Impossibility theorem for extending contextuality to disturbing systems

Matt Jones, Alisson Tezzin, Elie Wolfe, Bárbara Amaral

December 17, 2022

Plan

Structure of the work

Basic framework

- **KS-compatibility**
- Monotonicity Nestedness
 - Coarsening Relabeling
- Post-processing Joining
- Independence
- Determinism Determinist
- Main results
- Discussion
- Appendix

イロト イポト イモト イモト 二日

Structure

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Plan

Structure of the work

Basic framework

- KS-compatibility
- Monotonicity Nestedness Coarsening Relabeling
- Post-processing Joining
- Independence
- Determinism Determinisr
- Main results
- Discussion
- Appendix

(日) (명) (분) (분) (분)

measurements

 \mathcal{Q} q

・ロト・西ト・モン・モー シック

Basic framework

 $q \prec c$

Measurement scenario

$$\mathcal{S} \equiv (\mathcal{Q}, \mathcal{C}, \prec, \mathcal{O})$$

Context

c

Context

c

Distribution $P(\cdot | c) : O^c \to [0, 1]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Behavior

 $P \equiv (P(\ \cdot \ |c))_{c \in \mathcal{C}}$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Composite measurement

$$\boldsymbol{q} \equiv \{q_1, \dots, q_m\}$$
$$\boldsymbol{q} \prec c \Leftrightarrow \forall_{q \in \boldsymbol{q}} : q \prec c$$

Composite measurement

$$\boldsymbol{q} \equiv \{q_1, \dots, q_m\}$$
$$\boldsymbol{q} \prec c \Leftrightarrow \forall_{q \in \boldsymbol{q}} : q \prec c$$

Marginal distribution

$$P(\cdot | \boldsymbol{q}, c) : O_{\boldsymbol{q}} \to [0, 1]$$

Composite measurement

$$\boldsymbol{q} \equiv \{q_1, \dots, q_m\}$$
$$\boldsymbol{q} \prec c \Leftrightarrow \forall_{q \in \boldsymbol{q}} : q \prec c$$

Marginal distribution

$$P(\ \cdot \ | \boldsymbol{q}, c): O_{\boldsymbol{q}} \to [0, 1]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Single measurement

 $q\prec c$

Composite measurement

$$\boldsymbol{q} \equiv \{q_1, \dots, q_m\}$$
$$\boldsymbol{q} \prec c \Leftrightarrow \forall_{q \in \boldsymbol{q}} : q \prec c$$

Marginal distribution $P(\ \cdot \ | \boldsymbol{q}, c): O_{\boldsymbol{q}} \rightarrow [0, 1]$

Single measurement

 $q \prec c$

Marginal distribution

 $P(\ \cdot \ |q,c): O_q \to [0,1]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Plan

Structure of the work

Basic framework

KS-compatibility

KS-compatibility

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Any extension of contextuality agrees with the standard definition whenever the latter applies

KS-Compatibility KS-Compatibility

KS-compatibility

A nondisturbing behavior is noncontextual if and only if it is KS-noncontextual

Plan

Structure of the wor Basic framework

KS-compatibility

Monotonicity

Nestedness Coarsening Relabeling

Post-processing Joining

Independence

Determinism Determinism

Main results

Discussion

Appendix

イロト イヨト イヨト イヨト 三日

Monotonicity

Ignoring information in a noncontextual behavior cannot make it contextual

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Nestedness Marginalizations of noncontextual behaviors are noncontextual

Behavior

P

Behavior

P

\odot Remove some measurements

 $\mathcal{Q}'\subset \mathcal{Q}$

Behavior

P

- \odot Remove some measurements
- \odot Remove some contexts

 $\mathcal{Q}' \subset \mathcal{Q}$ $\mathcal{C}' \subset \mathcal{C}$

Behavior

P

 \odot Remove some measurements $\mathcal{Q}' \subset \mathcal{Q}$ \odot Remove some contexts $\mathcal{C}' \subset \mathcal{C}$ \odot Update \prec $q \prec' c$ iff $q \prec c$

Behavior

P

 \odot Remove some measurements $\mathcal{Q}' \subset \mathcal{Q}$ \odot Remove some contexts $\mathcal{C}' \subset \mathcal{C}$ \odot Update \prec $q \prec' c$ iff $q \prec c$ \odot Marginalize P

・ロト・日本・日本・日本・日本

Behavior

P

- \odot Remove some measurements
- \odot Remove some contexts
- $\odot~$ Update \prec
- $\odot\,$ Marginalize P

 $\begin{aligned} \mathcal{Q}' \subset \mathcal{Q} \\ \mathcal{C}' \subset \mathcal{C} \\ q \prec' c \text{ iff } q \prec c \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

\odot Remove some measurements	$\mathcal{Q}'\subset \mathcal{Q}$
\odot Remove some contexts	$\mathcal{C}'\subset\mathcal{C}$
\odot Update \prec	$q \prec' c \text{ iff } q \prec c$
\odot Marginalize P	

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

\odot Remove some measurements	$\mathcal{Q}'\subset\mathcal{Q}$
\odot Remove some contexts	$\mathcal{C}'\subset\mathcal{C}$
\odot Update \prec	$q \prec' c \text{ iff } q \prec c$
\odot Marginalize P	

 \bot

Monotonicity Existing extensions

	Axiom
Extension	Nestedness
CbD 1.0	_
CbD 2.0	+
B-CbD	+
CB-CbD	+
$D\RightarrowC$	+
$D \Rightarrow \negC$	_
$D + CC \Rightarrow C$	_
Coarsening

Any coarsening of a noncontextual behavior is also noncontextual

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Measurement

q

Measurement

q

Function $g: O_q \to O_{q'}$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Coarse-graining

 $g(q)\equiv (q,g)$

Behavior

P

Behavior

P

 \odot Replace q with g(q)

 $\mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{g(q)\}$

Behavior

P

○ Replace q with g(q)○ Update ≺

 $\mathcal{Q}' \doteq \mathcal{Q} \setminus \{q\} \cup \{g(q)\}$ $g(q) \prec' c \text{ iff } q \prec c$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Behavior

P

○ Replace q with g(q)
○ Update ≺
○ Update P
∀_{c≻q}: P'(· |q(q), c) = P(q^{-1}(·)|q, c)

Behavior

P

⊙ Replace q with g(q)
⊙ Update ≺
⊙ Update P
∀_{c≻q}: P'(· |g(q), c) ≐ P(g⁻¹(·)|q, c)

○ Replace q with g(q)
○ Update ≺
○ Update P
∀_{c≻q}: P'(· |g(q), c) ≐ P(g⁻¹(·)|q, c)

○ Replace q with g(q)
○ Update ≺
○ Update P
∀_{c≻q}: P'(· |g(q), c) ≐ P(g⁻¹(·)|q, c)

Monotonicity Existing extensions

		Axiom
Extension	Ν	Coarsening
CbD 1.0	_	_
CbD 2.0	+	_
B-CbD	+	+
CB-CbD	+	+
$D\RightarrowC$	+	+
$D \Rightarrow \negC$	_	_
$D + CC \Rightarrow C$	_	_

Relabeling

Labeling a measurement differently in different contexts does not create contextuality

(ロ)、

Behavior

P

Behavior

P

 \odot Take $q \prec c_1, c_2, c_3, c_4$

Behavior

P

- \odot Take $q \prec c_1, c_2, c_3, c_4$
- \odot Replace q with $q_{1,2}$ and $q_{3,4}$

 $\mathcal{Q}' \doteq \mathcal{Q} \setminus \{q\} \cup \{q_{1,2}, q_{3,4}\}$

Behavior

P

- \odot Take $q \prec c_1, c_2, c_3, c_4$
- \odot Replace q with $q_{1,2}$ and $q_{3,4}$
- $\odot~$ Update \prec

 $\mathcal{Q}' \doteq \mathcal{Q} \setminus \{q\} \cup \{q_{1,2}, q_{3,4}\}$ $q_{i,j} \prec c_i, c_j,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Behavior

P

Behavior

P

 $\begin{array}{ll} \odot & \text{Take } q \prec c_1, c_2, c_3, c_4 \\ \odot & \text{Replace } q \text{ with } q_{1,2} \text{ and } q_{3,4} \\ \end{array} \begin{array}{ll} \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \odot & \text{Update } \prec \\ \odot & \text{Relabel } P \\ \end{array} \begin{array}{ll} \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \mathcal{Q}' = \mathcal{Q} \backslash \{q\} \cup \{q$

$$\begin{array}{ll} \odot & \text{Take } q \prec c_1, c_2, c_3, c_4 \\ \odot & \text{Replace } q \text{ with } q_{1,2} \text{ and } q_{3,4} \\ \end{array} \begin{array}{ll} \mathcal{Q}' \doteq \mathcal{Q} \backslash \{q\} \cup \{q_{1,2}, q_{3,4}\} \\ \odot & \text{Update } \prec \\ \odot & \text{Relabel } P \\ \end{array} \begin{array}{ll} \mathcal{Q}_i \neq c_i, c_j, \\ \forall_i \forall_{c \in \boldsymbol{c}_i} : P'(\cdot | q_{i,j}, c_{i,j}) \doteq P(\cdot | q, c) \end{array} \right)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

 \bot

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Monotonicity Existing extensions

	Axiom		
Extension	Ν	С	Relabeling
CbD 1.0	_	_	_
CbD 2.0	+	_	+
B-CbD	+	+	+
CB-CbD	+	+	+
$D \Rightarrow C$	+	+	+
$D \Rightarrow \negC$	_	_	_
$D + CC \Rightarrow C$	_	_	—

Plan

- Structure of the work
- Basic framework
- **KS-compatibility**
- Monotonicity Nestedness Coarsening Relabeling
- Post-processing Joining
- Independence
- Determinism Determinisr
- Main results
- Discussion
- Appendix

(日) (명) (분) (분) (분)

Post-processing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classical post-processing of the output of a noncontextual behavior cannot result in a contextual behavior

Joining

Taking composite measurements into account does not turn a noncontextual behavior into a contextual one

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Behavior

P

Behavior

P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 \odot Take $\boldsymbol{q} \equiv \{q_1,q_2\}$

Behavior

P

- \odot Take $\boldsymbol{q} \equiv \{q_1, q_2\}$
- Define $q' \doteq (q_1, q_2)$

 $O_{q'} \doteq O_{q_1} \times O_{q_2}$

Behavior

P

- \odot Take $\boldsymbol{q} \equiv \{q_1, q_2\}$
- \odot Define $q' \doteq (q_1, q_2)$
- \odot Include (q_1, q_2)

 $O_{q'} \doteq O_{q_1} \times O_{q_2}$ $\mathcal{Q}' \doteq \mathcal{Q} \cup \{(q_1, q_2)\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Behavior

P

- \odot Take $\boldsymbol{q} \equiv \{q_1, q_2\}$
- \odot Define $q' \doteq (q_1, q_2)$
- \odot Include (q_1, q_2)
- $\odot~$ Update \prec

 $O_{q'} \doteq O_{q_1} \times O_{q_2}$ $\mathcal{Q}' \doteq \mathcal{Q} \cup \{(q_1, q_2)\}$ $(q_1, q_2) \prec' c \Leftrightarrow \{q_1, q_2\} \subset \boldsymbol{c}$

Behavior

Р

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Behavior

Ρ

 $\begin{array}{ll} \odot & \text{Take } \boldsymbol{q} \equiv \{q_1, q_2\} \\ \odot & \text{Define } q' \doteq (q_1, q_2) & O_{q'} \doteq O_{q_1} \times O_{q_2} \\ \odot & \text{Include } (q_1, q_2) & \mathcal{Q}' \doteq \mathcal{Q} \cup \{(q_1, q_2)\} \\ \odot & \text{Update } \prec & (q_1, q_2) \prec' c \Leftrightarrow \{q_1, q_2\} \subset \boldsymbol{c} \\ \odot & \text{Update } P & \forall_{c \succ q_1, q_2} : \quad ``P'((q_1, q_2) = \{q_1, q_2\}, c) = 1.'' \\ \end{array}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

A D F A 目 F A E F A E F A Q Q

Post-processing Existing extensions

	Axiom			
Extension	Ν	С	R	Joining
CbD 1.0	—	—	—	_
CbD 2.0	+	_	+	—
B-CbD	+	+	+	Ø
CB-CbD	+	+	+	Ø
$D \Rightarrow C$	+	+	+	+
$D \Rightarrow \negC$	_	_	_	+
$D + CC \Rightarrow C$	_	_	_	+

Plan

- Structure of the work
- Basic framework
- **KS-compatibility**
- Monotonicity
 - Nestedness Coarsening
 - Relabeling
- Post-processing Joining

Independence

Determinism Determinism

(日) (명) (분) (분) (분)

- Main results
- Discussion
- Appendix

Independence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The joint realization of two statistically independent noncontextual systems is noncontextual

Independence

The joint realization of two statistically independent noncontextual systems is noncontextual

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Scenario 1Scenario 2 $\mathcal{S}_1 \equiv (\mathcal{Q}_1, \mathcal{C}_1, \prec_1, \mathcal{O}_1)$ $\mathcal{S}_2 \equiv (\mathcal{Q}_2, \mathcal{C}_2, \prec_2, \mathcal{O}_2)$

Product scenario

Scenario 1Scenario 2
$$\mathcal{S}_1 \equiv (\mathcal{Q}_1, \mathcal{C}_1, \prec_1, \mathcal{O}_1)$$
 $\mathcal{S}_2 \equiv (\mathcal{Q}_2, \mathcal{C}_2, \prec_2, \mathcal{O}_2)$

Product scenario

Measurements

 $Q_1 \cup Q_2$

Product scenario

Measurements

 $Q_1 \cup Q_2$

Contexts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{C}_1 imes \mathcal{C}_2$

Scenario 1Scenario 2 $S_1 \equiv (Q_1, C_1, \prec_1, \mathcal{O}_1)$ $S_2 \equiv (Q_2, C_2, \prec_2, \mathcal{O}_2)$

Product scenario

Measurements	Contexts	Relation
$Q_1\cup \mathcal{Q}_2$	$\mathcal{C}_1 imes \mathcal{C}_2$	$\begin{array}{l} q \prec (c_1, c_2) \Leftrightarrow \\ \exists_k (q \prec_k c_k) \end{array}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Behavior 1 P₁

Behavior 2

 P_2

Product behavior

 $(P_1 \otimes P_2)((a_1, a_2)|(c_1, c_2)) = P_1(a_1|c_1)P_2(a_2|c_2)$

Product behavior

 $(P_1 \otimes P_2)((a_1, a_2)|(c_1, c_2)) = P_1(a_1|c_1)P_2(a_2|c_2)$

Product behavior $(P_1 \otimes P_2)((a_1, a_2)|(c_1, c_2)) = P_1(a_1|c_1)P_2(a_2|c_2)$

Independence Existing extensions

	Axiom				
Extension	Ν	С	R	J	Independence
CbD 1.0	_	_	_	_	+
CbD 2.0	+	_	+	—	+
B-CbD	+	+	+	Ø	+
CB-CbD	+	+	+	Ø	—
$D \Rightarrow C$	+	+	+	+	+
$D \Rightarrow \negC$	_	_	_	+	+
$D + CC \Rightarrow C$	_	_	_	+	+

Plan

- Structure of the work
- Basic framework
- KS-compatibility
- Monotonicity Nestedness Coarsening
 - Relabeling
- Post-processing Joining
- Independence
- Determinism Determinism
- Main results
- Discussion
- Appendix

(日) (명) (분) (분) (분)

Determinism Deterministic behaviors are noncontextual

Determinism Deterministic behaviors are noncontextual

Deterministic measurement

Deterministic measurement

Measurement

q

Deterministic measurement

Measurement

Behavior P

Deterministic measurement

Determinism Deterministic measurement

Deterministic behavior

 $\forall_q \forall_c \exists_{u_c} P(u_c | q, c) = 1$

Determinism Determinism

Status

Any deterministic behavior is noncontextual

Determinism Existing extensions

				A	xiom	L
Extension	Ν	С	R	J	Ι	Determinism
CbD 1.0	_	_	_	_	+	+
CbD 2.0	+	—	+	_	+	+
B-CbD	+	+	+	Ø	+	+
CB-CbD	+	+	+	Ø	_	+
$D \Rightarrow C$	+	+	+	+	+	—
$D \Rightarrow \negC$	_	_	_	+	+	+
$D + CC \Rightarrow C$	_	_	_	+	+	+

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Plan

- Structure of the work
- Basic framework
- KS-compatibility
- Monotonicity Nestedness Coarsening
- Post-processing Joining
- Independence
- Determinism Determinism

Main results

Discussion Appendix

Main results KS-contextuality

Proposition 1

KS-contextuality satisfies all these axioms

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Theorem 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

- \odot Nestedness
- \odot Coarsening
- \odot Relabeling

Theorem 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

- \odot Nestedness
- \odot Coarsening
- \odot Relabeling
- \odot Joining

Theorem 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \odot Nestedness
- \odot Coarsening
- \odot Relabeling
- Joining
- Determinism

Theorem 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \odot Nestedness
- \odot Coarsening
- \odot Relabeling
- Joining
- Determinism
- Independence

Main results Proof

(ロ)、
$\odot P_1$ (one measurement q_1)

KS-compatibility

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

- $\odot P_1$ (one measurement q_1)
- $\odot P_2$ (one measurement q_2)

KS-compatibility Determinism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $\odot P_1$ (one measurement q_1)
- $\odot P_2$ (one measurement q_2)
- $\odot P_1 \otimes P_2$

KS-compatibility Determinism Independence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $\odot P_1$ (one measurement q_1)
- $\odot P_2$ (one measurement q_2)
- $\odot P_1 \otimes P_2$
- \odot Take $\{q_1, q_2\}$ into account

KS-compatibility Determinism Independence Joining

- $\odot P_1$ (one measurement q_1)
- $\odot P_2$ (one measurement q_2)
- $\odot P_1 \otimes P_2$
- \odot Take $\{q_1, q_2\}$ into account
- Replace (q_1, q_2) with $q_3 \equiv g(q_1, q_2)$

KS-compatibility Determinism Independence Joining Coarsening

- $\odot P_1$ (one measurement q_1)
- $\odot P_2$ (one measurement q_2)
- $\odot P_1 \otimes P_2$
- \odot Take $\{q_1, q_2\}$ into account
- \odot Replace (q_1, q_2) with $q_3 \equiv g(q_1, q_2)$
- \odot Drop q_2

KS-compatibility Determinism Independence Joining Coarsening Nestedness

- $\odot P_1$ (one measurement q_1)
- $\odot P_2$ (one measurement q_2)
- $\odot P_1 \otimes P_2$
- \odot Take $\{q_1, q_2\}$ into account
- \odot Replace (q_1, q_2) with $q_3 \equiv g(q_1, q_2)$
- \odot Drop q_2
- \odot Relabel q_1 and q_3

KS-compatibility Determinism Independence Joining Coarsening Nestedness Relabeling

- $\odot P_1$ (one measurement q_1)
- $\odot P_2$ (one measurement q_2)
- $\odot P_1 \otimes P_2$
- \odot Take $\{q_1, q_2\}$ into account
- \odot Replace (q_1, q_2) with $q_3 \equiv g(q_1, q_2)$
- \odot Drop q_2
- \odot Relabel q_1 and q_3
- PR-box

KS-compatibility Determinism Independence Joining Coarsening Nestedness Relabeling Contradiction

Theorem 2

Theorem 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- \odot Nestedness
- \odot Coarsening
- \odot Relabeling

Theorem 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

- \odot Nestedness
- \odot Coarsening
- \odot Relabeling
- \odot Joining

Theorem 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \odot Nestedness
- \odot Coarsening
- \odot Relabeling
- Joining
- \odot Deterministic redundancy

Plan

- Structure of the work
- Basic framework
- KS-compatibility
- Monotonicity Nestedness Coarsening
- Post-processing Joining
- Independence
- Determinism Determinism
- Main results
- Discussion
- Appendix

(日) (명) (분) (분) (분)

Discussion

Nullifying the impossibility theorem

Discussion Interpreting contextuality

Extended contextuality is said in many ways

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discussion Interpreting contextuality

Extended contextuality is said in many ways

 $_{\odot}$ "Contextuality is about identity of random variable" (E.N. Dzhafarov, J.V.Kujala, 2015)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Discussion Interpreting contextuality

Extended contextuality is said in many ways

- $_{\odot}$ "Contextuality is about identity of random variable" (E.N. Dzhafarov, J.V.Kujala, 2015)
- "Experimentally friendly framework for [Kochen-Specker] contextuality" (B. Amaral, C. Duarte, 2019)

Discussion

Extended contextuality is said in many ways

- $_{\odot}$ "Contextuality is about identity of random variable" (E.N. Dzhafarov, J.V.Kujala, 2015)
- "Experimentally friendly framework for [Kochen-Specker] contextuality" (B. Amaral, C. Duarte, 2019)
- $_{\odot}\,$ "The necessity of stronger direct influences to model a full system than when considered individually." (M. Jones, 2019)

うして ふゆ く は く は く む く し く

Discussion

Interpreting contextuality

Extended contextuality is said in many ways

- $_{\odot}$ "Contextuality is about identity of random variable" (E.N. Dzhafarov, J.V.Kujala, 2015)
- "Experimentally friendly framework for [Kochen-Specker] contextuality" (B. Amaral, C. Duarte, 2019)
- $_{\odot}\,$ "The necessity of stronger direct influences to model a full system than when considered individually." (M. Jones, 2019)
- "One may reject a statistical hypothesis that a studied population is described by a joint probability distribution of all these variables." (M. Kupczynski, 2021)

Discussion Rejecting post-processing

Rejecting post-processing

Discussion Rejecting post-processing

Contextuality and Informational Redundancy

Ehtibar Dzhafarov¹ and Janne V. Kujala²

¹Purdue University, USA, ehtibar@purdue.edu ²University of Turku, Finland, janne.kujala@utu.fi

Discussion Rejecting post-processing

"Experimental friendly framework to contextuality"

 (q_1,q_2)

Discussion Rejecting determinism

Rejecting determinism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discussion Rejecting determinism

Causal interpretation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

"In deterministic systems, all causal influences are fully observable."

Rejecting coarsening

Kochen and Specker

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Functional relations \Rightarrow Contextual structure

• Predetermined contextual structure (Measurement scenario)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\odot \ g(q) \prec c \Leftrightarrow q \prec c$

Dichotomizations

Discussion Rejecting isomorphism

Rejecting isomorphism

Discussion Rejecting isomorphism

$(\mathcal{S},P)\mapsto\{\bot,\top\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discussion

What else?

Discussion

Contextuality as a cluster concept

イロト イロト イモト イモト

э

Plan

- Structure of the work
- Basic framework
- KS-compatibility
- Monotonicity Nestedness Coarsening
- Post_processi
- Joining
- Independence
- Determinism Determinis
- Main results
- Discussion
- Appendix

イロト イポト イモト イモト 二日

Appendix Proof of theorem 1

$$P_1(0|q_1) = P_1(1|q_1) = \frac{1}{2}$$

$$P_2(1|q_2, c_1) = P_2(1|q_2, c_2) = P_2(1|q_2, c_3) = P_2(0|q_2, c_4) = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Appendix Proof of theorem 1

Define $P_3 \doteq P_1 \otimes P_2$										
$P_3(\cdot c_1)$	$q_2 = 0$	$q_2 = 1$		$P_3(\cdot c_2)$	$q_2 = 0$	$q_2 = 1$				
$q_1 = 0$	0	$\frac{1}{2}$		$q_1 = 0$	0	$\frac{1}{2}$				
$q_1 = 1$	0	$\frac{1}{2}$		$q_1 = 1$	0	$\frac{1}{2}$				
$P_3(\cdot c_3)$	$q_2 = 0$	$q_2 = 1$		$P_3(\cdot c_4)$	$q_2 = 0$	$q_2 = 1$				
$q_1 = 0$	0	$\frac{1}{2}$		$q_1 = 0$	$\frac{1}{2}$	0				
$q_1 = 1$	0	$\frac{1}{2}$		$q_1 = 1$	$\frac{1}{2}$	0				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Appendix Proof of theorem 1

$q_3 = 0$ if $q_1 \neq q_2$ and $q_3 = 1$ if $q_1 = q_2$										
$P_4(\cdot c_1)$	$q_3 = 0$	$q_3 = 1$		$P_4(\cdot c_2)$	$q_3 = 0$	$q_3 = 1$				
$q_1 = 0$	$\frac{1}{2}$	0		$q_1 = 0$	$\frac{1}{2}$	0				
$q_1 = 1$	Ō	$\frac{1}{2}$		$q_1 = 1$	Ō	$\frac{1}{2}$				
		-				-				
$P_4(\cdot c_3)$	$q_3 = 0$	$q_3 = 1$		$P_4(\cdot c_4)$	$q_3 = 0$	$q_3 = 1$				
$q_1 = 0$	$\frac{1}{2}$	0		$q_1 = 0$	0	$\frac{1}{2}$				
$q_1 = 1$	0	$\frac{1}{2}$		$q_1 = 1$	$\frac{1}{2}$	0				

シックシード (中下・・中下・・日・)
Appendix proof of theorem 1

Relabel q_1 as q_4 in c_3 and c_4 , and relabel q_3 as q_5 in c_2 and $\begin{array}{c} c_4\\ \hline P_5(\cdot|c_1) & q_3 = 0 & q_3 = 1\\ \hline q_1 = 0 & \frac{1}{2} & 0\\ q_1 = 1 & 0 & \frac{1}{2} \end{array} \qquad \begin{array}{c} P_5(\cdot|c_2) & q_5 = 0 & q_5 = 1\\ \hline q_1 = 0 & \frac{1}{2} & 0\\ q_1 = 1 & 0 & \frac{1}{2} \end{array}$ $\begin{array}{c} \hline P_5(\cdot|c_3) & q_3 = 0 & q_3 = 1\\ \hline q_4 = 0 & \frac{1}{2} & 0\\ q_4 = 1 & 0 & \frac{1}{2} \end{array} \qquad \begin{array}{c} P_5(\cdot|c_4) & q_5 = 0 & q_5 = 1\\ \hline q_4 = 0 & 0 & \frac{1}{2}\\ \hline q_4 = 0 & 0 & \frac{1}{2} \end{array}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ