xA xB 

tA, tB 

x 

t t’ 

x’ t’B  

t’A  

A B 

t’’ 

x’’ 

t’’A  

t’’B  

x’’A 

x’’B 
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Figure 1: The derivation of the two-party no-signaling princi-
ple from relativistic causality constraints. In an inertial refer-
ence frame (x, t) the two (spatially separated) events A and B
appear to occur simultaneously, i.e., tA = tB. In the inertial
reference frame (x0, t0), event B occurs before A, i.e., t0B < t0A.
In another inertial reference frame (x00, t00) on the other hand,
event A occurs before B, i.e., t00A < t00B. To maintain causality,
we must have that the output distribution P(a|x) at A must be
independent of the input y at B, and similarly P(b|y) must be
independent of the input x at A.

of the measurement events in the j-th run of the exper-
iment be labeled (t(j)

A , r(j)
A ), (t(j)

B , r(j)
B ) and (t(j)

C , r(j)
C ) re-

spectively.
Now, what are the constraints that ensure that no

causal loops occur, i.e., no superluminal signaling from
a sender to a receiver takes place? To derive these con-
straints, we have to ensure that in every inertial refer-
ence frame, an effect does not precede its cause provided
the cause and effect are definite space-time events. Equiva-
lently, only a random variable W that is generated in the
future light cone of a party’s measurement event (for ex-
ample, Bob’s measurement at (t(j)

B , r(j)
B )) can guess that

party’s input (y 2 Y). As we shall see, the analogous
conditions to the free-will condition (3) from the two-
party scenario can now be formulated depending on the
space-time locations of the three parties’ measurement
events. In particular, we will identify a region of space-
time where no causal loops occur, even when Bob by his
choice of input is able to influence the correlations be-
tween Alice and Charlie’s outputs.

Derivation of the three-party relativistic causality
constraints.-

Lemma 2. Relativistic causality of the events A, B and E is
satisfied if the following two conditions hold.

• Eve by her choice of input at E does not directly affect
the individual statistics of the outcomes at points A and
B separately.

• Eve by her choice of input at E is not able to signal
to any space-time point S wth XS := (rS, tS) via her
modification of the joint distribution of the outcomes at
A and B.

Let us now move to a three-party Bell scenario and
study in an analogous manner to the preceding dis-
cussion the limitations imposed by relativistic causality
on the three-party box. It was first noticed by Grun-
haus, Popescu and Rohrlich [8] that the imposition of
strict relativistic causality allows for “jamming" effects,
that the usual no-signaling constraints prohibit. Con-
sider the three-party Bell scenario with three space-like
parties Alice (A), Bob (B) and Eve (E) sharing a box
{P(a, b, e|u, v, w)} where u, v, w denote the three par-
ties’ respective inputs while a, b, e denote their respec-
tive outputs. To elaborate in the j-th run of the Bell ex-
periment, Alice chooses her input u, performs a mea-
surement at X

(j)
A := (r(j)

A , t(j)
A ) and obtains output a. Sim-

ilarly, Bob chooses v and obtains output b at X
(j)
B :=

(r(j)
B , t(j)

B ) while Eve chooses w and obtains output c at
X
(j)
E := (r(j)

E , t(j)
E ).

As in the two-party scenario considered above, none
of the parties can influence, by their choice of input, an-
other spacelike separated party’s output. This does not
preclude the situation where one of the parties’ outputs
depends on the joint inputs of the two other parties,
while still respecting the above no superluminal signal-
ing restriction. Nevertheless, let us assume for the mo-
ment that the following conditions are imposed.

Â
b,e

P(a, b, e|u, v, w) = Â
b0 ,e0

P(a, b0, e0|u, v0, w0)

=: P(a|u) 8a, u, v, v0, w, w0

Â
a,e

P(a, b, e|u, v, w) = Â
a0 ,e0

P(a0, b, e0|u0, v, w0)

=: P(b|v) 8b, v, u, u0, w, w0. (5)

Under the restriction of Eq.(5, each party individually
obtains a well-defined marginal distribution for each of
their inputs.

Given that Alice and Bob are spatially separated from
each other as well as from Eve, it is no longer imposed
by relativistic causality that their joint distribution be in-
dependent of Eve’s input. In other words, we may have

Â
e

P(a, b, e|u, v, w) 6= Â
e0

P(a, b, e0|u, v, w0)

() P(a, b|u, v, w) 6= P(a, b|u, v, w0) 8a, b, u, v, w, w0.
(6)

Notice that there is no discrepancy between the con-
ditions in Eqs.(5) and (6). Moreover, the constraint in
Eq.(6) is non-verifiable since parties A and B are spa-
tially separated, and do not detect the non-local effect
themselves.

R. Colbeck and R. Renner, Free randomness can be amplified, Nature Physics 8, 450-454 (2012).

P. Horodecki and R. R., in preparation.
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P(a1, a2|x1, x2, Q, l) = P(a1|x1, x2, Ql)P(a2|x1, x2, Q, l) (22)

Parameter Independence/No-Signaling/Statistical
Locality: Spacelike separated measurements do not

influence each other’s underlying outcome probability
distributions:

P(a1|x1, x2, Q, l) = P(a1|x1, Q, l),
P(a2|x1, x2, Q, l) = P(a2|x2, Q, l). (23)

Measurement Independence/Free-Will: The mea-
surement inputs are uncorrelated with the underlying
variable l

P(l|x1, x2, Q) = P(l|Q). (24)
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Multi-party No-Signaling from Relativistic 
Causality

• Spacetime rv’s: Alice’s measurement 
input-output rv’s (x,a) at spacetime 
location A, Bob’s (y,b) at B, Charlie’s 
(z,c) at C. 

• No-Signaling: 

• AB output marginal independent of C’s input. 
AC output marginal independent of B’s input. 
BC output marginal independent of A’s input.

• A, B, C individual marginals well-defined. 

J. Grunhaus, S. Popescu and D. Rohrlich, Phys. Rev. A 53, 3781 (1996).
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P(a1, a2|x1, x2, Q, l) = P(a1|x1, x2, Ql)P(a2|x1, x2, Q, l) (22)

Parameter Independence/No-Signaling/Statistical
Locality: Spacelike separated measurements do not

influence each other’s underlying outcome probability
distributions:

P(a1|x1, x2, Q, l) = P(a1|x1, Q, l),
P(a2|x1, x2, Q, l) = P(a2|x2, Q, l). (23)

Measurement Independence/Free-Will: The mea-
surement inputs are uncorrelated with the underlying
variable l

P(l|x1, x2, Q) = P(l|Q). (24)

Putting it all together:

P(a1, a2|x1, x2, Q) =
Z

dlP(l|Q)P(a1|x1, l, Q)P(a2|x2, l, Q).
(25)

The usual no-signaling conditions read:

Â
aj

P(a1, . . . , aj, . . . , an|x1, . . . , xj, . . . , xn) = Â
aj

P(a1, . . . , aj, . . . , an|x1, . . . , x0j, . . . , xn) 8j, xj, x0j, a \ aj, x \ xj. (26)

In the three-party scenario:
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Notice that intersection of future light cones of A and C is 
contained within the future light cone of B

?
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Multi-party No-Signaling from Relativistic 
Causality

• Observation: Alice and Bob check correlations at 
spacetime location AB (the correlations give rise to 
the spacetime variable AB at this location). Similarly, 
Alice-Charlie at AC as well as Bob-Charlie at BC.

• Argument: Suppose a (superluminal) influence 
propagates from B to AC, changing the correlations 
AC while keeping marginals A and C fixed. 

• Proof: shows that such a influence does not lead to 
any causal loops. 

J. Grunhaus, S. Popescu and D. Rohrlich, Phys. Rev. A 53, 3781 (1996).
S. Popescu and D. Rohrlich, arXiv:9605004 (1996).
P. Horodecki and R. R., in preparation.
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• Justification: Spacetime random 
variable AC representing 
correlations is only registered at a 
point located within the future light 
cone of B. It means that effectively 
information has been sent from B 
to its future which ensures no 
causal loops. 

P. Horodecki and R. R. Nat. Comm. 10, 1701 (2019)



Modified Multi-party No-Signaling from 
Relativistic Causality

• Modified 3-party constraints that prevent causality violations (when Bob is 
in appropriate space-time region):

• In general, in the n-party scenario (for a 1-D spatial arrangement of parties): 
Let Sm,kn denote a contiguous subset of [n] with initial element m and size k.
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for all a’, a” with a’Sn
m,k

= a”Sn
m,k

= aSn
m,k

and for all
x’, x” with x’Sn

m,k
= x”Sn

m,k
= xSn

m,k
. In other words, the

marginal distribution of the outputs for a contiguous
subset of parties’ inputs is independent of the comple-
mentary set of parties’ inputs. On the other hand, for a
non-contiguous subsets of parties, the joint probability
distribution of their outputs can depend on the inputs
of the complementary set, i.e., the parties in between can
change the marginal distributions by their choice of in-
puts while still respecting relativistic causality.

The boxes P are thus only required to obey the re-
stricted set of constraints imposed in Eq.(12) as opposed
to the usual no-signaling constraints (which posit that
the marginal distribution of every subset of parties’ out-
puts is independent of the input of the complemen-
tary set of parties). The boxes P under the reduced
set of constraints constitute a set of enhanced attack
strategies for an eavesdropper assumed to only obey the
causality constraints imposed by relativity in a device-
independent cryptographic protocol. Note that the set
of boxes still forms a polytope in a larger dimensional
space (the number of relativistic causality constraints
is smaller than the number of usual no-signaling con-
straints). Furthermore, note that not all the constraints
in Eq.(12) are independent.

We illustrate this attack strategy with a fairly generic
example, namely we will show that this enhanced set of
attack strategies allows the adversary to ensure that the
parties cannot extract any randomness from the outputs
(for inputs appearing in the inequality), from the vio-
lation of the quintessential multi-party Bell inequalities,
namely the GHZ-Mermin inequalities [31].

The Mermin inequality is set in the Bell scenario when
each of n parties (for n odd, n � 3) measures one of
two inputs xi 2 {0, 1} and obtains one of two outputs
ai 2 {0, 1}. The inequality is given as the following set
of constraints on the n-party correlators hx1 . . . xni for
Âi xi = n � 2k, with 0  k  bn/2c, k 2 Z

hx1 . . . xni = (�1)k, for Â
i

xi = n � 2k. (13)

Here, the n-party correlation function hx1 . . . xni is de-
fined as

hx1 . . . xni =

P(�n
i=1ai = 0|x1, . . . , xn)� P(�n

i=1ai = 1|x1, . . . , xn).
(14)

When Âi xi is even, no constraints are imposed on the
corresponding correlator.

Measurements by each of the n parties of the Pauli sy
and sx operators (for xi = 0, 1 respectively) on the n-
qubit GHZ state

|GHZni =
1
p

2
(|0i1 . . . |0in + |1i1 . . . |1in) (15)

result in a violation of the inequality up to its maximum
value, i.e., satisfies all the constraints in Eq.(13).

The inputs x for which constraints are imposed on the
correlator are said to appear in the inequality, this set of
inputs is denoted by XMerm := {x|Âi xi = n � 2k, k 2

Z}. In [30], it was shown that satisfying Eq.(13) implies,
in the asymptotic setting of an infinite number of parties
n ! •, that a particular function of the output bits is
fully random. In particular, the following function of
the outputs gx(a) was considered for any input x that
appears in the Mermin inequality.

g(a) =
⇢

1 Âi ai = (4k + 2), k 2 Z�0 ^ x 2 XMerm
0 else

(16)
As the number of parties n ! • it was shown that
P(g(a) = 1|x) !

1
2 , implying that for all boxes sat-

isfying the usual multi-party no-signaling conditions
and the Mermin constraints Eq.(13), the bit defined by
the function g(·) possesses full intrinsic randomness
and defines a process where full randomness amplifi-
cation takes place. We show in the following proposi-
tion that this conclusion no longer holds when in place
of the usual no-signaling conditions, only the relativis-
tic causality conditions are taken into account. Further-
more, we show that when considering the inputs ap-
pearing in the Mermin inequality, no function of the out-
put bits possesses any randomness for all odd n � 3.
We leave as an open question whether there exists any
multi-party Bell inequality with the property of maxi-
mum violation such that all the boxes obeying the new
relativistic causality conditions admit a hashing func-
tion that defines a (partially) random bit.

In the next proposition, we consider the phenomenon
of monogamy of non-local correlations under the new
relativistically causal constraints. Specifically, we con-
sider the three-party Bell scenario where the parties Al-
ice, Bob and Charlie perform two binary outcome mea-
surements x, y, z 2 {0, 1} and obtain outcomes a, b, c 2

{0, 1} respectively. We label the corresponding binary
observables of each party by Ax, By and Cz respectively.
We consider the well-known CHSH inequality [? ] be-
tween Alice-Bob and Bob-Charlie. The CHSH expres-
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Compatibility with Free Will

• Free-Will conditions are intimately connected with No-Signaling constraints:

R. Colbeck and R. Renner, Free randomness can be amplified, Nature Physics 8, 450-454 (2012).

R. Colbeck and R. Renner, A short note on the concept of free choice, arXiv: 1302.4446 (2013).
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General laws of nature are co-variant with respect to Lorentz transformations. According to the theory of relativity,
action at a distance with the velocity of light always takes the place of instantaneous action at a distance or of action
at a distance with an infinite velocity of transmission.

Causality and Bayesian Networks.- A Bayesian network, Bayes network, belief network, Bayes(ian) model or proba-
bilistic directed acyclic graphical model is a probabilistic graphical model (a type of statistical model) that represents
a set of random variables and their conditional dependencies via a directed acyclic graph (DAG).

We now consider the implications of the spacetime structure on the causal relationship, namely we consider the
study of Bayesian networks of spacetime random variables (SRVs). In the Directed Acyclic Graph (DAG) that rep-
resents a causal structure in the network, an additional ingredient of a new type of edge representing a causal link
between the spacetime variable Y and the effects A, C would be added. This edge represents the causal link that Y
does not influence the marginal distributions of A and C themselves but changes the joint distribution of A, C. The
additional ingredient when considering spacetime variables is that the random variable W representing the correla-
tions between A and C is only created in the future light cone of Y provided that the intersection of the future light
cones of A and C is contained within the future light cone of Y. The causal network corresponding to a particular
spacetime arrangement of measurement events would incorporate the additional edges as possible influences that
do not lead to superluminal signaling.

Can the multi-party quantum correlations be explained by the causal structures given by the new spacetime
Relativity and superluminal velocities.- Our hypothetical influences propagate at speeds u > c in some chosen inertial

reference frame. One might wonder how compatible this is with the traditional assertion that relativity does not
permit superluminal influences. Firstly, as we have argued, the superluminal influence does not lead to superluminal
transmission of information, which is what relativity theory actually prohibits, since this can lead to causal loops and
grandfather paradoxes. As a side note, we remark that the field equations of the General theory of relativity allow
for solutions in the form of closed timelike curves, and there has been much debate over these, with a Chronology
Protection Conjecture [] and a Self-Consistency principle [] proposed to prevent time-travel paradoxes.

Discussion.- Novel protocols using quantum correlations to circumvent the attacks on the randomness protocols
discussed here, are pursued in [43].

P(a1, a2|x1, x2, Q) =
Z

dlP(a1, a2|x1, x2, Q, l)P(l|x1, x2, Q) (20)

In quantum theory,

Pq(a1, a2|x1, x2, Q, l) = tr
⇥
lEx1

a1 ⌦ Ex2
a2

⇤
. (21)

P(a, c|x, y, z) =
P(a, c|x, z)P(y|a, c, x, z)

P(y|x, z)
= P(a, c|x, z) Free-Will: P(y|a, c, x, z) = P(y|x, z) = P(y) (22)

Statistical completeness/Outcome Independence: All statistical correlations arise from ignorance of the underly-
ing variable l

P(a1, a2|x1, x2, Q, l) = P(a1|x1, x2, Ql)P(a2|x1, x2, Q, l) (23)

Parameter Independence/No-Signaling/Statistical Locality: Spacelike separated measurements do not influence
each other’s underlying outcome probability distributions:

P(a1|x1, x2, Q, l) = P(a1|x1, Q, l),
P(a2|x1, x2, Q, l) = P(a2|x2, Q, l). (24)

Measurement Independence/Free-Will: The measurement inputs are uncorrelated with the underlying variable l

P(l|x1, x2, Q) = P(l|Q). (25)

Putting it all together:

P(a1, a2|x1, x2, Q) =
Z

dlP(l|Q)P(a1|x1, l, Q)P(a2|x2, l, Q). (26)
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Compatibility with Free Will

• Colbeck-Renner (formalising Bell): A spacetime random variable is free if the 
only variables it is correlated with are those it could have caused, i.e., those in its 
future light cone. 

• If we modify NS constraints, should also modify free-will constraints. 
Transformation to another inertial frame: Non-local effects can precede 
causes.

6

future of A. For this definition to make sense mathemat-
ically, we need to establish a notion of future. We do this
by introducing a causal order, i.e., a (partial) ordering of
events. We stress, however, that the causal order is only
used to define free choice and plays no further part in the
argument. 9

A. Causal order

Let � be the set of all parameters required for the de-
scription of an experiment within a given theory. In par-
ticular, � may contain variables that specify the (joint)
state in which the relevant physical systems have been
prepared (in the following usually denoted by  for quan-
tum theory and by Z for more general theories), the
choice of measurements (denoted A and B), as well as
the measurement outcomes (denoted X and Y ). For any
such set of variables �, we can define a causal order  
as follows.

Definition 3. A causal order  for � is a preorder re-
lation10 on �.

If A X, we say that X is in the (causal) future of A,
and if this doesn’t hold, we write A 6 X. These relations
can be conveniently specified by a diagram (see Figure 3
for an example). Note that the causal order should not
be interpreted as specifying actual causal dependencies11,
but instead indicates that such causal dependencies are
not precluded (by the theory).

A typical—but for the following considerations not
necessary—requirement on a causal order is that it be
compatible with relativistic space time. Consider, for ex-
ample, an experiment where a parameter A is chosen at
a given space time point rA and where a measurement
outcome X is observed at another space time point rX .
One would then naturally demand that A  X if and
only if rX lies in the future light cone of rA. This cap-
tures the idea that the choice A is made at an earlier time
than the observation of X, with respect to any reference
frame.

B. Free random variables

To define the notion of a “free choice”, we consider a
set � of RVs equipped with a causal order. (As above,
� should be thought of as the set of all parameters rele-
vant for the description of an experiment within a given
theory.)

9 In particular, we do not assume local causality within the speci-
fied causal order.

10 That is,  is a binary relation on the set � that is reflexive (i.e.,
A A) and transitive (i.e., Z  A and A X imply Z  X).

11 I.e., A  X is not meant to imply that there is necessarily a
physical process such that changing A imposes a change of X.

E J
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G

FIG. 3: Free choice and causal order. An arbitrary causal
order is depicted for random variables E, F , G, H and J . The
arrows correspond to the relation  . For example, G lies in the
future of F , i.e., F  G, but not of J , i.e., J 6 G. Because
of the transitivity property, it follows that F  E, for example.
In this setting we would say that, for instance, G is free if it is
uncorrelated with F and J , i.e., PGFJ = PG ⇥ PFJ .

Definition 4. We say that A 2 � is free if

PA�A = PA ⇥ P�A

holds, where �A is the set of all RVs X 2 � such that
A 6 X.12

Obviously, whether a variable from the set � is consid-
ered free depends on the causal order that we impose. If
the causal order is taken to be the one induced by rela-
tivistic space time (see the description above), then this
definition coincides with the notion of a free variable as
used by Bell [10].13 We remark that both standard quan-
tum theory and classical theory in relativistic space time
allow for free choices within such a causal order.

V. CONSTRAINTS ON THEORIES
COMPATIBLE WITH QUANTUM THEORY

We discuss here the implication of some well-known
results to our main question, whether an extension of
quantum theory can have improved predictive power.
Although they were not asking the same question, the
works of Bell [4] and Leggett [11] can be adapted to give
constraints on such higher theories, and hence give spe-
cial cases of the general theorem presented in Section VI,
which excludes all alternative theories whose predictions
are more informative than quantum theory.

A. Bipartite setup

The statements described below refer to a bipartite
setup which involves two separate measurements, speci-

12 By definition, the set �A also excludes A.
13 In [10], Bell discusses the assumption that the settings of instru-

ments are free variables, which he characterizes as follows: “For
me this means that the values of such variables have implications
only in their future light cones.”
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Definition 4. Let AXi9 = {Aj} denote a set of outputs Aj such that the correlation SRV C{Aj}
between all the Aj is generated

outside the future light cone of Xi. Then Xi is said to be free if the following condition is satisfied:

P(Xi|X \ Xi, AXi9, SP1...Pn) = P(Xi). (25)

The idea behind the modification in Eq.(25) as opposed to Eq.(24) is as follows. The random variable C{Aj}
cor-

responding to the correlations between spacetime random variables in {Aj} is itself a spacetime random variable only at the
intersection of the future light cones of Aj and Ak. Accordingly, one can have a non-local effect precede a cause in the
sense that one of the outputs Aj or Ak may occur. Notice that Eq.(25) rather than (24) in some sense precisely captures
the notion of freewill defined by Colbeck-Renner and Bell, namely the input random variable Xi is only correlated
with the spacetime random variables in its future light cone.

IX. PROPERTIES OF CAUSAL VS NO-SIGNALING THEORIES.

The general properties of theories that obey the no-signaling constraints (6) were studied in [43]. A number of
properties that were considered to be quintessentially quantum such as monogamy of correlations, no-cloning, ran-
domness, secrecy etc. were found to be present in such theories. As we have seen, in general the set of relativistically
causal correlations is a larger set than the set of no-signaling correlations. Paradoxically, just as the relaxation to the
relativistic causality conditions lead to a larger set of attack strategies for an eavesdropper (and a consequent loss in
extractable randomness), we find that the paradigmatic property of monogamy of non-local correlations is signifi-
cantly weakened under the relativistic causality constraints and the feature of monogamy of correlations violating
the CHSH inequality even disappears.

Specifically, we consider the three-party Bell scenario where the parties Alice, Bob and Charlie perform two binary
outcome measurements x, y, z 2 {0, 1} and obtain outcomes a, b, c 2 {0, 1} respectively. We label the corresponding
binary observables of each party by Ax, By and Cz respectively. We consider the well-known CHSH inequality [? ]
between Alice-Bob and Bob-Charlie. The CHSH expression hCHSHiAB reads as

hCHSHiAB := hA0B0i+ hA0B1i+ hA1B0i � hA1B1i. (26)

In a local hidden variable theory, the value hCHSHiAB is bounded by 2. The well-known Popescu-Rohrlich (PR) box
is a two-party no-signaling box that achieves a value of 4 for the expression. In the three-party scenario, under the
usual no-signaling constraints, the non-local correlations exhibit a phenomenon of monogamy that is captured by
the relation [25]

hCHSHiAB + hCHSHiBC  4. (27)

In other words, when Alice-Bob observe maximum violation of the CHSH inequality, no correlations can occur
between the observables of Bob and Charlie. This phenomenon of monogamy of correlations has found application
as the underlying feature that is responsible for the security of many device-independent cryptographic protocols.
By observing a sufficiently high violation of the Bell inequality, Alice and Bob are able to ensure that their systems
are not highly correlated with any system held by a third party such as an eavesdropper.

We find however that under the relativistically causal constraints that occur when the three parties are arranged
in 1-dimension, the phenomenon of monogamy is considerably weakened in general and in the above mentioned
Bell scenario, it completely disappears. This is captured by the following proposition.

Proposition 5. Consider a three-party Bell scenario, with Alice, Bob and Charlie each performing two measurements x, y, z 2

{0, 1} of two outcomes a, b, c 2 {0, 1} respectively. Suppose that in some inertial reference frame, the three space-like separated
parties are arranged in 1-D, with rA < rB < rC and perform their measurements simultaneously, i.e., tA = tB = tC. Then,
there exists a three-party relativistically causal box P(a, b, c|x, y, z) such that

hCHSHiAB + hCHSHiBC = 8. (28)

As a simple illustrative example of the above, we also show this effect for the three-party Mermin expression of
the form a � b � c = x · y · z. A box P(a, b, c|x, y, z) that outputs deterministically b = 0 for both inputs y = 0, 1 and
has marginals of the form

P(a, c|x, y, z) =

(
Pdet(a, c|x, z) y = 0
PPR(a, c|x, z) y = 1,

P. Horodecki and R.R, in preparation. P. Horodecki and R. R. Nat. Comm. 10, 1701 (2019)
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FIG. 3. Four-partite Bell-type experiment characterized by
the spacetime ordering R = (A < D < (B ⇠ C)). Since B
and C are both measured after A and D and satisfy B ⇠ C,
the BC|AD correlations produced by a v-causal model are lo-
cal (see Appendix C). A violation of the inequality of Lemma 1
by the model therefore implies that the corresponding corre-
lations must violate the no-signalling conditions (1). At least
one of the tripartite correlations ABC, ABD, ACD, or BCD
must then depend on the measurement setting of the remain-
ing party. The marginal ABD (ACD) cannot depend on z
(y), since this measurement setting is freely chosen at C (B),
which is outside the past v-cone of A, B (C) and D (see
also Appendix D). It thus follows that either the marginal
ABC must depend on the measurement setting w of system
D or that the marginal BCD must depend on the measure-
ment setting x of system A (or both). Let the four systems
lie along some spatial direction at, respectively, a distance
dB = 1

4 (1 + 1
r ) +

1
1+r , dC = 3

4 (1 + 1
r ) �

1
1+r , dD = 1 form

A, where r = v/c > 1, and let them be measured at times
tA = 0, tB = tC = 2

c+v , tD = 1/v. Suppose that the BCD
marginal correlations depend on the measurement x made on
the first system A. If parties B and C broadcast (at light-
speed) their measurement results, it will be possible to eval-
uate the marginal correlations BCD, at the point D0. Since
this point lies outside the future light-cone of A (shaded area),
this scheme can be used for superluminal communication from
A to D0. Similarly, if the ABC marginal correlations depend
on the measurement w made on D, they can be used for su-
perluminal communication from D to the point A0.

B ⇠ C, as standard quantum theory suggests. Note that
this should not be taken for granted since one should
not a priori expect a v-causal model to reproduce the
quantum correlations in such a situation, for the same
reason that in the bipartite case we do not expect a
v-causal model to reproduce the quantum correlations
when A ⇠ B. Central to our argument lies the fact that
the Bell expression S only involves the marginal corre-
lations ABD and ACD, which allow ones, as we show
below, to infer its value in a situation where B ⇠ C from
observations in which B and C are not necessarily mea-
sured outside each other’s v-cones.

Explicitly, consider a modification of the thought ex-
periment of Figure 3, where the times tB and tC at
which B and C are measured are chosen randomly so

that any of the three configurations A < D < B < C,
A < D < C < B, and A < D < (B ⇠ C) can occur. Any
v-causal model should at least reproduce the quantum
correlations yielding S ' 7.2 > 7 in the first two situ-
ations, in which finite speed influences can freely travel
from the first measured party to the last one. In par-
ticular, the v-causal model thus reproduces the marginal
quantum correlations ABD when A < D < B < C. But
then, it will also necessarily reproduce the same quan-
tum marginal in the situation A < D < (B ⇠ C). Op-
erationally, this is very intuitive: in both cases B ⇠ C

and B < C, the particle B can only use the shared ran-
domness and the communication it received from A,D to
produce its output. Furthermore, since it does not know
when C is measured, it must produce the same output in
both situations, hence the ABD marginal must be identi-
cal in both cases (see Appendix D for a more detailed ar-
gument). Similarly, we can infer that the quantum ACD

marginal obtained for A < D < C < B is reproduced
when B ⇠ C. Together with the fact that the Bell ex-
pression S only involves the ABD and ACD marginals,
a v-causal model must thus violate the inequality S  7
in the configuration of Figure 3, and hence give rise to
correlations that can be exploited for superluminal com-
munication.
In stark contrast with the bipartite scenario, these re-

sults therefore allow one to test experimentally the pre-
diction of no-signalling v-causal models for any v < 1
without requiring any simultaneous measurements. In-
deed, the very same theoretical argument as that pre-
sented in the last paragraph can be used to deduce the
value of S in the case B ⇠ C by measuring the marginals
ABD and ACD in situations in which B and C are not
necessarily outside each other’s v-cones. For a more de-
tailed discussion on some of the experimental possibili-
ties that follow from our result, we refer the reader to
Appendix E. Note that as with usual Bell experiments,
depending on the assumption that one is willing to take,
an experimental test of v-causal model may also need to
overcome various loopholes. The way to remove these
assumptions and overcome these loopholes is an interest-
ing question that goes beyond the scope of our work but
some possibilities are discussed in the Appendix E.

To conclude, we proved that if a v-causal model satis-
fies the requirement of reproducing the quantum correla-
tions when the di↵erent systems are each within the range
of causal influences of previously measured systems, then
such a model will necessarily lead to superluminal sig-
nalling, for any finite value of v > c. Moreover, our
result opens a whole new avenue of experimental pos-
sibilities for testing v-causal models. It also illustrates
the di�culty to modify quantum physics while maintain-
ing no-signalling. If we want to keep no-signalling, it
shows that quantum nonlocality must necessarily relate
discontinuously parts of the universe that are arbitrarily
distant. This gives further weight to the idea that quan-
tum correlations somehow arise from outside spacetime,
in the sense that no story in space and time can describe
how they occur.
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and C are both measured after A and D and satisfy B ⇠ C,
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cal (see Appendix C). A violation of the inequality of Lemma 1
by the model therefore implies that the corresponding corre-
lations must violate the no-signalling conditions (1). At least
one of the tripartite correlations ABC, ABD, ACD, or BCD
must then depend on the measurement setting of the remain-
ing party. The marginal ABD (ACD) cannot depend on z
(y), since this measurement setting is freely chosen at C (B),
which is outside the past v-cone of A, B (C) and D (see
also Appendix D). It thus follows that either the marginal
ABC must depend on the measurement setting w of system
D or that the marginal BCD must depend on the measure-
ment setting x of system A (or both). Let the four systems
lie along some spatial direction at, respectively, a distance
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A, where r = v/c > 1, and let them be measured at times
tA = 0, tB = tC = 2

c+v , tD = 1/v. Suppose that the BCD
marginal correlations depend on the measurement x made on
the first system A. If parties B and C broadcast (at light-
speed) their measurement results, it will be possible to eval-
uate the marginal correlations BCD, at the point D0. Since
this point lies outside the future light-cone of A (shaded area),
this scheme can be used for superluminal communication from
A to D0. Similarly, if the ABC marginal correlations depend
on the measurement w made on D, they can be used for su-
perluminal communication from D to the point A0.

B ⇠ C, as standard quantum theory suggests. Note that
this should not be taken for granted since one should
not a priori expect a v-causal model to reproduce the
quantum correlations in such a situation, for the same
reason that in the bipartite case we do not expect a
v-causal model to reproduce the quantum correlations
when A ⇠ B. Central to our argument lies the fact that
the Bell expression S only involves the marginal corre-
lations ABD and ACD, which allow ones, as we show
below, to infer its value in a situation where B ⇠ C from
observations in which B and C are not necessarily mea-
sured outside each other’s v-cones.

Explicitly, consider a modification of the thought ex-
periment of Figure 3, where the times tB and tC at
which B and C are measured are chosen randomly so

that any of the three configurations A < D < B < C,
A < D < C < B, and A < D < (B ⇠ C) can occur. Any
v-causal model should at least reproduce the quantum
correlations yielding S ' 7.2 > 7 in the first two situ-
ations, in which finite speed influences can freely travel
from the first measured party to the last one. In par-
ticular, the v-causal model thus reproduces the marginal
quantum correlations ABD when A < D < B < C. But
then, it will also necessarily reproduce the same quan-
tum marginal in the situation A < D < (B ⇠ C). Op-
erationally, this is very intuitive: in both cases B ⇠ C

and B < C, the particle B can only use the shared ran-
domness and the communication it received from A,D to
produce its output. Furthermore, since it does not know
when C is measured, it must produce the same output in
both situations, hence the ABD marginal must be identi-
cal in both cases (see Appendix D for a more detailed ar-
gument). Similarly, we can infer that the quantum ACD

marginal obtained for A < D < C < B is reproduced
when B ⇠ C. Together with the fact that the Bell ex-
pression S only involves the ABD and ACD marginals,
a v-causal model must thus violate the inequality S  7
in the configuration of Figure 3, and hence give rise to
correlations that can be exploited for superluminal com-
munication.
In stark contrast with the bipartite scenario, these re-

sults therefore allow one to test experimentally the pre-
diction of no-signalling v-causal models for any v < 1
without requiring any simultaneous measurements. In-
deed, the very same theoretical argument as that pre-
sented in the last paragraph can be used to deduce the
value of S in the case B ⇠ C by measuring the marginals
ABD and ACD in situations in which B and C are not
necessarily outside each other’s v-cones. For a more de-
tailed discussion on some of the experimental possibili-
ties that follow from our result, we refer the reader to
Appendix E. Note that as with usual Bell experiments,
depending on the assumption that one is willing to take,
an experimental test of v-causal model may also need to
overcome various loopholes. The way to remove these
assumptions and overcome these loopholes is an interest-
ing question that goes beyond the scope of our work but
some possibilities are discussed in the Appendix E.

To conclude, we proved that if a v-causal model satis-
fies the requirement of reproducing the quantum correla-
tions when the di↵erent systems are each within the range
of causal influences of previously measured systems, then
such a model will necessarily lead to superluminal sig-
nalling, for any finite value of v > c. Moreover, our
result opens a whole new avenue of experimental pos-
sibilities for testing v-causal models. It also illustrates
the di�culty to modify quantum physics while maintain-
ing no-signalling. If we want to keep no-signalling, it
shows that quantum nonlocality must necessarily relate
discontinuously parts of the universe that are arbitrarily
distant. This gives further weight to the idea that quan-
tum correlations somehow arise from outside spacetime,
in the sense that no story in space and time can describe
how they occur.

P. Horodecki and R.R, in preparation. P. Horodecki and R. R. Nat. Comm. 10, 1701 (2019)
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K2 > K1 located in its future v-cone and can be in-
fluenced by a point K3 < K1 in its past v-cone. But
there cannot be any direct causal relation between two
events K1 ⇠ K4 that are outside each other’s v-cones.
The causal structure that we consider here thus corre-
sponds to Bell’s notion of local causality [9, 22] but with
the speed of light c replaced by the speed v > c. Oper-
ationally, it is useful to think of the correlations gener-
ated by v-causal models as those that can be obtained
by classical observers using shared randomness together
with communication at speed v > c.

According to the textbook description of quantum the-
ory, local measurements on composite systems prepared
in a given quantum state ⇢ yield the same joint proba-
bilities regardless of the spacetime ordering of the mea-
surements. However, a v-causal model will generally not
be able to reproduce these quantum correlations when
the spacetime ordering does not allow influences to be
exchanged between certain pairs of events. In particu-
lar, the correlations between A and B will never violate
Bell inequalities when A ⇠ B (see Figure 2). A possi-
ble programme to rule out v-causal models thus consists
in experimentally observing Bell violations between pairs
of measurement events as simultaneous as possible in the
privileged reference frame [3]. As pointed out earlier,
however, this programme can at best lower-bound the
speed v of the causal influences.

More fundamentally, one could ask if it is even pos-
sible to conceive a v-causal model that reproduces the
quantum correlations in the favourable situation where
all successive measurement events are causally related by

v-speed signals, that is, when any given measured sys-
tem can freely influence all subsequent ones? In the bi-
partite case, this is always possible (see Figure 2 and
Appendix A), and thus the only possibility is to lower
bound v experimentally. In the four-partite case, how-
ever, we show below that any v-causal model of this sort
necessarily leads to the possibility of superluminal com-
munication, independently of the (finite) value of v. Im-
portantly, the argument does not rely directly on the ob-
servation of non-local correlations between simultaneous
events.

Let us stress that v-causal models evidently allow for
superluminal influences at the hidden, microscopic level,
provided that they occur at most at speed v. Such super-
luminal influences, however, need not a priori be mani-
fested in the form of signalling at the macroscopic level,
that is at the level of the experimenters who have no ac-
cess to the underlying mechanism and hidden variables �
of the model, but can only observe the average probabil-
ity P (ab|xy) (e.g., by rotating polarizers along di↵erent
directions x, y and counting detector clicks a, b). It is this
later sort of superluminal communication that we show
to be an intrinsic feature of any v-causal model repro-
ducing quantum correlations.

A su�cient condition for correlations P not to be ex-
ploitable for superluminal communication is that they
satisfy a series of mathematical constraints known as the

“no-signalling conditions”. In the case of four parties (on
which we will focus below), no-signalling is the condition
that the marginal distributions for the joint system ABC

are independent of the measurement performed on sys-
tem D, i.e.,

X

d

P (abcd|xyzw) = P (abc|xyz) , (1)

together with the analogous conditions for systems ABD,
ACD, and BCD. Here P (abcd|xyzw) is the probability
that the four parties observe outcomes a, b, c and d when
their respective measurements settings are x, y, z and w.
These conditions imply that the marginal distribution
for any subset of systems are independent of the mea-
surements performed on the complementary subset.
Our main result is based on the following Lemma,

whose proof can be found in Appendix B.

Lemma 1. Let P (abcd|xyzw) be a joint probability dis-

tribution with a, b, c, d 2 {0, 1} and x, y, z, w 2 {0, 1} sat-

isfying the following two conditions.

(a) The conditional bipartite correlations BC|AD are

local, i.e., the joint probabilities P (bc|yz, axdw)
for systems BC conditioned on the measure-

ments settings and results of systems AD admit

a decomposition of the form P (bc|yz, axdw) =P
� q(�|axdw)P (b|y,�)P (c|z,�) for every a, x, d, w.

(b) P satisfies the no-signalling conditions (1).

Then there exist a four-partite Bell expression S (see Ap-

pendix B for its description) such that correlations satis-

fying (a) and (b) necessarily satisfy S  7, while there ex-
ist local measurements on a four-partite entangled quan-

tum state that yield S ' 7.2 > 7.

The Bell expression S has the additional property that it
involves only the marginal correlations ABD and ACD,
but does not contain correlation terms involving both B

and C (this property is crucial for establishing our final
result, as it implies that a violation of the Bell inequality
can be verified without requiring the measurement on B

and C to be simultaneous).
Consider now the prediction of a v-causal model in

the thought experiment depicted in Figure 3, where the
space-time ordering between the parties in the privileged
frame is such that A < D < (B ⇠ C). Since B and C

are outside each other’s v-cones, it follows immediately
that the BC|AD correlations are local (see Appendix C
for details). A violation of the Bell inequality S  7
by the model in this configuration therefore implies that
assumption (b) of Lemma 1 must be violated, i.e. that
the correlations produced by the model violate the no-
signalling conditions (1). It is easy to see that this fur-
ther implies that these correlations can be exploited for
superluminal communication (see caption of Figure 3). It
thus remains to be shown that the Bell inequality S  7
is violated by a v-causal model in a configuration where

7

not unique to the above simple v-causal model, but rather is a generic feature of all v-causal models that reproduce
quantum correlations when the di↵erent systems are within the range of causal influences of previously measured
systems.

Appendix B: Proof of Lemma 1

In this supplementary information we prove the following lemma used in the main text.

Lemma 1. Let P (abcd|xyzw) be a joint probability distribution with a, b, c, d 2 {0, 1} and x, y, z, w 2 {0, 1} satisfying

the following two conditions.

(a) The conditional bipartite correlations BC|AD are local, i.e., the joint probabilities P (bc|yz, axdw) for systems

BC conditioned on the measurements settings and results of systems AD admit a decomposition of the form

P (bc|yz, axdw) =
P

� q(�|axdw)P (b|y,�)P (c|z,�) for every a, x, d, w.

(b) P satisfies the no-signalling conditions, i.e.

X

d

P (abcd|xyzw) = P (abc|xyz) ,

X

c

P (abcd|xyzw) = P (abd|xyw) ,

X

b

P (abcd|xyzw) = P (acd|xzw) ,

X

a

P (abcd|xyzw) = P (bcd|yzw) .

(3)

Then the following inequality is satisfied

S =� 3hA0i � hB0i � hB1i � hC0i � 3hD0i
� hA1B0i � hA1B1i+ hA0C0i
+ 2hA1C0i+ hA0D0i+ hB0D1i
� hB1D1i � hC0D0i � 2hC1D1i
+ hA0B0D0i+ hA0B0D1i+ hA0B1D0i
� hA0B1D1i � hA1B0D0i � hA1B1D0i
+ hA0C0D0i+ 2hA1C0D0i � 2hA0C1D1i
 7,

(4)

where we have introduced the correlators hAxi =
P1

a=0(�1)aP (a|x), hAxByi =
P1

a,b=0(�1)a+b
P (ab|xy), hAxCzDwi =P1

a,c,d=0(�1)a+c+d
P (acd|xzw), and so on.

On the other hand, local measurements on a four-partite entangled quantum state can yield correlations PQ that

achieve S ' 7.2 > 7.

Proof. Let PAD(00|00) denote the AD marginal probabilities P (a = 0, d = 0|x = 0, w = 0) and let PB|AD(b|y) denote
the B|AD probabilities P (b|y, a = 0, x = 0, d = 0, w = 0), and define similarly PC|AD(c|z) and PBC|AD(bc|yz).
Consider the following inequality

I = P (1000|0000) + P (0001|0010) + P (0011|0011)
+ P (0100|0011) + P (1000|0100) + P (0011|0110)
+ P (0000|0111) + P (0111|0111) + P (0010|1000)
+ P (1100|1000) + P (0010|1100) + P (1100|1100)
+ PAD(00|00)

⇥
1� PB|AD(0|0)� PC|AD(0|0)

+ PBC|AD(00|00) + PBC|AD(00|01)
+ PBC|AD(00|10)� PBC|AD(00|11)

⇤
� 0 .

(5)

8

This inequality is satisfied by any correlations P fulfilling condition (a). Indeed, the first twelve terms and the
term PAD(00|00) are clearly non-negative. Moreover, the term in square brackets is positive since 1 � PB|AD(0|0) �
PC|AD(0|0) + PBC|AD(00|00) + PBC|AD(00|01) + PBC|AD(00|10) � PBC|AD(00|11) � 0 is nothing but the Clauser-
Horne (CH) inequality [3] for the BC correlations conditioned on a = 0, x = 0, d = 0, w = 0 and is thus non-
negative according to condition (a). Using the no-signalling conditions, it is now easy to see that S can be written as
S = 7�8I, which implies S  7. To see explicitely the equivalence between (4) and (5), one can write P (abcd|xyzw) =
1
16 h(1+ (�1)a ·Ax)(1+ (�1)b ·By)(1+ (�1)c ·Cz)(1+ (�1)d ·Dw)i, expand the products, insert into (5) and simplify
the expression.

Note now that inequality (4) is violated by quantum theory, since measuring the state

| i = 17

60
|0000i+ 1

3
|0011i � 1p

8
|0101i+ 1

10
|0110i

+
1

4
|1000i � 1

2
|1011i � 1

3
|1101i+ 1

2
|1110i.

with the operators

Â0 = �U�xU
†
, Â1 = U�zU

†
, B̂0 = H,

B̂1 = ��xH�x, Ĉ0 = �D̂0 = �z, Ĉ1 = D̂1 = ��x,

where U = cos( 4⇡5 )�z � sin( 4⇡5 )�x and H is the Hadamard matrix, yields S = 7.2014 > 7. Using slightly di↵erent
measurement settings and quantum state, the maximum quantum value S = 7.3481 can also be achieved.

time

space

A

D

B C

C0

FIG. 4: Representation of the four-partite spacetime configuration R and T for which B ⇠ C and B < C0.

Appendix C: Proof that the BC|AD correlations as predicted by a v-causal model are local in a spacetime
configuration where tA, tD < tB , tC and B ⇠ C.

Consider the spacetime configuration R depicted in Figure 4, where systems A,B,C,D are measured respectively
at times tA, tB , tC , tD in the privileged frame with tA, tD < tB , tC and with B ⇠ C. Let � describe any relevant
information from the past of A,B,C,D and in addition let µ be a (su�ciently complete) specification of the shaded
region (c.f. Figure 4), which screens-o↵ the intersection of the past v-cones of B and C. Note that µ may generally
depend on the value of the past variables a, x, d, w,� and is thus characterized by a probability distribution q(µ|axdw�).
Since B ⇠ C, we have as in Figure 2b of the main text P (b|y, czµ) = P (b|y, µ) and P (c|z, byµ) = P (c|z, µ). We can
thus write

PR(abcd|xyzw) =
X

�

q(�)P (ad|xw,�)
X

µ

q(µ|axdw�)P (b|y, µ)P (c|z, µ). (6)

This implies that the correlations BC conditioned on AD are local since

PR(bc|yz, axdw) =
X

µ

q̃(µ|axdw)P (b|y, µ)P (c|z, µ) (7)

J.-D. Bancal et al. Nature Physics 8, 867 (2012).
P. Horodecki and R. R. Nat. Comm. 10, 1701 (2019). In prep.



Device-Independent crypto against Relativistic 
Eavesdroppers

• Boxes P(a|x) = P(a1,...,an|x1,...,xn) must carry a label of space-time locations 
of measurement events P((t1,r1),...,(tn,rn))(a1,...,an|x1,...,xn).

• The set of boxes P(a|x) respecting relativistic causality forms a larger 
dimensional polytope containing the usual NS polytope.

• LHV polytope ⊂ Quantum Correlations ⊂ No-Signaling Polytope ⊂ Causality 
Polytope. 

• In DIQKD against relativistic eavesdroppers, this gives a larger set of attack 
strategies for Eve. 

R. Colbeck and R. Renner, Free randomness can be amplified, Nature Physics 8, 450-454 (2012).
R. Gallego et al., Full randomness from arbitrarily deterministic events, Nat. Comm. 4, 2654 (2013).
F. G. S. L. Brandao, R. R, A. Grudka, Horodecki^3, T. Szarek, H. Wojewodka, Nat Comm. 7, 11345 (2016).



Device-Independent Randomness Amplification 
against Relativistic Eve

• Randomness amplification of Santha-Vazirani sources: need BI with algebraic 
violation. Paradigmatic example: GHZ-Mermin inequality. 

• We show that no randomness can be extracted from the settings that appear in 
the Mermin inequality under the new constraints, even with maximal violation.

C. Dhara, G. de la Torre, A. Acin, Phys. Rev. Lett. 112, 100402 (2014).
R. Gallego et al., Full randomness from arbitrarily deterministic events, Nat. Comm. 4, 2654 (2013).
F. G. S. L. Brandao, R. R, A. Grudka, Horodecki^3, T. Szarek, H. Wojewodka, Nat Comm. 7, 11345 (2016).

P. Horodecki and R. R., in preparation.
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Proposition 6. Consider a three-party Bell scenario where Alice and Bob perform a test of the Braunstein-Caves chained Bell
inequality I

m
ch (31) with an arbitrary number m � 2 of inputs per party and Eve measures a single observable C1. Suppose that

in some inertial reference frame, the three space-like separated parties are arranged in 1-D, with rA < rB < rC and perform
their measurements simultaneously, i.e., tA = tB = tC. For any observable K of Alice or Bob, i.e., K 2 {A1, . . . , Am} [
{B1, . . . , Bm}, there exists a relativistic causal box P(a, b, c|x, y, z) such that C1 is perfectly correlated with K even when the
algebraic violation of Im,ch

AB is attained, i.e.,
h
I

m,ch
AB + hKC1i

i

P

= 2n + 1. (32)

Proposition 7. Consider the n-party GHZ-Mermin Bell inequality, for odd n � 3. Suppose that in some inertial reference
frame, the n space-like separated parties are arranged in 1-D, with r1 < · · · < rn and perform their measurements simultane-
ously, i.e., t1 = · · · = tn. Then for any input x⇤ appearing in the inequality, i.e., x⇤ 2 X

n
Merm, there exists a box P violating

the Mermin inequality maximally and obeying the relativistic causality constraints in Eq.(17), such that no randomness can be
extracted from the outputs a of the box under input x⇤. In other words, we have

P(a⇤
|x⇤) = 1, (33)

for some fixed output bit string a⇤.

Definition 8. Suppose that P(a, b, c|x, y, z) can be written in the form

P(a, b, c|x, y, z) = Â
l

qlPl(a, b|x, y)Pl(c|z) + Â
µ

qµPµ(a, c|x, y, z)Pµ(b|y) + Â
n

qnPn(b, c|y, z)Pn(a|x) (34)

where the terms obey the relativistic causality constraints Eq.(17). Then the correlations P(a, b, c|x, y, z) are said to be causal
bi-local. Otherwise, we say that they are genuinely 3-way causal non-local.

Acknowledgments.- We acknowledge stimulating discussions with Andrzej Grudka and Jakub Rembieliński. This
work was made possible through the support of a grant from the John Templeton Foundation. The opinions ex-
pressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton
Foundation. It was also supported by the ERC AdG grant QOLAPS.
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DI Randomness Amplification against relativistic 
Eve 

• Proof is by construction of box 
P(a|x) that satisfies:

• GHZ-Mermin constraints

• Causality constraints

• returns deterministic 
output for settings 
appearing in the 
inequality. 
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Figure 3:

other words, we have

P(a⇤
|x⇤) = 1, (41)

for some fixed output bit string a⇤.

Proof. The proof is by explicit construction of the n-party
box P satisfying the relativistic causality constraints
Eq.(12) and violating the Mermin inequality maximally
that returns a deterministic output for the fixed input
x⇤ 2 X

n
Merm.

Let us first list the set of constraints that P must obey.
Split the set of inputs X

n
Merm appearing in the Mermin

inequality into two subsets

X
n,�1
Merm := {x|Â

i
xi = n � 2k, k 2 Z, k odd}

X
n,1
Merm := {x|Â

i
xi = n � 2k, k 2 Z, k even}. (42)

Then for the inputs x in the set X n,�1
Merm, the box P is re-

quired to give outputs such that the value of the n-party
correlation function is �1, i.e.,

hx1 . . . xni =

P(�n
i=1ai = 0|x1, . . . , xn)� P(�n

i=1ai = 1|x1, . . . , xn) = �1,

8x 2 X
n,�1
Merm. (43)

Similarly for the inputs x 2 X
n,1
Merm, the outputs from

the box are required to yield a value of 1 for the n-party
correlation function, i.e.,

hx1 . . . xni =

P(�n
i=1ai = 0|x1, . . . , xn)� P(�n

i=1ai = 1|x1, . . . , xn) = 1,

8x 2 X
n,1
Merm. (44)

For the given fixed input x⇤ 2 X
n
Merm, the box P is re-

quired to return a deterministic input a⇤, this is the con-
straint from Eq.(41). The box P is also required to obey

all of the relativistic causality constraints from Eq.(12).
Finally, as usual we have the non-negativity and nor-
malization constraints for the probability distributions,
i.e.,

P(a|x) � 0 8a, x

Â
a
P(a|x) = 1 8x. (45)

We will show a binary-tree algorithmic construction of
P obeying all the constraints Eqs.(12, 41, 43, 44, 45) for
given x⇤ 2 X

n,1
Merm. The construction for x 2 X

n,�1
Merm will

follow along analogous lines.

Algorithm 1 Construction of box P

1: procedure CONSTRUCTION OF P

2: Let x⇤ 2 X
n,1
Merm be given. Initiate as step 0, al(x⇤) =

ar(x⇤) = a⇤ (the all-0 bit string).
3: At the (2j + 1)-th step, 0  j  n�1

2 , 8 1  i1  · · · 

i2j+1  n, if x⇤i2j+1
= 0 define

al(x⇤ � 1i1 � · · ·� 1i2j+1 ) := al(x⇤ � 1i1 � · · ·� 1i2j )

ar(x⇤ � 1i1 � · · ·� 1i2j+1 ) := ar(x⇤ � 1i1 � · · ·� 1i2j )� 1ij .
(46)

If on the other hand, x⇤i2j+1
= 1 define

al(x⇤ � 1i1 � · · ·� 1i2j+1 ) := al(x⇤ � 1i1 � · · ·� 1i2j )� 1i2j+1

ar(x⇤ � 1i1 � · · ·� 1i2j+1 ) := ar(x⇤ � 1i1 � · · ·� 1i2j ).
(47)

4: At the 2j-th step 1  j  n�1
2 , 8 1  i1  · · ·  i2j  n,

if x⇤i2j
= 0 define

al(x⇤ � 1i1 � · · ·� 1i2j ) := al(x⇤ � 1i1 � · · ·� 1i2j�1 )� 1i2j

ar(x⇤ � 1i1 � · · ·� 1i2j ) := ar(x⇤ � 1i1 � · · ·� 1i2j�1 ).
(48)

If on the other hand, x⇤i2j
= 1 define

al(x⇤ � 1i1 � · · ·� 1i2j ) := al(x⇤ � 1i1 � · · ·� 1i2j�1 )

ar(x⇤ � 1i1 � · · ·� 1i2j ) := ar(x⇤ � 1i1 � · · ·� 1i2j�1 )� 1i2j .
(49)

5: 8x, set

P(al(x)|x) = P(ar(x)|x) =
1
2

,

P(a|x) = 0, otherwise. (50)

6: end procedure

The proof that the binary tree algorithm yields a box
with the desired properties is done by induction. First
consider the base steps. We are given x⇤ 2 X

n,1
Merm, and a

fixed output bit string of even parity a⇤ (the all-0 string).
The algorithm sets P(a⇤|x⇤) = 1 and P(a|x⇤) = 0 for
a 6= a⇤. This assignment clearly satisfies both Eqs. (41)

P. Horodecki and R. R., in preparation.
P. Horodecki and R. R. Nat. Comm. 10, 1701 (2019)



Device-Independent QKD against relativistic 
Eve

• The chained Bell inequalities Im,chAB are a family of two-party correlation Bell 
inequalities (XOR games) with m inputs and 2 outputs per party. 

• QM: Im,chAB = 2m Cos(π/2m). NS: Im,chAB = 2m. 

• In the limit m→∞, a perfect key bit between Alice and Bob is obtained 
(BHK, BCK, BKS) against the usual No-Signaling adversary. Underlying 
property: Monogamy of non-local correlations.

J. Barrett, L. Hardy and A. Kent, Phys. Rev. Lett. 95, 010503 (2005).
J. Barrett, R. Colbeck and A. Kent, Phys. Rev. A 86, 062326 (2012).
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Causality and Bayesian Networks.- A Bayesian network, Bayes network, belief network, Bayes(ian) model or proba-
bilistic directed acyclic graphical model is a probabilistic graphical model (a type of statistical model) that represents
a set of random variables and their conditional dependencies via a directed acyclic graph (DAG).

We now consider the implications of the spacetime structure on the causal relationship, namely we consider the
study of Bayesian networks of spacetime random variables (SRVs). In the Directed Acyclic Graph (DAG) that rep-
resents a causal structure in the network, an additional ingredient of a new type of edge representing a causal link
between the spacetime variable Y and the effects A, C would be added. This edge represents the causal link that Y
does not influence the marginal distributions of A and C themselves but changes the joint distribution of A, C. The
additional ingredient when considering spacetime variables is that the random variable W representing the correla-
tions between A and C is only created in the future light cone of Y provided that the intersection of the future light
cones of A and C is contained within the future light cone of Y. The causal network corresponding to a particular
spacetime arrangement of measurement events would incorporate the additional edges as possible influences that
do not lead to superluminal signaling.

Can the multi-party quantum correlations be explained by the causal structures given by the new spacetime

X. EXPLAINING QUANTUM CORRELATIONS BY FINITE (SUPERLUMINAL) SPEED V-CAUSAL MODELS.

Do quantum correlations somehow arise from outside spacetime or can the correlations be explained by causal
(even if superluminal) influences propagating continuously in space? This was the question considered in [36, 37]
where the possibility of “v-causal theories" was considered, i.e., theories incorporating a finite superluminal influ-
ence propagating at speed v > c in a privileged reference frame. For two-party Bell experiments, the best one can
hope to do is to experimentally obtain lower-bounds on such a v by testing Bell inequality violations between sys-
tems in laboratories farther apart and better synchronized. However, in the multi-party scenario, the authors of
[36, 37] show that surprisingly the strength of multi-party quantum nonlocality is large enough that any v-causal
model that attempts to explain the quantum correlations also gives rise to predictions that can lead to superluminal
communication. Here, we re-examine this result in the light of the more precise formulation of relativistic causality
constraints considered in this paper. We find that in the scenarios considered in

In special relativity, a particle moving FTL in one frame of reference will be travelling back in time in another.

XI. DISCUSSION.

One of the main messages of this paper is that boxes in the post-quantum scenario, where one only restricts to the
constraints imposed by relativistic causality, should be labeled by the space-time locations of the parties performing
the measurement. The correlations that the parties’ observe can then exhibit various dependencies while still being
consistent with relativistic causality. The precise space-time region where this influence can occur was shown.

Novel protocols using quantum correlations to circumvent the attacks on the randomness protocols discussed
here, are pursued in [57].

P(a, c|x, y, z) =
P(a, c|x, z)P(y|a, c, x, z)

P(y|x, z)
= P(a, c|x, z) Free-Will: P(y|a, c, x, z) = P(y|x, z) = P(y) (29)

P(a1, a2|x1, x2, Q, l) = P(a1|x1, x2, Q, l)P(a2|x1, x2, Q, l) (30)

The chained Bell inequalities are a family of two-party correlation Bell inequalities (XOR games) with m � 2 inputs
and two outputs per party, that generalize the well-known CHSH inequality. Explicitly, the chained Bell expression
I

m,ch
AB reads as

I
m,ch
AB :=

m

Â
i=1

[hAiBii+ hAiBi+1i]  2m � 2, (31)

where we denote Bm+1 = �B1. The maximum value of the chain expression within classical theories is 2n � 2. As is
well-known the
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Proposition 6. Consider a three-party Bell scenario where Alice and Bob perform a test of the Braunstein-Caves chained Bell
inequality I

m
ch (31) with an arbitrary number m � 2 of inputs per party and Eve measures a single observable C1. Suppose that

in some inertial reference frame, the three space-like separated parties are arranged in 1-D, with rA < rB < rC and perform
their measurements simultaneously, i.e., tA = tB = tC. For any observable K of Alice or Bob, i.e., K 2 {A1, . . . , Am} [
{B1, . . . , Bm}, there exists a relativistic causal box P(a, b, c|x, y, z) such that C1 is perfectly correlated with K even when the
algebraic violation of Im,ch

AB is attained, i.e.,
h
I

m,ch
AB + hKC1i

i

P

= 2n + 1. (32)

Proposition 7. Consider the n-party GHZ-Mermin Bell inequality, for odd n � 3. Suppose that in some inertial reference
frame, the n space-like separated parties are arranged in 1-D, with r1 < · · · < rn and perform their measurements simultane-
ously, i.e., t1 = · · · = tn. Then for any input x⇤ appearing in the inequality, i.e., x⇤ 2 X

n
Merm, there exists a box P violating

the Mermin inequality maximally and obeying the relativistic causality constraints in Eq.(17), such that no randomness can be
extracted from the outputs a of the box under input x⇤. In other words, we have

P(a⇤
|x⇤) = 1, (33)

for some fixed output bit string a⇤.

Definition 8. Suppose that P(a, b, c|x, y, z) can be written in the form

P(a, b, c|x, y, z) = Â
l

qlPl(a, b|x, y)Pl(c|z) + Â
µ

qµPµ(a, c|x, y, z)Pµ(b|y) + Â
n

qnPn(b, c|y, z)Pn(a|x) (34)

where the terms obey the relativistic causality constraints Eq.(17). Then the correlations P(a, b, c|x, y, z) are said to be causal
bi-local. Otherwise, we say that they are genuinely 3-way causal non-local.

|f+i =
1
p

2
(|00i+ |11i) (35)

Ai := sin(ai)sx + cos(ai)sz,
Bj := sin(b j)sx + cos(b j)sz. (36)

with ai := p(2i�1)
m and b j := p(j�1)

m for i, j = 1, . . . , m.
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is well-known, measurements on a quantum state can give rise to correlations that achieve the maximum quantum
value 2m cos( p

2m ) for Im,ch
AB . This value is achieved when Alice and Bob share the maximally entangled state

|f+i =
1
p

2
(|00i+ |11i) (18)

and perform the measurements corresponding to the observables Ai, Bj given as

Ai := sin(ai)sx + cos(ai)sz,
Bj := sin(b j)sx + cos(b j)sz. (19)

with ai := p(2i�1)
m and b j := p(j�1)

m for i, j = 1, . . . , m. In general no-signaling theories obeying Eq.(8), the algebraic
value of 2m can be achieved for the chain Bell expression.

Proposition 3. Consider a three-party Bell scenario where Alice and Bob perform a test of the Braunstein-Caves chained Bell
inequality I

m
ch (17) with an arbitrary number m � 2 of inputs per party and Eve measures a single observable C1. Suppose that

in some inertial reference frame, the three space-like separated parties are arranged in 1-D, with rA < rB < rC and perform
their measurements simultaneously, i.e., tA = tB = tC. For any observable K of Bob, i.e., K 2 {B1, . . . , Bm}, there exists a
relativistic causal box P(a, b, c|x, y, z) such that C1 is perfectly correlated with K even when the algebraic violation of Im,ch

AB is
attained, i.e.,

h
I

m,ch
AB + hKC1i

i

P

= 2m + 1. (20)

I
m,ch
AB + hKC1i  2m. (21)

Proposition 4 ([39]). Any no-signaling distribution for which I
m,ch
AB < I

⇤ satisfies

P(Ak = a) 
1
2
(1 + I

⇤),

P(Bl = b) 
1
2
(1 + I

⇤), (22)
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I(B : E)  I
m,ch
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involved in the protocol may provide them with a box that satisfies only the relativistic causality conditions stated in
this paper. In particular, when the n parties are in a line, the relativistic causality constraints (the subset of the usual
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m,k = {m, m + 1, . . . , m + k � 1} for some
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k=1 (n � k + 1) = n2+n�2
2 . For a string of outputs a of the n parties, let

aSn
m,k

denote the substring of outputs of the parties belonging to the set Sn
m,k, i.e., aSn

m,k
= {ai} with i 2 Sn

m,k and let
a(Sn

m,k)
c denote the outputs of the complementary set of parties. Similarly, let xSn

m,k
denote the inputs of the parties in

the set Sn
m,k and x(Sn

m,k)
c denote the inputs of the complementary set. Then the relativistic causality constraints for the

n parties stationed in 1-d are given by

P(aSn
m,k
|xSn

m,k
) = Â

a’(Sn
m,k)

c

P(a’|x’) = Â
a”(Sn

m,k)
c
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m,k and let
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denote the inputs of the parties in
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Ai := sin(ai)sx + cos(ai)sz,
Bj := sin(b j)sx + cos(b j)sz. (19)

with ai := p(2i�1)
m and b j := p(j�1)

m for i, j = 1, . . . , m. In general no-signaling theories obeying Eq.(8), the algebraic
value of 2m can be achieved for the chain Bell expression.
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Now, from the considerations of this paper and Grunhaus et al. [16], we see that there is a larger set of boxes that
respect relativistic causality than those belonging to the usually considered no-signaling polytope, depending on the
spatial locations of the parties. This implies that an adversary who is aware of the spatial locations of the parties
involved in the protocol may provide them with a box that satisfies only the relativistic causality conditions stated in
this paper. In particular, when the n parties are in a line, the relativistic causality constraints (the subset of the usual
no-signaling constraints needed to ensure that causality is not violated) is given as follows. Let Sn

m,k ⇢ [n] denote a
contiguous subset of [n] = {1, . . . , n} of size k with initial element m, i.e., Sn

m,k = {m, m + 1, . . . , m + k � 1} for some
1  m  n � k + 1. Clearly, the number of such contiguous subsets for fixed k is n � k + 1, and the total number of
contiguous subsets of all possible sizes k is Ân�1

k=1 (n � k + 1) = n2+n�2
2 . For a string of outputs a of the n parties, let

aSn
m,k

denote the substring of outputs of the parties belonging to the set Sn
m,k, i.e., aSn

m,k
= {ai} with i 2 Sn

m,k and let
a(Sn

m,k)
c denote the outputs of the complementary set of parties. Similarly, let xSn

m,k
denote the inputs of the parties in

the set Sn
m,k and x(Sn

m,k)
c denote the inputs of the complementary set. Then the relativistic causality constraints for the

n parties stationed in 1-d are given by

P(aSn
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Device-Independent QKD against relativistic 
Eve

• In a Device-Independent framework, the relativistic causality conditions 
allow Eve to gain maximal information about the output key bit of such a 
protocol. 

• Eve’s observable is maximally correlated with the chosen observable of the 
honest parties even when algebraic violation is observed. 

P. Horodecki and R.R, in preparation. 
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and perform the measurements corresponding to the observables Ai, Bj given as

Ai := sin(ai)sx + cos(ai)sz,
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involved in the protocol may provide them with a box that satisfies only the relativistic causality conditions stated in
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no-signaling constraints needed to ensure that causality is not violated) is given as follows. Let Sn
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contiguous subset of [n] = {1, . . . , n} of size k with initial element m, i.e., Sn

m,k = {m, m + 1, . . . , m + k � 1} for some
1  m  n � k + 1. Clearly, the number of such contiguous subsets for fixed k is n � k + 1, and the total number of
contiguous subsets of all possible sizes k is Ân�1
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2 . For a string of outputs a of the n parties, let
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denote the substring of outputs of the parties belonging to the set Sn
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= {ai} with i 2 Sn

m,k and let
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General properties of no-signaling theories

• Monogamy: Violation of CHSH Bell inequality by Alice-Bob precludes 
violation by Alice-Charlie.

8

Here, the n-party correlation function hx1 . . . xni is defined as

hx1 . . . xni =

P(�n
i=1ai = 0|x1, . . . , xn)� P(�n

i=1ai = 1|x1, . . . , xn).
(14)

When Âi xi is even, no constraints are imposed on the corresponding correlator.
Measurements by each of the n parties of the Pauli sy and sx operators (for xi = 0, 1 respectively) on the n-qubit

GHZ state

|GHZni =
1
p

2
(|0i1 . . . |0in + |1i1 . . . |1in) (15)

result in a violation of the inequality up to its maximum value, i.e., satisfies all the constraints in Eq.(13).
The inputs x for which constraints are imposed on the correlator are said to appear in the inequality, this set of

inputs is denoted by XMerm := {x|Âi xi = n � 2k, k 2 Z}. In [30], it was shown that satisfying Eq.(13) implies, in
the asymptotic setting of an infinite number of parties n ! •, that a particular function of the output bits is fully
random. In particular, the following function of the outputs gx(a) was considered for any input x that appears in the
Mermin inequality.

g(a) =
⇢

1 Âi ai = (4k + 2), k 2 Z�0 ^ x 2 XMerm
0 else (16)

As the number of parties n ! • it was shown that P(g(a) = 1|x) !
1
2 , implying that for all boxes satisfying the

usual multi-party no-signaling conditions and the Mermin constraints Eq.(13), the bit defined by the function g(·)
possesses full intrinsic randomness and defines a process where full randomness amplification takes place. We show
in the following proposition that this conclusion no longer holds when in place of the usual no-signaling conditions,
only the relativistic causality conditions are taken into account. Furthermore, we show that when considering the
inputs appearing in the Mermin inequality, no function of the output bits possesses any randomness for all odd n � 3.
We leave as an open question whether there exists any multi-party Bell inequality with the property of maximum
violation such that all the boxes obeying the new relativistic causality conditions admit a hashing function that
defines a (partially) random bit.

In the next proposition, we consider the phenomenon of monogamy of non-local correlations under the new
relativistically causal constraints. Specifically, we consider the three-party Bell scenario where the parties Alice,
Bob and Charlie perform two binary outcome measurements x, y, z 2 {0, 1} and obtain outcomes a, b, c 2 {0, 1}
respectively. We label the corresponding binary observables of each party by Ax, By and Cz respectively. We consider
the well-known CHSH inequality [? ] between Alice-Bob and Bob-Charlie. The CHSH expression hCHSHiAB reads
as

hCHSHiAB := hA0B0i+ hA0B1i+ hA1B0i � hA1B1i. (17)

In a local hidden variable theory, the value hCHSHiAB is bounded by 2. The well-known Popescu-Rohrlich (PR) box
is a two-party no-signaling box that achieves a value of 4 for the expression. In the three-party scenario, under the
usual no-signaling constraints, the non-local correlations exhibit a phenomenon of monogamy that is captured by
the relation [? ]

hCHSHiAB + hCHSHiBC  4. (18)

In other words, when Alice-Bob observe maximum violation of the CHSH inequality, no correlations can occur
between the observables of Bob and Charlie. This phenomenon of monogamy of correlations has found application
as the underlying feature that is responsible for the security of many device-independent cryptographic protocols.
By observing a sufficiently high violation of the Bell inequality, Alice and Bob are able to ensure that their systems
are not highly correlated with any system held by a third party such as an eavesdropper.

We find however that under the relativistically causal constraints that occur when the three parties are arranged
in 1-dimension, the phenomenon of monogamy is considerably weakened in general and in the above mentioned
Bell scenario, it completely disappears. This is captured by the following proposition.

Proposition 3. Consider a three-party Bell scenario, with Alice, Bob and Charlie each performing two measurements x, y, z 2

{0, 1} of two outcomes a, b, c 2 {0, 1} respectively. Suppose that in some inertial reference frame, the three space-like separated
parties are arranged in 1-D, with rA < rB < rC and perform their measurements simultaneously, i.e., tA = tB = tC. Then,
there exists a three-party relativistically causal box P(a, b, c|x, y, z) such that

hCHSHiAB + hCHSHiBC = 8. (19)

Sta"-dependent qubit cloning

• Special case of qubits (d=2) with restricted input distribution on the Bloch sphere.

• General Solution in the symmetric case (αn= 1/N): 

• Results for equatorial cloning (Γ = 1/4) to universal (Γ = 1/6). Classical (Γ = 0). 

• Equatorial cloning trade-off relation for N=2 gives the CHSH Bell monogamy:

CHAPTER 2. CLONING 2.5. STATE DEPENDENT QUBIT CLONING

2.5 State Dependent 1 ! N Qubit Cloning

Having studied the universal 1 ! N cloning of qudits, we now turn to apply the

formalism using the Jamiolkowski isomorphism to the more common case of qubits

(d = 2) where the input state is now restricted to a particular distribution f( ).

The general form of the (pure) qubit input state is given as

| i = cos
✓

2
|0i + sin

✓

2
ei� |1i

with an as yet unspecified distribution function f(✓,�).

We now develop a parametrization of the 1 ! N asymmetric cloning of qubits

for a large class of state dependent cloners, including equatorial and universal clon-

ers. To do this, we impose two restrictions on the input distribution function f(✓,�),

namely: (i) This distribution function f(✓,�) is phase covariant, meaning it is in-

dependent of �, i.e., f(✓,�) = f(✓) and (ii) The distribution is symmetric about

the equator of the Bloch sphere, i.e., f(✓) = f(⇡ � ✓). These assumptions allow us

to make a smooth transition from equatorial to universal cloning by picking as the

input state distribution segments of increasing size about the equator of the Bloch

sphere.

Using these assumptions, the matrix R in Eq.(2.3) for the 1 ! N cloning of

qubits can be written as

R = 1

2
11 +

NX

n=1

↵n�

✓
XX � Y Y +

1 � 4�

2�
ZZ

◆

0,n

,

where

� =
1

4

Z
f(✓,�) sin2 ✓d✓d�.

The parameter, �, varying between 0 and 1

4
provides an intuitive interpretation

regarding the distribution of states over the Bloch sphere - the larger the value, the

more tightly packed the states are around the equator. When the parameter � is

0, we are restricted to the classical states |0i and |1i for which we expect perfect

copying. The case � = 1

6
recovers the universal cloning problem discussed in the

previous sections. When � = 1

4
, we obtain the case of equatorial cloning, where the

input qubit is restricted to lie on the equator of the Bloch sphere.

We would now like to find the maximum eigenvector and maximum eigenvalue

of the above matrix R. The problem can be recast by applying a rotation Y0 to R,

and instead demanding the minimum eigenvector (ground state) of a new matrix R̃

20

A. Kay, D. Kaszlikowski and R. Ramanathan, Phys. Rev. Lett. 103, 050501 (2009).
A. Kay, R. Ramanathan and D. Kaszlikowski, arXiv: 1208.5574 (2012).

Monogamy of Be% Inequali& viola'ons
• Classical correlations not monogamous: if A’s bit same as B’s bit, no restriction on 

correlations between A & C’s bits. 

• Monogamy:  Violation of Bell inequality (CHSH) by A-B precludes violation by A-C.  

• Useful in security of some key distribution protocols, interactive proof systems, etc. 

• QM:

• NS (                           ):

BCHSH =
���E(A1, B1)LR + E(A1, B2)LR + E(A2, B1)LR � E(A2, B2)LR

���  2

AB 

AC 

LHV 

QM 

NS 

CHAPTER 3. BELL MONOGAMY 3.3. FROM NO-SIGNALING

Quantum theory itself obeys the no-signaling principle and therefore the above rela-

tion also holds within the theory. However, this linear monogamy relation is clearly

weaker than the quadratic monogamy relation within quantum theory established

in Eq. (3.2) showing that no-signaling does not completely capture the monogamy

of Bell inequalities in the quantum scenario.

That Bell monogamy relations (BMR) arise within all no-signaling theories was

first observed in [53] and an instructive method to derive these was shown in [54].

We firstly state and refine this method as a precursor to its generalization to the

phenomenon of “monogamy of contextuality” in a later chapter. Bell monogamies

also arise within quantum theory such as in Eq. (3.2). Within this theory, we show

that they can be derived as a consequence of the “correlation complementarity”

principle. Methods to derive Bell monogamies within quantum theory using this

principle are then developed using graph-theoretic techniques.

3.3 Bell monogamies in all no-signaling theories

The no-signaling principle can be understood as the statement that no signal can be

transmitted instantaneously (or even faster than a finite maximum speed such as the

speed of light) and therefore probabilities of measurement outcomes are independent

of measurement settings at spatially separated locations. It is mathematically stated

as the following constraint on probabilities of measurement outcomes

P (ax|Ax, By) = P (ax|Ax).

Here Ax and By are the measurement settings (x and y enumerate possible settings)

used by two spatially separated parties Alice and Bob, and ax denotes the outcome

of Alice’s measurement Ax. The principle therefore states that the probability

of obtaining an outcome ax upon measuring observable Ax is independent of the

measurement setting By chosen at a spatially separated location.

In this section, we will explain (and refine) the method introduced in [54] for the

derivation of Bell monogamy relations within all no-signaling theories. The tech-

nique introduced here will also be useful for the derivation of monogamy relations in

contextuality in a later chapter. We begin with a general linear bipartite (between

two parties, Alice and Bob) Bell inequality for correlations which has the form

B(A,B) =
X

x ,y,a,b

↵(x , y , a, b)P(Ax = a,By = b)  R.

Here x and y enumerate the local measurement settings (A and B) of Alice and

Bob respectively while a and b denote their measurement outcomes. We do not

30
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P. Horodecki and R. R., in preparation.
L. Masanes, A. Acin and N. Gisin, Phys. Rev. A 73, 012112  (2006).  
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Genuine multipartite nonlocality

• Multiparty non-locality: Several classes of non-local correlations including 
Svetlichy S2-local, NS2-local, T2-local with NS2 ⊂ T2 ⊂ S2.  

• We introduce a new class of models C2: 

J.-D. Bancal, J. Barrett, N. Gisin, S. Pironio, Phys. Rev. A. 88, 014102 (2013). 

11

Proposition 4. Consider the n-party GHZ-Mermin Bell inequality, for odd n � 3. For any input x⇤ appearing in the
inequality, i.e., x⇤ 2 X

n
Merm, there exists a box P violating the Mermin inequality maximally and obeying the relativistic

causality constraints in Eq.(12), such that no randomness can be extracted from the outputs a of the box under input x⇤. In
other words, we have

P(a⇤
|x⇤) = 1, (27)

for some fixed output bit string a⇤.

Definition 5. Suppose that P(a, b, c|x, y, z) can be written in the form

P(a, b, c|x, y, z) = Â
l

qlPl(a, b|x, y)Pl(c|z) + Â
µ

qµPµ(a, c|x, y, z)Pµ(b|y) + Â
n

qnPn(b, c|y, z)Pn(a|x) (28)

where the terms obey the relativistic causality constraints Eq.(12). Then the correlations P(a, b, c|x, y, z) are said to be causal
bi-local. Otherwise, we say that they are genuinely 3-way causal non-local.
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XI. DISCUSSION.

One of the main messages of this paper is that boxes in the post-quantum scenario, where one only restricts to the
constraints imposed by relativistic causality, should be labeled by the space-time locations of the parties performing
the measurement. The correlations that the parties’ observe can then exhibit various dependencies while still being
consistent with relativistic causality. The precise space-time region where this influence can occur was shown.

Novel protocols using quantum correlations to circumvent the attacks on the randomness protocols discussed
here, are pursued in [57].

P(a, c|x, y, z) =
P(a, c|x, z)P(y|a, c, x, z)

P(y|x, z)
= P(a, c|x, z) Free-Will: P(y|a, c, x, z) = P(y|x, z) = P(y) (33)

P(a1, a2|x1, x2, Q, l) = P(a1|x1, x2, Q, l)P(a2|x1, x2, Q, l) (34)

Proposition 7. Consider the n-party GHZ-Mermin Bell inequality, for odd n � 3. Suppose that in some inertial reference
frame, the n space-like separated parties are arranged in 1-D, with r1 < · · · < rn and perform their measurements simultane-
ously, i.e., t1 = · · · = tn. Then for any input x⇤ appearing in the inequality, i.e., x⇤ 2 X

n
Merm, there exists a box P violating

the Mermin inequality maximally and obeying the relativistic causality constraints in Eq.(21), such that no randomness can be
extracted from the outputs a of the box under input x⇤. In other words, we have

P(a⇤
|x⇤) = 1, (35)

for some fixed output bit string a⇤.

Definition 8. Suppose that P(a, b, c|x, y, z) can be written in the form

P(a, b, c|x, y, z) = Â
l

qlPl(a, b|x, y)Pl(c|z) + Â
µ

qµPµ(a, c|x, y, z)Pµ(b|y) + Â
n

qnPn(b, c|y, z)Pn(a|x) (36)

where the terms obey the relativistic causality constraints Eq.(21). Then the correlations P(a, b, c|x, y, z) are said to be causal
bi-local. Otherwise, we say that they are genuinely 3-way causal non-local.

P(abc|xyz) =
1
8
[1 + (�1)a

hAxi+ (�1)b
hByi+ (�1)c

hCzi+ (�1)a+b
hAxByi+

(�1)b+c
hByCzi+ (�1)a+c

hAxCziy + (�1)a+b+c
hAxByCzi]. (37)

0  6 � 2hA1B1i � 2hA2B1i � (1/2)hA1C1iy=1 � (1/2)hA1C1iy=2 + (1/2)hA2C1iy=1 + (1/2)hA2C1iy=2 � hA1B2C1i

+hA2B2C1i � (1/2)hA1C2iy=1 � (1/2)hA1C2iy=2 + (1/2)hA2C2iy=1 + (1/2)hA2C2iy=2 + hA1B2C2i � hA2B2C2i

(38)

|Wi =
1
p

3
(|001i+ |010i+ |100i) . (39)
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|Wi =
1
p

3
(|001i+ |010i+ |100i) . (39)

Ai = sin(ai)sx + cos(ai)sz,
Bj = sin(b j)sx + cos(b j)sz,
Ck = sin(gk)sx + cos(gk)sz. (40)

a1 = 4.51, a2 = �1.76, b1 = 4.81, b2 = 6.13, g1 = �1.13, g2 = 4.98. (41)
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Supplemental Material. Here, we present the formal
proofs of the propositions stated in the main text.

Lemma 4. Relativistic causality of the events A, B and E is
satisfied if the following two conditions hold.

• Eve by her choice of input at E does not directly affect
the individual statistics of the outcomes at points A and
B separately.

• Eve by her choice of input at E is not able to signal
to any space-time point S wth XS := (tS, rS) via her
modification of the joint distribution of the outcomes at
A and B.

While the first condition above is ensured by simply
imposing Eq.(5) the second condition is more subtle. We
observe that in order for Eve to signal to a space-time
point S via her inflluence of the correlations at A and
B the following constraints must hold. The sum of the
time taken for an influence (at speed u > c) to move
from E to A and the time taken for a signal (at speed c)
to move from A to S must be less than the time taken
for a signal at speed c to travel from E to S directly. To
elaborate, E may superluminally influence the measure-
ment at A which subsequently signals to the event S or
alternatively, E may signal to S (signaling being by def-
inition at speed c). A similar condition must also hold
for the influence traveling via point B.

P. Horodecki and R. R., in preparation.
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Claim 1. On every ray from the apex E through the interior
of the cone, one can find a point P such that

t
E

u
�!A

+ t
A

c
�!P

 t
E

c
�!P

. (37)

Proof. Consider a far enough point P on the ray ema-
nating from E and passing through the interior of the
cone such that the sphere B(P; |PA|) does not intersect
B(E; a|EA|). Let F denote the point at which the ray in-
tersects the sphere B(P; |PA|). By construction, we have
]PFA < p

2 so that such a sphere can always be drawn
and we see that F does not lie on B(E; a|EA|). This con-
struction is illustrated in the Fig.... ut

Similarly, for the signal from B to reach S before the
one from E, we must have

S 2 int [C(E; T(B, B(E; a|EB|)))] . (38)

Therefore, in order to exclude every point in space
from a superluminal influence from E, one must
ensure that either C(E; T(A, B(E; a|EA|))) \

C(E; T(B, B(E; a|EB|))) = E or that the two cones
only intersect at a common tangent plane. In this
case, no point S different from E exists such that E
superluminally signals to S via her influence of A and
B.

Alternatively, if the intersection
C(E; T(A, B(E; a|EA|))) \ C(E; T(B, B(E; a|EB|)))
is a three-dimensional region, then by Claim 1 one can
explicitly find an S in this region obeying both Eqs. (36)
and (38), so that superluminal signaling to such an S
occurs. ut

Having Lemma 6 we can proceed to identify for given
rA, rB the region of allowable rE such that no causal-
ity condition is violated (in the chosen reference frame).
Given the points A, B let �(AB; q) denote a circle con-
taining AB as a chord and q as the angle in the minor
segment of the circle. Note that there are an infinite
number of such circles, one for each plane containing the
line segment AB. Let us also denote by Seg(�(AB; q))
the corresponding minor segment of the circle. The fol-
lowing theorem shows that the possible space coordi-
nates rE lie within the shaded region (in green) in Fig.
3.

Theorem 7. Consider measurement events A, B with cor-
responding space coordinates rA, rB in a chosen inertial ref-
erence frame I. Then a measurement event E can superlu-
minally influence the correlations between A and B at speed
u > c without violating causality in I if and only if its space
coordinate rE satisfies

rE 2 Seg(�(AB; ja)) (39)

for any circle � with AB as a chord and having angle ja as
the angle in the corresponding minor segment, where ja =
p � 2 arcsin(a) and a = c/u.

Proof. We have seen in Lemma 6 that in order for E to
influence the correlations between A and B at speed u
without violating causality, we must have that the cones
C(E; T(A, B(E; a|EA|))) and C(E; T(B, B(E; a|EB|))) at
most share a common tangent plane, in particular that
the intersection of their interiors is empty.

Let us first consider the case that
C(E; T(A, B(E; a|EA|))) and C(E; T(B, B(E; a|EB|)))
share a common tangent plane passing through the
points A1, B1 where A1 is a point of intersection
of the sphere B(E; a|EA|) and its tangent plane
from A, T(A, B(E; a|EA|)) and similarly B1 is a
point of intersection of the sphere B(E; a|EB|)
and T(B, B(E; a|EB|)), such that E, A1, B1 lie on
one line. By the property of the tangent we have
that ]EA1 A = ]EB1B = p

2 . Also by definition
we have that |EA1|

|AE| = |EB1|
|BE| = a = c/u so that

]EAA1 = ]EBB1 = arcsin (a). Consequently,
we obtain that any point E for which the cones
C(E; T(A, B(E; a|EA|))) and C(E; T(B, B(E; a|EB|)))
share a common tangent plane has space coordinate in
the chosen inertial reference frame satisfying

]AEB = p � 2 arcsin(a) = ja. (40)

By the fact that angles on the same segment of a cir-
cle are equal, we have that all such points lie on a
minor segment of a circle (the segment is minor since
p � 2 arcsin(a) � p

2 for a < 1) having AB as a chord and
with ja as the corresponding angle in the segment. This
shows the statement for points on the boundary of the
region Seg(�(AB; ja)). For all such points the cones
C(E; T(A, B(E; a|EA|))) and C(E; T(B, B(E; a|EB|)))
share a common tangent plane.

Now consider the points that lie within this region.
For any such point, we have that ]AEB > p �

2 arcsin(a). By construction we know that ]EAA1 =
]EBB1 = arcsin (a) so that by the perpendicular-
ity of the tangent with the radius of the sphere, we
have ]AEA1 = ]BEB1 = p/2 � arcsin(a). There-
fore, for points that lie within the region, the cones
C(E; T(A, B(E; a|EA|))) and C(E; T(B, B(E; a|EB|)))
intersect only at E, this is the case illustrated in Fig. 2.

For points outside this region we readily see that
C(E; T(A, B(E; a|EA|))) and C(E; T(B, B(E; a|EB|)))
neither intersect only at E nor share only a common tan-
gent plane. We see by Lemma 6 that such points violate
causality and therefore cannot be the space coordinates
of E in the chosen reference frame. ut

Proposition 8. Consider the n-party GHZ-Mermin Bell in-
equality, for odd n � 3. For any input x⇤ appearing in the
inequality, i.e., x⇤ 2 X

n
Merm, there exists a box P violating

the Mermin inequality maximally and obeying the relativistic
causality constraints in Eq.(12), such that no randomness can
be extracted from the outputs a of the box under input x⇤. In

5

Let XA := (rA, tA), XB := (rB, tB) and XE := (rE, tE)
denote the space-time coordinates of three measurement
events of parties Alice, Bob and Eve (in one round of
the Bell experiment). Let us assume that Eve by her
choice of input is able to influence the correlations be-
tween Alice and Bob’s outcomes, and let u denote the
speed of this influence in a particular chosen reference
frame. From the spatial separation of the three measure-
ment events, we infer that u > c. Such an influence acts
at a distance to modify the correlations between the par-
ticles at A and B. As such it is a nonlocal effect outside
the framework of quantum mechanics.

Let us then deal with the more usual (laboratory) situ-
ation of a fixed rA, rB, rE and some given tE and consider
the times tA, tB (both greater than tE) beyond which an
Eve with a fixed speed of influence u is able to affect the
correlations between the A and B systems.

Here u is then formally equal to

u :=
|rA � rE|

tA � tE
=

|rB � rE|

tB � tE
. (7)

Given the fixed speed of influence u and fixed labora-
tory locations rA, rB our problem is to identify for which
(rE, tE) there exist times tA, tB such that an influence
from E on the correlations between the events at A and
B respects relativistic causality.

For fixed u, fixed coordinates rA, rB, rE and measure-
ment by Eve at time tE, we have that for any measure-
ments by Alice and Bob at times t0A, t0B obeying

t0A � tA = tE +
|rA � rE|

u

t0B � tB = tE +
|rB � rE|

u
(8)

that relativistic causality is respected if and only if
the coordinates rE satisfy the condition in Theorem ??.
Clearly, for fixed u > c and tE, tA and tB are the mini-
mum times at which any influence from E at speed u can
be felt at A and B respectively so that this completely
characterizes the possible space-time region from which
any Eve is able to influence the correlations between Al-
ice and Bob’s systems.

Faster-than-light communication.-
Lorentz invariance of the theory.- The two conditions im-

posed by relativistic causality in Lemma 4 are manifestly
Lorentz covariant, i.e., if the intersection of the future
light cones of A and B is contained in the future light
cone of E in one inertial reference frame, then this inter-
section is contained in the future cone of E in all inertial
reference frames. However, the superluminal influence
at speed u is not Lorentz invariant, and is specified in
the chosen inertial frame. In contrast to [] however, this
superluminal influence

We also consider whether A, B are able to influence E
i.e. whether the local statistics at E can depend on the
correlations between the inputs at A and B. However,

correlations between the inputs of A and B can be cre-
ated by for example A, B sharing entangled states and
using the outputs of measurements on these states as
the inputs to their box. Moreover, B can locally change
the correlations between himself and A so that if such
a mechanism existed, then B would be signaling to E.
It is clear that the points that are in the intersection of
the future light cones of A and B are time-like separated
from E so E cannot itself be in the intersection. There-
fore, such effects are prohibited by relativistic causal-
ity. In a three-party scenario, the new relativistically
causal constraints (as opposed to the no-signaling ones)
are that A, E correlations are independent of B, B, E cor-
relations are independent of A, each individual party’s
output is independent of the input strings of the other
parties, however the correlations between A, B can de-
pend upon B’s input. In the N party scenario, the cor-
relations of 2  m < N parties can depend upon the
inputs of a set of m0 parties from the complementary set
so long as the intersection of the future light cones of the
measurement events of the m parties lies within the in-
tersection of the future light cones of the measurement
events of the m0 parties.

The main message of this paper is that boxes in the
post-quantum scenario, where one only restricts to the
constraints imposed by relativistic causality, should be
tagged by the space-time locations of the parties per-
forming the measurement. The correlations that the
parties’ observe can then exhibit various dependencies
while still being consistent with relativistic causality.
The precise space-time region where this influence can
occur was shown.

It is instructive to discuss the present result in the con-
text of [24]. There hidden faster than light point-to-point
signaling with finite velocity implies faster than light
(infinite) point-to-point communication. In our case it is
not so. Namely, non-hidden, but manifestly, yet a pos-
teriori detectable, faster than light communication from
point to many-points correlations do not allow to sig-
nal in a usual point-to-point sense. Only after the ob-
servers meet (or exchange the messages in a sublumi-
nal way) the hidden effect can be revealed. This is also
because it only holds in some space-time region which
prevents the two observers to become a "delocalised"
transmission station that helps to convey the message in
an effective superluminal velocity to some fourth party.
The interesting thing is to apply our (defining admissi-
ble space-time regions) approach to the scenario in [].
Finally, our approach shows that it is possible to have
manifestly non-local (in a Bohmian sense) theory which
gives non-trivial predictions that are Lorentz covariant.
The Bohmian effect is here in the sudden switching off
the effect when some of the particles escapes the admis-
sible regions.

Multi-party No-Signaling.- We now extend to the
multi-party scenario the above possible space-time re-
gion that respects relativistic causality while influencing
non-local correlations at superluminal velocities. Con-
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Figure 3:

other words, we have

P(a⇤
|x⇤) = 1, (41)

for some fixed output bit string a⇤.

Proof. The proof is by explicit construction of the n-party
box P satisfying the relativistic causality constraints
Eq.(12) and violating the Mermin inequality maximally
that returns a deterministic output for the fixed input
x⇤ 2 X

n
Merm.

Let us first list the set of constraints that P must obey.
Split the set of inputs X

n
Merm appearing in the Mermin

inequality into two subsets

X
n,�1
Merm := {x|Â

i
xi = n � 2k, k 2 Z, k odd}

X
n,1
Merm := {x|Â

i
xi = n � 2k, k 2 Z, k even}. (42)

Then for the inputs x in the set X n,�1
Merm, the box P is re-

quired to give outputs such that the value of the n-party
correlation function is �1, i.e.,

hx1 . . . xni =

P(�n
i=1ai = 0|x1, . . . , xn)� P(�n

i=1ai = 1|x1, . . . , xn) = �1,

8x 2 X
n,�1
Merm. (43)

Similarly for the inputs x 2 X
n,1
Merm, the outputs from

the box are required to yield a value of 1 for the n-party
correlation function, i.e.,

hx1 . . . xni =

P(�n
i=1ai = 0|x1, . . . , xn)� P(�n

i=1ai = 1|x1, . . . , xn) = 1,

8x 2 X
n,1
Merm. (44)

For the given fixed input x⇤ 2 X
n
Merm, the box P is re-

quired to return a deterministic input a⇤, this is the con-
straint from Eq.(41). The box P is also required to obey

all of the relativistic causality constraints from Eq.(12).
Finally, as usual we have the non-negativity and nor-
malization constraints for the probability distributions,
i.e.,

P(a|x) � 0 8a, x

Â
a
P(a|x) = 1 8x. (45)

We will show a binary-tree algorithmic construction of
P obeying all the constraints Eqs.(12, 41, 43, 44, 45) for
given x⇤ 2 X

n,1
Merm. The construction for x 2 X

n,�1
Merm will

follow along analogous lines.

Algorithm 1 Construction of box P

1: procedure CONSTRUCTION OF P

2: Let x⇤ 2 X
n,1
Merm be given. Initiate as step 0, al(x⇤) =

ar(x⇤) = a⇤ (the all-0 bit string).
3: At the (2j + 1)-th step, 0  j  n�1

2 , 8 1  i1  · · · 

i2j+1  n, if x⇤i2j+1
= 0 define

al(x⇤ � 1i1 � · · ·� 1i2j+1 ) := al(x⇤ � 1i1 � · · ·� 1i2j )

ar(x⇤ � 1i1 � · · ·� 1i2j+1 ) := ar(x⇤ � 1i1 � · · ·� 1i2j )� 1ij .
(46)

If on the other hand, x⇤i2j+1
= 1 define

al(x⇤ � 1i1 � · · ·� 1i2j+1 ) := al(x⇤ � 1i1 � · · ·� 1i2j )� 1i2j+1

ar(x⇤ � 1i1 � · · ·� 1i2j+1 ) := ar(x⇤ � 1i1 � · · ·� 1i2j ).
(47)

4: At the 2j-th step 1  j  n�1
2 , 8 1  i1  · · ·  i2j  n,

if x⇤i2j
= 0 define

al(x⇤ � 1i1 � · · ·� 1i2j ) := al(x⇤ � 1i1 � · · ·� 1i2j�1 )� 1i2j

ar(x⇤ � 1i1 � · · ·� 1i2j ) := ar(x⇤ � 1i1 � · · ·� 1i2j�1 ).
(48)

If on the other hand, x⇤i2j
= 1 define

al(x⇤ � 1i1 � · · ·� 1i2j ) := al(x⇤ � 1i1 � · · ·� 1i2j�1 )

ar(x⇤ � 1i1 � · · ·� 1i2j ) := ar(x⇤ � 1i1 � · · ·� 1i2j�1 )� 1i2j .
(49)

5: 8x, set

P(al(x)|x) = P(ar(x)|x) =
1
2

,

P(a|x) = 0, otherwise. (50)

6: end procedure

The proof that the binary tree algorithm yields a box
with the desired properties is done by induction. First
consider the base steps. We are given x⇤ 2 X

n,1
Merm, and a

fixed output bit string of even parity a⇤ (the all-0 string).
The algorithm sets P(a⇤|x⇤) = 1 and P(a|x⇤) = 0 for
a 6= a⇤. This assignment clearly satisfies both Eqs. (41)

P. Horodecki and R. R., in preparation.

If we abandon the notion of a preferred frame, the regions transform. 
Consequences are still Lorentz covariant. 



Summary 

• Re-examined the derivation of the no-signaling constraints from causality. 

• Implications in many directions, including quantum cryptographic and finite-
superluminal explanations of quantum non-local correlations. 
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Summary and Open Questions
• Re-examine the ubiquitous no-signaling constraints from strict relativistic causality.

• Superluminal travel is logically perfectly possible as long as it leads to a consistent 
story that unfolds in time.

• “Non-local yet causal” theory that is different from Bohmian: allows for a notion of 
free-will. 

• Open: “Extended quantum correlations” that obey the new constraints. Principles 
to rule out such correlations and dynamics.
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No-Signaling Polytope

• LHV ⊂ Q ⊂ NS. 

• In the B(2,2,2) scenario, non-local extreme box of NS is the PR box.

x1 x2 x3

a1 a2 a3

X1 X2 X3

A1 A2 A3

• If there exists a distillation protocol (wirings of boxes plus shared randomness) that maps many copies of 
a box P to a non-local vertex, then P ∉ Q(n,m,k).

• Consider an admixture of a non-local vertex Pnnl with a classical box Pnc

• We show that for any ε > 0 (arbitrary close to the classical polytope), and any n, Pε,n can be distilled to 
the non-local vertex Pnnl,ex, so it is immediately excluded from the quantum set Pε,n ∉ Q(n,m,k).

Applications: Exclusion of boxes using 
non-locality distillation

2

classical polytope C(n,m, k) ✓ NS(n,m, k). The set of
quantum correlations Q(n,m, k) is defined as follows:
P 2 Q(n,m, k) if there exist a state | i, sets of measure-
ment operators {Exi,ai

i } for each party such that for all
inputs and outputs

P (a|x) = h |⌦n
i=1 E

xi,ai
i | i (2)

with the measurement operators satisfying the require-
ments of hermiticity (Exi,ai

i
†
= Exi,ai

i , 8xi, ai), orthog-
onality (Exi,ai

i E
xi,a

0
i

i = �ai,a0
i
Exi,ai

i , 8xi) and complete-
ness (

P
ai
Exi,ai

i = 11, 8xi). This set is convex but in
general is not a polytope, and C(n,m, k) ✓ Q(n,m, k) ✓
NS(n,m, k).

We are interested in the vertices of the no-signaling
polytope, a box P being a vertex if it cannot be ex-
pressed as a non-trivial convex combination of the boxes
in NS(n,m, k).

Theorem 1. For some (arbitrary) (n,m, k), let Pnl be a
vertex of the no-signaling polytope NS(n,m, k) such that
Pnl /2 C(n,m, k). Then Pnl /2 Q(n,m, k).

Non-local games with no quantum winning strategy. If
one is able to identify a non-local game that has a sin-
gle unique winning no-signaling strategy (where by a
winning strategy we mean one that achieves maximal
value 1), then such a strategy (being a vertex) cannot be
realized in quantum theory. So that denoting by !q(g)
the quantum value of the game (!c(g) denotes the clas-
sical value), we have !q(g) 6= 1. A unique game is
defined by the following winning condition: for each
x and each set of outcomes of any chosen n � 1 par-
ties, a(j)n�1 = a \ aj 8j, the remaining party is required
to output a single unique aj specified by a function
aj = �(j)

x

⇣
a(j)
n�1

⌘
with �(j)

x

⇣
a(j)n�1

⌘
6= �(j)

x

⇣
a’(j)n�1

⌘
for

⇣
a(j)n�1 6= a’(j)n�1)

⌘
; the term total refers to the fact that

such a winning constraint is imposed for every set of
inputs x. We now introduce the notion of a no-signaling
graph associated with any non-local game.

Definition. For any non-local game g, we define the no-
signaling graph GNS(g) = (V,E) associated with the game
to have set of vertices v 2 V, each of which is labeled by a set
of inputs and outputs that wins the game, v =

�
a(v), x(v)�.

Two vertices v,v’ 2 V are connected be an edge if 9S ✓
[n] with |S| = n � 1 such that (a(v)

i = a(v’)
i ^ x(v)

i =

x(v’)
i ) 8i 2 S.

Lemma 2. A total multi-player unique game gU is won by a
single unique non signaling box if and only if the no-signaling
graph GNS(gU ) associated to the game is connected; for such
a game !q(gU ) 6= 1.

Exclusion of boxes by distilling many copies to a vertex. If
there exists a distillation protocol that deterministically
maps a certain number of copies of a box P to a non-
local vertex, then P /2 Q(n,m, k).

As an illustration, consider the box defined as

Pnl,ex
n (a|x) =

⇢
1

kn�1 : �n
i=1ai (mod k) =

Qn
i=1 xi

0 : otherwise (3)

We now examine an admixture of the above non-local
vertex with a locally correlated box Pc,ex defined as

Pc,ex
n (a|x) =

⇢
1

kn�1 : �n
i=1ai (mod k) = 0

0 : otherwise (4)

A generalization of the distillation protocol in [13],
shows that for any " 2 (0, 1), many copies of the box

P",n = "Pnl,ex
n + (1� ")Pc,ex

n (5)

can be distilled to the vertex Pnl,ex
n , so that the box P",n

for arbitrary "(> 0), n (arbitrarily close to the classical
polytope) is immediately excluded from the quantum
set.

Lemma 3. For any " 2 (0, 1) there exists a deterministic
distillation protocol D that maps P⌦r

",n to Pnl,ex
n for large r,

i.e., D : P⌦r
",n

r!1���! Pnl,ex
n .
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ments of hermiticity (Exi,ai
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ness (
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Exi,ai

i = 11, 8xi). This set is convex but in
general is not a polytope, and C(n,m, k) ✓ Q(n,m, k) ✓
NS(n,m, k).

We are interested in the vertices of the no-signaling
polytope, a box P being a vertex if it cannot be ex-
pressed as a non-trivial convex combination of the boxes
in NS(n,m, k).

Theorem 1. For some (arbitrary) (n,m, k), let Pnl be a
vertex of the no-signaling polytope NS(n,m, k) such that
Pnl /2 C(n,m, k). Then Pnl /2 Q(n,m, k).

Non-local games with no quantum winning strategy. If
one is able to identify a non-local game that has a sin-
gle unique winning no-signaling strategy (where by a
winning strategy we mean one that achieves maximal
value 1), then such a strategy (being a vertex) cannot be
realized in quantum theory. So that denoting by !q(g)
the quantum value of the game (!c(g) denotes the clas-
sical value), we have !q(g) 6= 1. A unique game is
defined by the following winning condition: for each
x and each set of outcomes of any chosen n � 1 par-
ties, a(j)n�1 = a \ aj 8j, the remaining party is required
to output a single unique aj specified by a function
aj = �(j)
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; the term total refers to the fact that

such a winning constraint is imposed for every set of
inputs x. We now introduce the notion of a no-signaling
graph associated with any non-local game.

Definition. For any non-local game g, we define the no-
signaling graph GNS(g) = (V,E) associated with the game
to have set of vertices v 2 V, each of which is labeled by a set
of inputs and outputs that wins the game, v =

�
a(v), x(v)�.

Two vertices v,v’ 2 V are connected be an edge if 9S ✓
[n] with |S| = n � 1 such that (a(v)

i = a(v’)
i ^ x(v)

i =

x(v’)
i ) 8i 2 S.

Lemma 2. A total multi-player unique game gU is won by a
single unique non signaling box if and only if the no-signaling
graph GNS(gU ) associated to the game is connected; for such
a game !q(gU ) 6= 1.

Exclusion of boxes by distilling many copies to a vertex. If
there exists a distillation protocol that deterministically
maps a certain number of copies of a box P to a non-
local vertex, then P /2 Q(n,m, k).

As an illustration, consider the box defined as

Pnl,ex
n (a|x) =

⇢
1

kn�1 : �n
i=1ai (mod k) =

Qn
i=1 xi

0 : otherwise (3)

We now examine an admixture of the above non-local
vertex with a locally correlated box Pc,ex defined as

Pc,ex
n (a|x) =

⇢
1

kn�1 : �n
i=1ai (mod k) = 0

0 : otherwise (4)

A generalization of the distillation protocol in [13],
shows that for any " 2 (0, 1), many copies of the box

P",n = "Pnl,ex
n + (1� ")Pc,ex

n (5)

can be distilled to the vertex Pnl,ex
n , so that the box P",n

for arbitrary "(> 0), n (arbitrarily close to the classical
polytope) is immediately excluded from the quantum
set.

Lemma 3. For any " 2 (0, 1) there exists a deterministic
distillation protocol D that maps P⌦r

",n to Pnl,ex
n for large r,

i.e., D : P⌦r
",n

r!1���! Pnl,ex
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single unique non signaling box if and only if the no-signaling
graph GNS(gU ) associated to the game is connected; for such
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there exists a distillation protocol that deterministically
maps a certain number of copies of a box P to a non-
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As an illustration, consider the box defined as
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⇢
1

kn�1 : �n
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n , so that the box P",n

for arbitrary "(> 0), n (arbitrarily close to the classical
polytope) is immediately excluded from the quantum
set.

Lemma 3. For any " 2 (0, 1) there exists a deterministic
distillation protocol D that maps P⌦r

",n to Pnl,ex
n for large r,

i.e., D : P⌦r
",n

r!1���! Pnl,ex
n .

Acknowledgements. This work is supported by the ERC
grant QOLAPS, the EU grant RAQUEL (No. 323970),
and the Foundation for Polish Science TEAM project
co-financed by the EU European Regional Development
Fund.

⇤ Electronic address: ravishankar.r.10@gmail.com
[1] B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).
[2] G. Brassard, H. Buhrman, N. Linden, A. A. Methot, A.

Tapp and F. Unger, Phys. Rev. Lett. 96, 250401 (2006).
[3] N. Linden, S. Popescu, A. J. Short and A. Winter, Phys.

Rev. Lett. 99, 180502 (2007).
[4] M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A.

Winter and M. Zukowski, Nature 461, 1101 (2009).
[5] M. Navascués and H. Wunderlich, Proc. Royal Soc. A 466:

881 (2009).
[6] T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves,

A. Leverrier and A. Acı́n, Nature Communications 4, 2263
(2013).

[7] A. Cabello, Phys. Rev. Lett. 110, 060402 (2013).
[8] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt,

Phys. Rev. Lett. 23, 880 (1969).
[9] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).

[10] A. Cabello, S. Severini and A. Winter, arXiv/quant-
ph:1010.2163 (2010).

[11] A. Acı́n, T. Fritz, A. Leverrier and A. B. Sainz, arXiv:
1212.4084 (2012).

[12] A. Schrijver, ”Combinatorial Optimization. Polyhedra
and Efficiency”. Vol. A, volume 24 of Algorithms and
Combinatorics. Springer-Verlag, Berlin (2003).

[13] N. Brunner and P. Skrzypczyk, Phys. Rev. Lett. 102,
160403 (2009).

[14] R. Ramanathan, J. Tuziemski, M. Horodecki, P.
Horodecki, arXiv: 1410.0947 (2014).

2

classical polytope C(n,m, k) ✓ NS(n,m, k). The set of
quantum correlations Q(n,m, k) is defined as follows:
P 2 Q(n,m, k) if there exist a state | i, sets of measure-
ment operators {Exi,ai

i } for each party such that for all
inputs and outputs

P (a|x) = h |⌦n
i=1 E

xi,ai
i | i (2)

with the measurement operators satisfying the require-
ments of hermiticity (Exi,ai

i
†
= Exi,ai

i , 8xi, ai), orthog-
onality (Exi,ai

i E
xi,a

0
i

i = �ai,a0
i
Exi,ai

i , 8xi) and complete-
ness (

P
ai
Exi,ai

i = 11, 8xi). This set is convex but in
general is not a polytope, and C(n,m, k) ✓ Q(n,m, k) ✓
NS(n,m, k).

We are interested in the vertices of the no-signaling
polytope, a box P being a vertex if it cannot be ex-
pressed as a non-trivial convex combination of the boxes
in NS(n,m, k).

Theorem 1. For some (arbitrary) (n,m, k), let Pnl be a
vertex of the no-signaling polytope NS(n,m, k) such that
Pnl /2 C(n,m, k). Then Pnl /2 Q(n,m, k).

Non-local games with no quantum winning strategy. If
one is able to identify a non-local game that has a sin-
gle unique winning no-signaling strategy (where by a
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maps a certain number of copies of a box P to a non-
local vertex, then P /2 Q(n,m, k).
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PR Box

CHSH inequality

Non-Locality setup
• Bell scenario B(n,m,k): n parties, m settings and k outcomes.

• Box: Set of distributions P(a|x) = P(a1,...,an|x1,...,xn). Non-negativity: P(a|x) ≥ 0.                                               
Normalization: ∑a P(a|x) = 1. No-Signaling:

• Boxes obeying these form the No-Signaling Polytope NS(n,m,k).                           

I. Pitowsky, Quantum Probability - Quantum Logic, Springer-Verlag Vol. 321 (1989).
A. Peres, Foundations of Physics 29(4) 589 (1999).
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noise, such a box exhibits non-local correlations with the
eavesdropper’s system. We conclude with some open
questions.

Extremal no-signaling correlations. Consider the n-party
Bell scenario labeled by (Ai,Xi) with i 2 [n] (with
[n] := {1, . . . , n}), where the sets Xi of size mi denote the
respective inputs xi of the n parties, while the sets Ai of
size ki denote their respective outputs ai. The number of
inputs mi and outputs ki for each party is arbitrary but
for convenience of notation we will consider mi = m
and ki = k, 8i 2 [n], whenever such a simplification
does not affect the generality of the argument. A box
P describes a set of conditional probability distributions
P (a|x) with a = {a1, . . . , an} 2 A, x = {x1, . . . , xn} 2 X
where A = A1 ⇥ . . .An and similarly X = X1 ⇥ . . .Xn;
the Bell scenario corresponding to this box is denoted
as B(n,m, k). The box P is a valid no-signaling box for
the Bell scenario if it satisfies: (i) Positivity: P (a|x) �
0 8a, x; (ii) Normalization:

P
a P (a|x) = 1 8x; and (iii)

No-signaling:
X

ai

P (a|x(i)) =
X

ai

P (a|x’(i)) 8a, x(i), x’(i), i, (1)

where x(i) = {x1, . . . , xi, . . . , xn} and x’(i) =
{x1, . . . , xi�1, x0

i
, xi+1, . . . , xn}. The set of all boxes satis-

fying the above conditions forms the no-signaling con-
vex polytope

NS(n,m, k) = {P 2 R(mk)n : A · |Pi  |bi}

of dimension D =
Q

n

i=1 [mi(ki � 1) + 1] � 1. Here the
constraints (i) - (iii) are written in terms of the matrix A
and the vector |bi, and the box P is written as a vector
of length (mk)n. Boxes that satisfy in addition the in-
tegrality constraint: (iv) Integrality: P (a|x) 2 {0, 1} are
said to be classical (deterministic) boxes Pd. The con-
vex hull of these deterministic boxes gives rise to the
classical polytope C(n,m, k) ✓ NS(n,m, k). The set of
quantum correlations Q(n,m, k) is defined as follows:
P 2 Q(n,m, k) if there exist a state | i, sets of measure-
ment operators {Exi,ai

i
} for each party such that for all

inputs and outputs

P (a|x) = h |⌦n

i=1 E
xi,ai
i

| i (2)

with the measurement operators satisfying the require-
ments of hermiticity (Exi,ai

i

†
= Exi,ai

i
, 8xi, ai), orthog-

onality (Exi,ai
i

E
xi,a

0
i

i
= �ai,a

0
i
Exi,ai

i
, 8xi) and complete-

ness (
P

ai
Exi,ai

i
= 11, 8xi). This set is convex but in

general is not a polytope, and C(n,m, k) ✓ Q(n,m, k) ✓
NS(n,m, k).

We are interested in the vertices of the no-signaling
polytope, a box P being a vertex if it cannot be ex-
pressed as a non-trivial convex combination of the boxes
in NS(n,m, k). The vertex of a polytope is a point such
that the normal cone to the point has full dimension, and

every vertex satisfies in a unique way a certain number
of the inequality constraints in A · |Pi  |bi with equal-
ity. Formally the vertex is characterized as follows [12]:

Fact 1. A box P is a vertex of the no-signaling polytope
NS(n,m, k) if any only if rank(Ã) = (mk)n where Ã de-
notes the sub-matrix of A consisting of those row vectors Ai

for which Ai · |Pi = |bii.

For two distinct vertices P and P 0, the correspond-
ing sub-matrices are not equal

⇣
Ã(P) 6= Ã(P 0)

⌘
. A non-

local vertex is one that does not belong to C(n,m, k).
We use recently discovered connections between con-
textuality and non-local game scenarios to graph theory
[6, 10, 11] to show that such a vertex also does not belong
to the quantum set Q(n,m, k).

Theorem 1. For some (arbitrary) (n,m, k), let Pnl be a
vertex of the no-signaling polytope NS(n,m, k) such that
Pnl /2 C(n,m, k). Then Pnl /2 Q(n,m, k).

Non-local games with no quantum winning strategy. An
immediate application of Theorem 1 is that if one is
able to identify a non-local game that has a single
unique winning no-signaling strategy (where by a win-
ning strategy we mean one that achieves maximal value
1), then such a strategy (being a vertex) cannot be real-
ized in quantum theory. So that denoting by !q(g) the
quantum value of the game (!c(g) denotes the classical
value), we have !q(g) 6= 1. Here, we consider a class
of Bell inequalities known as total unique games (gU ) for
multiple players, which are a family of games of great
interest in the field of hardness of approximation (in de-
termining the algorithmic complexity of finding close
to optimal solutions for optimization problems) as seen
in the famous unique games conjecture [13]. A unique
game is defined by the following winning condition: for
each x and each set of outcomes of any chosen n � 1

parties, a(j)
n�1 = a \ aj 8j, the remaining party is re-

quired to output a single unique aj specified by a func-
tion aj = �(j)

x

⇣
a(j)
n�1

⌘
with �(j)

x

⇣
a(j)
n�1

⌘
6= �(j)

x

⇣
a’(j)

n�1

⌘

for
⇣

a(j)
n�1 6= a’(j)

n�1)
⌘

; the term total refers to the fact that
such a winning constraint is imposed for every set of in-
puts x. We now introduce the notion of a no-signaling
graph associated with any non-local game.

Definition. For any non-local game g, we define the no-
signaling graph GNS(g) = (V,E) associated with the game
to have set of vertices v 2 V, each of which is labeled by a set
of inputs and outputs that wins the game, v =

�
a(v), x(v)�.

Two vertices v,v’ 2 V are connected be an edge if 9S ✓
[n] with |S| = n � 1 such that (a(v)

i
= a(v’)

i
^ x(v)

i
=

x(v’)
i

) 8i 2 S.

Lemma 2. A total multi-player unique game gU is won by a
single unique non signaling box if and only if the no-signaling

x1 x2 x3
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ai ∈ [k]

xi ∈ [m]

Correlation is not causation!

Extremal No-Signaling Boxes

• Dimension D of the polytopes ((mk)n free parameters - ind. constraints)

• A vertex is a box that cannot be expressed as a convex combination of two or more boxes in NS(n,m,k).                            
A non-local vertex is one that does not belong to C(n,m,k), e.g. PR box in NS(2,2,2).

• Every vertex satisfies in a unique way D independent non-negativity constraints in A. |P> ≤ |b> with equality.

• Eg. PR box. a1 ⊕ a2 = x1 . x2 identified by the 8 zeros in the 8-dim polytope

T. Fritz, J. Math. Phys. 53, 072202 (2012).

2

noise, such a box exhibits non-local correlations with the
eavesdropper’s system. We conclude with some open
questions.

Extremal no-signaling correlations. Consider the n-party
Bell scenario labeled by (Ai,Xi) with i 2 [n] (with
[n] := {1, . . . , n}), where the sets Xi of size mi denote the
respective inputs xi of the n parties, while the sets Ai of
size ki denote their respective outputs ai. The number of
inputs mi and outputs ki for each party is arbitrary but
for convenience of notation we will consider mi = m
and ki = k, 8i 2 [n], whenever such a simplification
does not affect the generality of the argument. A box
P describes a set of conditional probability distributions
P (a|x) with a = {a1, . . . , an} 2 A, x = {x1, . . . , xn} 2 X
where A = A1 ⇥ . . .An and similarly X = X1 ⇥ . . .Xn;
the Bell scenario corresponding to this box is denoted
as B(n,m, k). The box P is a valid no-signaling box for
the Bell scenario if it satisfies: (i) Positivity: P (a|x) �
0 8a, x; (ii) Normalization:

P
a P (a|x) = 1 8x; and (iii)

No-signaling:
X

ai

P (a|x(i)) =
X

ai

P (a|x’(i)) 8a, x(i), x’(i), i, (1)

where x(i) = {x1, . . . , xi, . . . , xn} and x’(i) =
{x1, . . . , xi�1, x0

i
, xi+1, . . . , xn}. The set of all boxes satis-

fying the above conditions forms the no-signaling con-
vex polytope

NS(n,m, k) = {P 2 R(mk)n : A · |Pi  |bi}

of dimension D =
Q

n

i=1 [mi(ki � 1) + 1] � 1. Here the
constraints (i) - (iii) are written in terms of the matrix A
and the vector |bi, and the box P is written as a vector
of length (mk)n. Boxes that satisfy in addition the in-
tegrality constraint: (iv) Integrality: P (a|x) 2 {0, 1} are
said to be classical (deterministic) boxes Pd. The con-
vex hull of these deterministic boxes gives rise to the
classical polytope C(n,m, k) ✓ NS(n,m, k). The set of
quantum correlations Q(n,m, k) is defined as follows:
P 2 Q(n,m, k) if there exist a state | i, sets of measure-
ment operators {Exi,ai

i
} for each party such that for all

inputs and outputs

P (a|x) = h |⌦n

i=1 E
xi,ai
i

| i (2)

with the measurement operators satisfying the require-
ments of hermiticity (Exi,ai

i

†
= Exi,ai

i
, 8xi, ai), orthog-

onality (Exi,ai
i

E
xi,a

0
i

i
= �ai,a

0
i
Exi,ai

i
, 8xi) and complete-

ness (
P

ai
Exi,ai

i
= 11, 8xi). This set is convex but in

general is not a polytope, and C(n,m, k) ✓ Q(n,m, k) ✓
NS(n,m, k).

We are interested in the vertices of the no-signaling
polytope, a box P being a vertex if it cannot be ex-
pressed as a non-trivial convex combination of the boxes
in NS(n,m, k). The vertex of a polytope is a point such
that the normal cone to the point has full dimension, and

every vertex satisfies in a unique way a certain number
of the inequality constraints in A · |Pi  |bi with equal-
ity. Formally the vertex is characterized as follows [12]:

Fact 1. A box P is a vertex of the no-signaling polytope
NS(n,m, k) if any only if rank(Ã) = (mk)n where Ã de-
notes the sub-matrix of A consisting of those row vectors Ai

for which Ai · |Pi = |bii.

For two distinct vertices P and P 0, the correspond-
ing sub-matrices are not equal

⇣
Ã(P) 6= Ã(P 0)

⌘
. A non-

local vertex is one that does not belong to C(n,m, k).
We use recently discovered connections between con-
textuality and non-local game scenarios to graph theory
[6, 10, 11] to show that such a vertex also does not belong
to the quantum set Q(n,m, k).

Theorem 1. For some (arbitrary) (n,m, k), let Pnl be a
vertex of the no-signaling polytope NS(n,m, k) such that
Pnl /2 C(n,m, k). Then Pnl /2 Q(n,m, k).

Non-local games with no quantum winning strategy. An
immediate application of Theorem 1 is that if one is
able to identify a non-local game that has a single
unique winning no-signaling strategy (where by a win-
ning strategy we mean one that achieves maximal value
1), then such a strategy (being a vertex) cannot be real-
ized in quantum theory. So that denoting by !q(g) the
quantum value of the game (!c(g) denotes the classical
value), we have !q(g) 6= 1. Here, we consider a class
of Bell inequalities known as total unique games (gU ) for
multiple players, which are a family of games of great
interest in the field of hardness of approximation (in de-
termining the algorithmic complexity of finding close
to optimal solutions for optimization problems) as seen
in the famous unique games conjecture [13]. A unique
game is defined by the following winning condition: for
each x and each set of outcomes of any chosen n � 1

parties, a(j)
n�1 = a \ aj 8j, the remaining party is re-

quired to output a single unique aj specified by a func-
tion aj = �(j)

x

⇣
a(j)
n�1

⌘
with �(j)

x

⇣
a(j)
n�1

⌘
6= �(j)

x

⇣
a’(j)

n�1

⌘

for
⇣

a(j)
n�1 6= a’(j)

n�1)
⌘

; the term total refers to the fact that
such a winning constraint is imposed for every set of in-
puts x. We now introduce the notion of a no-signaling
graph associated with any non-local game.

Definition. For any non-local game g, we define the no-
signaling graph GNS(g) = (V,E) associated with the game
to have set of vertices v 2 V, each of which is labeled by a set
of inputs and outputs that wins the game, v =

�
a(v), x(v)�.

Two vertices v,v’ 2 V are connected be an edge if 9S ✓
[n] with |S| = n � 1 such that (a(v)

i
= a(v’)

i
^ x(v)

i
=

x(v’)
i

) 8i 2 S.
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• No signal carrying information can propagate faster than light - No-
Signaling Principle. 

• Captured in the Bell scenario (n,m,k) by a set of constraints on 
the P(a1,…,an|x1,…,xn).

• E.g. In the three party Bell scenario 

•

∑
a3

P(a1, a2, a3 |x1, x2, x3) = ∑
a3

P(a1, a2, a3 |x1, x2, x′�3) ∀a1, a2, x1, x2, x3, x′�3


