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This paper provides a systematic account of the
hidden variable models (HVMs) formulated to
describe systems of random variables with mutually
exclusive contexts. Any such system can be described
either by a model with free choice but generally
context-dependent mapping of the hidden variables
into observable ones, or by a model with context-
independent mapping but generally compromised
free choice. These two types of HVMs are equivalent,
one can always be translated into another. They are
also unfalsifiable, applicable to all possible systems.
These facts, the equivalence and unfalsifiability, imply
that freedom of choice and context-independent
mapping are no assumptions at all, and they tell
us nothing about freedom of choice or physical
influences exerted by contexts as these notions
would be understood in science and philosophy. The
conjunction of these two notions, however, defines
a falsifiable HVM that describes non-contextuality
when applied to systems with no disturbance or
to consistifications of arbitrary systems. This HVM
is most adequately captured by the term ‘context-
irrelevance’, meaning that no distribution in the
model changes with context.

This article is part of the theme issue ‘Quantum
contextuality, causality and freedom of choice’.
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1. Introduction
Hidden variable models (HVMs) are arguably the main reason why contextuality and its non-
locality version have acquired prominence in the foundations of quantum mechanics (QM). Ever
since it was accepted that results of a measurement, such as that of a spin, are almost always
random variables (with the exception of repeated sharp measurements), physicists have been
interested in the possibility of ‘explaining’ such random variables as deterministic functions of
some underlying sources of variability, even if as yet unknown to us, ‘hidden’. This possibility
is often presented as a belief famously held by Albert Einstein, and then famously ruled out by
Bell’s and Kochen–Specker’s theorems juxtaposed with QM predictions [1,2].

However, even before any detailed analysis, there is a good reason to doubt that HVMs can
play an explanatory role. The reason is that the existence of a random variable of which several
jointly distributed random variables are deterministic functions is ensured trivially: the properties
of being jointly distributed and being functions of a single random variable are one and the same
property. Conversely, variables that are not jointly distributed, as they are predicated on mutually
exclusive conditions, cannot be functions of a single random variable. This means that one must
have as many hidden variables as there are mutually exclusive contexts, even if they all have
the same distribution. This is not to say that HVMs cannot be meaningfully constructed and
interpreted. This only means that one should be careful not to attach deep physical or otherwise
substantive connotations to purely mathematical and universally satisfiable representations. This
is a point elaborated throughout the paper.

Here, I will synthesise some of my recent published work to provide a comprehensive and
rigorous account of HVMs. The most restrictive HVM, one introduced by Bell and describing
non-contextual systems with no disturbance, is known not to hold for many systems of random
variables. When this happens, the constraints imposed on an HVM have to be relaxed, and this
can be done in two ways: either by allowing for a dependence of the measurement outcome
distributions on contexts or by allowing for an interdependence between the hidden variables
and the choices of settings for the measurements. In [3], I proved the equivalence of these
two options. In this paper, I present an improved and more rigorous proof. I will argue that
such assumptions as freedom of choice and context-independent mapping (of hidden variables
into observable ones) are merely metaphorical depictions of some basic representations of
jointly distributed random variables. Next, I discuss the problem of separating disturbance (or
signalling) from contextuality in the situations in which Bell’s HVM does not hold. While this
is the central issue for the Contextuality-by-Default (CbD) theory [4–7], the difference between
disturbance and contextuality is not apparent in the formulations of the HVMs. However, one can
effectively separate disturbance from contextuality by using the consistified systems introduced
in Dzhafarov [8,9]. Any system of random variables can be reformulated as an equivalent, in
a well-defined sense, system that has no disturbance (is consistently connected, in the CbD
terminology). The equivalence of the HVMs with context-dependent mapping and the HVMs
with violations of free choice holds for these consistified systems too, but now any such HVM
indicates pure contextuality. At the conclusion of the paper, I will discuss two assumptions that
one could suspect to be required for the development presented, and show that, once again, they
are not assumptions at all, because they are trivially satisfied in the language of random variables.

2. Conceptual and terminological set-up
A system of random variables is a double-indexed set

R= {Rc
q : c ∈ C, q ∈ Q, q ≺ c}, (2.1)

where Q is a set of contents, C is a set of contexts, and q ≺ c means that content q is measured in
context c. A content q in Rc

q can be viewed as a question that the random variable Rc
q answers (e.g.

‘is the spin along axis q up?’, answered ‘yes/no’) or as a choice of measurements (spin along axis
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q) whose outcomes (up/down) are represented by Rc
q. The context c in Rc

q indicates conditions
under which Rc

q is recorded, such as the set of all other measurements made together with Rc
q

and the spatial and temporal relations among them. The matrix below provides an example of a
system of random variables:

R1
1 R1

2 R1
3 c = 1

R2
3 R2

4 c = 2

R3
1 R3

2 R3
3 R3

4 c = 3

q = 1 q = 2 q = 3 q = 4 system R0

. (2.2)

The subsystem of all random variables within a given context c is called a bunch (of random
variables),

Rc = {Rc
q : q ∈ Qc}, (2.3)

where

Qc = {q ∈ Q : q ≺ c}. (2.4)

For instance, the bunch R2 in the system R0 is {R2
3, R2

4}. Any bunch Rc is a random variable,
which means that all components Rc

q of Rc are jointly distributed (are measurable functions on
the same probability space). However, no two random variables from different bunches have a
joint distribution, they are stochastically unrelated (are measurable functions on distinct probability
spaces). Indeed, consider what a joint distribution of Rc

q and Rc′
q′ with c �= c′ could look like (X and

Y being any measurable sets):

Rc′
q′ ∈ Y Rc′

q′ �∈ Y

Rc
q ∈ X ? ?

Rc
q �∈ X ? ?

1

. (2.5)

The question marks cannot be all replaced with zeros because they must sum to one. At the
same time, any non-zero joint probability would indicate that Rc

q and Rc′
q′ co-occur, which would

contradict the fact that c and c′ are mutually exclusive contexts.

3. Hidden variable models

(a) (Excessively) general HVM
Let us begin with the most general possible HVM, denoted HVMGen:

Rc = α(Qc,Λc(c), c). (3.1)

The function α returns as its value an indexed set, and the dependence of α on Qc should be
understood as its indexing, matching the indexing of Rc. Thus, for system R0 in (2.2), Q2 = {3, 4},
and the HVMGen representation for R2 = (R2

3, R2
4) is

α(Q2,Λ2(2), 2) = (Projq=3α(Q2,Λ2(2), 2), Projq=4α(Q2,Λ2(2), 2))

= (α(3,Λ2(2), 2),α(4,Λ2(2), 2)), (3.2)

where ProjqV stands for the q-indexed component of the indexed set V.1

1The notation Λc(c) may appear excessive, but it is not. The superscript c merely indicates that the random variables in
different contexts are different and stochastically unrelated (this applies to both Λc and Rc). The superscript c therefore is
universal and ineliminable. The dependence ofΛc on c as an argument means that the distribution of the hidden variable may
be different in different contexts. This may or may not be the case in other HVMs.
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One can present this model graphically as

c ��

��

Λc

����
��

��
��

Rc Qc��

(3.3)

The arrows a → b in this and subsequent diagrams (where b is a random variable and a is a
random variable or a parameter) should be read as ‘different values of a may result in different
distributions of b.’

HVMGen is not a falsifiable model, it can be applied to any system of random variables. This can
be demonstrated by simply putting Λc(c) = Rc, with the stand-alone c in α becoming a dummy
argument, and Qc extracted from Λc(c) as its indexing set.

(b) Context-independent mapping without free choice
The argument just presented shows that the direct dependence of the distribution of Rc on c can
be eliminated:

Rc = β(Qc,Λc(c)), (3.4)

or graphically,

c �� Λc

����
��

��
��

Rc Qc��

(3.5)

Although not obvious at first glance, this HVM would traditionally be interpreted as a model
with a context-independent mapping of Λc(c) into Rc (no arrow from c to Rc) but with generally
compromised freedom of choice (the distribution of Λc may depend on c).

I will denote this model HVM−FC
+CIM, using the self-evident abbreviations. We have established that

HVMGen can always be reduced to HVM−FC
+CIM. Using again as an example system R0 in (2.2), the HVM−FC

+CIM
representation for R2 = (R2

3, R2
4) is

β(Q2,Λ2(2)) = (β(3,Λ2(2)),β(4,Λ2(2))). (3.6)

Freedom of choice in the QM literature is usually discussed in terms of the relationship
between one’s choice of c and the hidden variable Λc(c). This means that c is treated as a random
variable (which is a dubious viewpoint, see [3]), and freedom of choice means that c and Λc are
stochastically independent. In my representation of HVMs, c is always a deterministic parameter,
which, with respect to the traditional view, simply means that all random variables in the model
are conditioned on fixed values of c. Any restriction of freedom of choice in the traditional sense
then translates into a dependence of the distribution ofΛc on c. As a special case, this also applies
to the possibility that c is a function of the hidden variable, c = f (Λc), which may possibly be
interpreted as a depiction of superdeterminism: in an HVM−FC

+CIM, one simply replaces this function
with Λc(c), defined by f (Λc(c)) = c.
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(c) Free choice without context-independent mapping
It is further possible to transform HVM−FC

+CIM into a model that is, in a sense, its reverse. Given (3.4),
one can form an arbitrary coupling of Λc for all contexts c,2

Γ := {Λc(c) : c ∈ C}, (3.7)

and then create, for every c ∈ C, a distributional copy Γ c of Γ , so that these copies are pairwise
stochastically unrelated. Then

Λc(c) = ProjcΓ
c (3.8)

and
Rc = β(Qc, ProjcΓ

c) = γ (Qc,Γ c, c), (3.9)

where the variables Γ c (as indicated by the lack of c as their argument) have one and the same
distribution for all c ∈ C. Note that we cannot eliminate the index c in Γ c, because Rc = γ (Qc,Γ , c)
would make all Rc jointly distributed.

The traditional interpretation of the HVM described by (3.9) would be that the freedom
of choice is not compromised here, but context-independence is generally violated. Using our
graphical representation,

c

��

Γ c

����
��

��
��

Rc Qc��

(3.10)

I will denote this model HVM+FC
−CIM. We have established that HVM−FC

+CIM implies (can be translated
into) HVM+FC

−CIM. Using our example of system R0 in (2.2), the HVM+FC
−CIM representation for R2 = (R2

3, R2
4)

is
γ (Q2,Γ 2, 2) = (γ (3,Γ 2, 2), γ (4,Γ 2, 2)). (3.11)

(d) Free choice with context-independent mapping
Both HVM−FC

+CIM, and HVM+FC
−CIM can be viewed as deviations from their special case

Rc = δ(Qc,Γ c), (3.12)

or, graphically,

Γ c

����
��

��
��

Rc Qc��

(3.13)

where the random variables Γ c for all c ∈ C are identically distributed and pairwise stochastically
unrelated. This model can be denoted HVM+FC

+CIM, as it satisfies both freedom of choice and context-
independence in the mapping of Γ c into Rc. In our example of system R0 in (2.2), the HVM+FC

+CIM
representation for R2 = (R2

3, R2
4) is

δ(Q2,Γ 2) = (δ(3,Γ 2), δ(4,Γ 2)). (3.14)

Unlike the previous two HVMs, this one is a true model, as it is falsifiable. The latter is
demonstrated, for instance, by relating predictions of QM to the Bell-type [1] and Kochen–
Specker-type theorems (in addition to the original references [1,2] see, e.g. [10–12]). The Bell-type
theorems establish necessary and sufficient conditions for a system of random variables to be

2This coupling is a random variable whose components are indexed by c and distributed as the corresponding Λc.
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described by HVM+FC
+CIM, which can then be shown to fail for some QM systems. In the Kochen–

Specker-type theorems one constructs systems of random variables in accordance with QM, and
then demonstrate that they cannot be described by HVM+FC

+CIM.

(e) Equivalence theorem and its consequences
Combining the implications in §§3b,c,

HVMGen ⇒ HVM−FC
+CIM ⇒ HVM+FC

−CIM, (3.15)

and observing that HVM+FC
−CIM is a special case of HVMGen, we obtain the following statement.

Theorem 3.1. The models HVMGen, HVM−FC
+CIM and HVM+FC

−CIM are pairwise equivalent:

HVMGen��

�� ��������

��������

HVM−FC
+CIM

�� 		 HVM+FC
−CIM





�� ��������

�������� (3.16)

Let us consider two consequences of this theorem. One of them is that when HVM+FC
+CIM is not

applicable to a system, one can arbitrarily choose between describing the system in the language
of HVM−FC

+CIM or in the language of HVM+FC
−CIM. In particular, one can always use one and the same

measure for the degree of deviation of these two HVMs from HVM+FC
+CIM:

HVM+FC
−CIM

�� deviation ��������� HVM+FC
+CIM

�� deviation ��������� HVM−FC
+CIM . (3.17)

A special case of this corollary, for a particular system of random variables, is presented in [13].
The second consequence of the theorem is that HVM−FC

+CIM and HVM+FC
−CIM are both unfalsifiable, either

of them can describe any system of random variables. This follows from the demonstration, at the
end of §3(a), that HVMGen is unfalsifiable, in fact, even in the form of HVM−FC

+CIM. This, in combination
with the inter-translatability of HVM−FC

+CIM and HVM+FC
−CIM, should make one skeptical about interpreting

the dependence of the distribution of Λc on c in terms of freedom of choice, in any substantive
meaning of these words, and interpreting an arrow from c to Rc as a physical influence exerted by
the context. Their complete equivalence and empirical emptiness (universal applicability) suggest
the view that HVM−FC

+CIM and HVM+FC
−CIM are purely mathematical descriptions of the joint distributions

within bunches of random variables and of the differences between them.
This view does not change if one constrains or even completely specifies all distributions

and functions in the formulation of HVM−FC
+CIM or HVM+FC

−CIM, making them thereby predictive and
falsifiable. The inter-translatability of the two types of models holds irrespective of their
falsifiability. Moreover, a completely specified HVM can always be thought of as a corresponding
unconstrained HVM after it has been applied to the system predicted by the completely specified
HVM. Clearly, the ontological interpretation of a model (say, HVM−FC

+CIM) does not depend on whether
it has been applied to a particular system of random variables, because this does not change the
facts that (A) it could have been applied to any other system, and (B) it can be translated into an
HVM of a completely different nature (in this case, HVM+FC

−CIM).
This is not to say that the notions of freedom of choice and context-(in)dependent mapping

may not be assigned substantive meanings and be propitiously used in physical or other scientific
theories. One should, however, distinguish HVMs per se from scientific theories that predict
specific systems of random variables and therefore HVM representations thereof. My only point
here is that these substantive meanings belong to the parts of theories extraneous to the HVMs
to which the theories lead. In other words, these meanings cannot be derived from the HVMs
themselves, from the fact that a system can be described by HVM−FC

+CIM or HVM+FC
−CIM (or even HVMGen,

combining the two)—because any system can, and by any of them. The language of HVMs as
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understood in this paper (and in most discussions of the HVMs in the foundations of physics,
beginning with Bell’s work) is simply too crude to capture certain substantive notions and
distinctions. We will see below that it is sometimes too crude even to depict the difference between
much more clear-cut notions of contextuality and signaling. A simple analogy may help to
understand this. Any real-valued random variable R can be generated by applying an appropriate
transformation f to a variable U uniformly distributed between 0 and 1. As one observes values of
R, it is possible that there is a computer program that de facto computes them by first generating
values of U and then applying to them the function f . If this is known from some extraneous
source of knowledge, then we have a valid naturalistic interpretation of the model R = f (U),
which then acquires a privileged status over other representations of R (such as R = g(E), for
an exponentially distributed E). However, such an interpretation cannot be derived from the fact
that R is representable as f (U)—because this representation is mathematically guaranteed, and
moreover, can be replaced with other representations (referring, e.g. to the same R = g(E)).

The terms freedom of choice and context-(in)dependent mapping may still be conveniently
used as labels for HVM components, provided one does not impute to them their colloquial,
physical, or philosophical connotations. Moreover, the conjunction of these two notions does have
a substantive meaning, because HVM+FC

+CIM is a falsifiable model which de facto does not apply to
some QM systems of random variables. In [3], I argued that the notions in question should only be
used in conjunction: ‘one cannot accept local causality without free choice, because denying free
choice is equivalent to denying local causality’ (local causality being the specific form of context-
independent mapping used by Bell in the discussion published in [14]). While the present paper
only strengthens this assertion, I would like to add here that one can very well decide to abandon
the terms freedom of choice and context-(in)dependent mapping altogether, and use instead a
simpler way to characterise HVM+FC

+CIM. Namely, this is the model in which context c is irrelevant for
determining any distributions involved (which includes the distribution of the hidden variable
Λc and the distribution of the observable bunch Rc). Therefore, HVM+FC

+CIM can be referred to as the
model satisfying the assumption of context-irrelevance.

4. Contextuality in consistently connected systems
We have managed so far to discuss HVMs without involving the notion of (non)contextuality.
It is now time to involve it. The traditional definition of this notion simply coincides with that
of HVM+FC

+CIM: a system of random variables is non-contextual (or, for distributed systems, local)
if it is described by this HVM, and a system that cannot be so described is contextual. One
consequence of this definition is that a non-contextual system must be consistently connected.
The latter is a CbD term for what is usually called in QM non-disturbance or non-signaling: in a
consistently connected system, any two random variables sharing a content, Rc

q and Rc′
q , have the

same distribution. Inconsistent connectedness (disturbance, signalling) therefore makes a system
contextual. This definition makes the class of contextual systems too large and heterogeneous,
and CbD offers a more analytic approach, presented in the next section. For now, however, let us
confine consideration to consistently connected systems.3

The main consequence of R being described by HVM+FC
+CIM is as follows. With reference to (3.12),

construct the random variable S defined by

S = δ(Q,Γ ), (4.1)

where Γ has the same distribution as Γ c in (3.12). The variable S is called a reduced coupling of
the system R [15]. Its (jointly distributed) elements are indexed by the elements of Q, and for any

3In fact, HVM+FC
+CIM predicts a more restricted form of consistent connectedness, termed in CbD strong consistent connectedness:

for any contexts c, c′ and any set of contents I ⊆ Qc ∩ Qc′ , we should have identically distributed {Rc
q : q ∈ I} and {Rc′

q : q ∈ I}.
A system that is consistently connected but not strongly so is always contextual in CbD.
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c ∈ C, we have

Rc d= ProjQc S, (4.2)

where d= indicates equality of distributions. Thus, for our system R0 in (2.2), the reduced coupling
has the form S = {S1, S2, S3, S4}, and the condition (4.2) means that in the matrix

S1 S2 S3 c = 1
S3 S4 c = 2

S1 S2 S3 S4 c = 3

q = 1 q = 2 q = 3 q = 4

(4.3)

the rows are distributed as the corresponding rows in (2.2).
It is clear that the implication HVM+FC

+CIM ⇒ S can be reversed, whence we have the following
criterion: system R is described by HVM+FC

+CIM if and only if it has a reduced coupling (4.1) subject
to (4.2). For some simple systems, this has been semi-formally derived as the ‘joint distribution
criterion’ by Fine [12], based on the idea of Suppes & Zanotti [16]. Note that the use of the
language of random variables makes this criterion obtain essentially automatically.

For these and other simple systems (notably for the important class of the so-called cyclic
systems [17]) other criteria have been derived, primarily in the form of inequalities involving
expected values of the products of the random variables within different bunches. These
additional criteria should be viewed as mere shortcuts, because in all cases when they are
available and in many cases when they are not, the existence or non-existence of a reduced
coupling (4.2)–(4.3) can be established directly, by means of linear programming.

This is a good place to note that some authors, having correctly observed that Bell-type
inequalities require a system of jointly distributed variables, as in (4.3), and having also correctly
observed that in a system of observable probabilities different bunches are not jointly distributed,
have then erroneously concluded that the Bell-type theorems were wrong [18–20]. In fact, the
only problem with these theorems, from the earliest ones in the 1960s all the way to the present, is
that they are usually proved less than rigorously, with unacknowledged abuse of notation. When
viewed as theorems about reduced couplings, their proofs are correct. The corrected proofs do
not require that different bunches be jointly distributed. They only require that a system can be
described by HVM+FC

+CIM, the model that does preserve stochastic unrelatedness of different bunches.

5. Contextuality in inconsistently connected systems
CbD offers a generalised notion of (non)contextuality, one that applies to all systems of random
variables, including inconsistently connected ones (those with disturbance, or signalling).4 Given a
system R in (2.1), its (complete) coupling is defined as a random variable

S = {Sc
q : c ∈ C, q ∈ Q, q ≺ c}, (5.1)

such that, for every c ∈ C,

Sc d= Rc, (5.2)

where

Sc := {Sc
q : q ∈ Qc}. (5.3)

Note that calling S a random variable implies that, unlike in the system R, all components of S are
jointly distributed. A system R is non-contextual if it has a coupling S in which, for every content

4More precisely, the current, second version of CbD, applies to arbitrary systems of dichotomous random variables [5,6].
However, this constraint is not relevant to the present discussion. Moreover, the discussion below could easily be generalised
to a class of approaches that include CbD as a special case [8].
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q ∈ Q and any two contexts c, c′ such that q ≺ c and q ≺ c′, the probability

p[Sc
q = Sc′

q ], (5.4)

is maximal possible. The maximum is computed for fixed distributions of Sc
q, Sc′

q (which coincide

with the distributions of Rc
q, Rc′

q , respectively). If such a coupling does not exist, R is contextual. If

R is consistently connected, then the maximal probability for any event Sc
q = Sc′

q equals 1, and the
definition reduces to the existence of the reduced coupling introduced in the previous section.

To illustrate this for our example (2.2), a coupling for R0 is a random variable

S =
S1

1 S1
2 S1

3 c = 1
S2

3 S2
4 c = 2

S3
1 S3

2 S3
3 S3

4 c = 3

q = 1 q = 2 q = 3 q = 4

(5.5)

whose rows are distributed as the corresponding rows in (2.2). R0 is non-contextual if and only if
its coupling S can be chosen so that the probabilities of the events

S1
1 = S3

1, S1
2 = S3

2, S1
3 = S2

3, S1
3 = S3

3, S2
3 = S3

3, S2
4 = S3

4, (5.6)

are all maximal possible. In particular, if R0 is consistently connected, then it is non-contextual if
and only if all these probabilities in some coupling S equal 1. In such a coupling, the variables S1

1
and S3

1 can both be renamed into S1, the variables S1
2 and S3

2 can be renamed into S2, etc. We thus
obtain the reduced coupling {S1, S2, S3, S4} subject to (4.3).

6. Consistified systems
What is an HVM representation of contextuality in the case when a system may be inconsistently
connected? Clearly, Bell’s HVM+FC

+CIM cannot be used, so one should choose between the two
equivalent options: HVM+FC

−CIM and HVM−FC
+CIM. The problem here is that these representations do not

allow us to separate inconsistent connectedness from contextuality. It may seem therefore that
unlike the traditional theory of contextuality, CbD cannot use HVMs as a useful descriptive tool.

However, this difficulty can be easily remedied if one replaces a system under consideration
with its consistified equivalent [8,9]. A consistified equivalent R† of a system R is a consistently
connected system that depicts the same empirical or theoretical situation and is contextual if and
only if R is contextual. Specifically, given R in (2.1), R† is defined as

R† = {Rπξ : π ∈ C†, ξ ∈ Q†, ξ ≺† π}, (6.1)

where

C† = {π : π = (·, c), c ∈ C} 
 {π : π = (q, ·), q ∈ Q}, (6.2)

Q† = {ξ : ξ = (q, c), q ∈ Q, c ∈ C, q ≺ c} (6.3)

and ξ ≺† π ⇐⇒ ξ = (q, c) ∈ Q† & [π = (·, c) or π = (q, ·)]. (6.4)

For any context π = (·, c), the bunch in this context is defined as

R†π = R†(·,c) d= Rc. (6.5)

To define the bunch for a context π = (q, ·), we need an auxiliary notion. For a given q ∈ Q, define
a random variable

Tq = {Tc
q : c ∈ C, q ≺ c}, (6.6)

such that for any two components Tc
q, Tc′

q in Tq,

Tc
q

d= Rc
q, (6.7)
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and the probability

p[Tc
q = Tc′

q ], (6.8)

is maximal possible. Let us assume, for simplicity, that such Tq exists and is unique for all q ∈ Q.5

Then, for any context π = (q, ·), the bunch in this context is defined as

R†π = R†(q,·) d= Tq. (6.9)

This completes the construction of R†.
Clearly, a consistified system is (strongly) consistently connected: for any ξ = (q, c) it contains

two distributional copies of Rc
q, in the contexts (·, c) and (q, ·). It should also be clear, by comparing

the CbD definition of (non)contextuality with the traditional definition applied to the consistified
equivalent of a system, that the system and its equivalent are always contextual or non-contextual
together. For a more rigorous argument, see [8].

For our example R0 in (2.2), the consistified equivalent is (omitting commas and brackets to
save space)

R·1
11 R·1

21 R·1
31 π = ·1

R·2
32 R·2

42 ·2
R·3

13 R·3
23 R·3

33 R·3
43 ·3

R1·
11 R1·

13 π = 1·
R2·

21 R2·
23 2·

R3·
31 R3·

32 R3·
33 3·

R4·
42 R4·

43 4·
ξ = 11 21 31 32 42 13 23 33 43 R†

0

, (6.10)

where the bunches in the first three rows are distributional copies of the corresponding rows in
R0, the distributions of the two variables in each column are identical, and in each of the last four
rows the probability of the pairwise equality of its elements is maximal possible.

7. Equivalence theorem for consistified systems
The main reason why the notion of a consistified systems is useful is the fact that the inconsistent
connectedness of a system R is eliminated in R† (more precisely, translated into the structure of
its (q, ·)-bunches) while its contextuality status is preserved. One can ascertain therefore whether
R† is describable by HVM+FC

+CIM as one can with any other (strongly) consistently connected system. If
it is not, then R† should be described by either of HVM+FC

−CIM and HVM−FC
+CIM, and this time there can be no

confusion as to whether they depict inconsistent connectedness or contextuality—it is definitely
the latter. However, the applicability of and deviations from HVM+FC

+CIM acquire a specific form in the
case of consistified systems.

It should be clear from the construction of R† that the indexing sets Q†(·,c) of different (·, c)-
bunches are disjoint, and that the union of these indexing sets is the entire Q† (consisting of all ξ =
(q, c) such that q ≺ c). This means that we can use the same function to represent all (·, c)-bunches,

R†(·,c) = f (Q†(·,c), X(·,c)(c)), (7.1)

where X(·,c)(c) for different c ∈ C is a set of stochastically unrelated random variables whose
distributions may vary with c. By forming an arbitrary coupling X of X(·,c)(c) for all c ∈ C, we

5Reference [8] provides an outline of how the discussion should be modified if this is not the case. If there is more than or less
than one Tq for some of the q ∈ Q, one should consider a class of consistified systems R†, each with one possible combination
of the realisations of Tq. This class is deemed non-contextual if and only if at least one of its elements is non-contextual (and
this happens if and only if the original system R is non-contextual in the CbD sense). In particular, if the class of Tq is empty
for some q, then the class of R† is empty, and it should be deemed contextual.
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can rewrite this as
R†(·,c) = s(Q†(·,c), Proj(·,c)X

(·,c)) = t(Q†(·,c), X(·,c), (·, c)), (7.2)

where X(·,c) are stochastically unrelated distributional copies of X. Since Q†(·,c) uniquely
determines (·, c), the function can be rewritten as

R†(·,c) = u(Q†(·,c), X(·,c)). (7.3)

By the same argument, for all (q, ·)-bunches we have

R†(q,·) = v(Q†(q,·), Y(q,·)). (7.4)

The last two formulae represent the HVMGen for consistified systems.
It can be easily shown that one can simplify this HVM by either making the two functions u

and v one and the same function or making all X(·,c) and X(q,·) variables identically distributed.
For the latter option, create an arbitrary coupling Φ = (X, Y) and make its distributional copies
Φ(·,c) and Φ(q,·) for all contexts of R†. Then

R†(·,c) = u
(

Q†(·,c), Proj1Φ
(·,c)

)
= φ1

(
Q†(·,c),Φ(·,c)

)
(7.5)

and
R†(q,·) = v

(
Q†(q,·), Proj2Φ(q,·)

)
= φ2

(
Q†(q,·),Φ(q,·)

)
. (7.6)

This is the form of the HVM+FC
−CIM for consistified systems: the distribution of the hidden variables is

the same for all contexts, but the observable variables depend on the type of the context, (·, c)-type
or (q, ·)-type. Thus, the HVM+FC

−CIM representation for R†(·,2) = (R·2
32, R·2

42) and R†(3,·) = (R3·
31, R3·

32, R3·
33) in

system R†
0 in (6.10) are, respectively:

φ1(Q†(·,2),Φ(·,2)) = (φ1((3, 2),Φ(·,2)),φ1((4, 2),Φ(·,2))) (7.7)

and
φ2(Q†(3,·),Φ(3,·)) = (φ2((3, 1),Φ(3,·)),φ2((3, 2),Φ(3,·)),φ2((3, 3),Φ(3,·))). (7.8)

The form of HVM−FC
+CIM for consistified system obtains by creating arbitrary couplings

Ψ1 = {R†(·,c) : c ∈ C} and Ψ2 = {R†(q,·) : c ∈ C}, (7.9)

and forming their distributional copies for all (·, c)-bunches and (q, ·)-bunches. Note that both Ψ1
and Ψ2 are indexed by all (q, c) ∈ Q†. Then

R†(·,c) = ProjQ†(·,c)Ψ
(·,c)
1 =ψ(Q†(·,c),Ψ (·,c)

1 ) (7.10)

and
R†(q,·) = ProjQ†(q,·)Ψ

(q,·)
2 =ψ(Q†(q,·),Ψ (q,·)

2 ). (7.11)

For our example with R†(·,2) = (R·2
32, R·2

42) and R†(3,·) = (R3·
31, R3·

32, R3·
33) in (6.10), the HVM−FC

+CIM
representation is

ψ(Q†(·,2),Ψ (·,2)
1 ) = (ψ((3, 2),Ψ (·,2)

1 ),ψ((3, 4),Ψ (·,2)
1 )) (7.12)

and
ψ(Q†(3,·),Ψ (3,·)

2 ) = (ψ((3, 1),Ψ (3,·)
2 ),ψ((3, 2),Ψ (3,·)

2 ),ψ((3, 3),Ψ (3,·)
2 )). (7.13)

The falsifiable HVM+FC
+CIM, describing non-contextual R† (hence also, non-contextual R in the CbD

sense), is obtained by making HVM−FC
+CIM and HVM+FC

−CIM coincide:

R†(·,c) =ψ(Q†(·,c),Ψ (·,c)) (7.14)

and
R†(q,·) =ψ(Q†(q,·),Ψ (q,·)). (7.15)

Using again our example (6.10), the HVM+FC
+CIM representation for R†(·,2) = (R·2

32, R·2
42) and R†(3,·) =

(R3·
31, R3·

32, R3·
33) is

ψ(Q†(·,2),Ψ (·,2)) = (ψ((3, 2),Ψ (·,2)),ψ((3, 4),Ψ (·,2))) (7.16)
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and

ψ(Q†(3,·),Ψ (3,·)) = (ψ((3, 1),Ψ (3,·)),ψ((3, 2),Ψ (3,·)),ψ((3, 3),Ψ (3,·))). (7.17)

8. Hidden assumptions about hidden variables
The literature on HVMs and contextuality contains many attempts to explicate various
assumptions underlying HVM+FC

+CIM. We have seen that freedom of choice and context-independent
mapping, taken separately, are not assumptions, as they are universally satisfiable. We have also
seen that their conjunction is restrictive, but that it is conceptually simpler to replace it with a
single assumption, one that I dubbed context-irrelevance. I will now briefly discuss two additional
propositions that are sometimes presented as assumptions.

Outcome determinism is the assumption that hidden variables and parameters of the situation
(contents and contexts) uniquely determine the observable outcomes. Some researchers find this
assumption challengeable [21]. Did we not tacitly introduce this assumption somewhere in the
course of the development above? The answer is no: once one consistently describes HVMs in the
language of random variables, rather than events and their probabilities, outcome determinism
is satisfied automatically. Unless one imposes constraints on the possible distributions of Λc(c),
either of the two unfalsifiable HVMs we have discussed, say, HVM−FC

+CIM, can be constructed for any
system of random variables. The very fact that the components of Rc are jointly distributed means
that there is a random variable of which all these components are measurable functions. This
yields the representation (3.4).

Factorisability is another assumption that is often presented as central for HVM+FC
+CIM [22]. Its

meaning is that, using HVM+FC
−CIM for definiteness,

p[γ (Qc,Γ c, c) = G |Γ c = g] =
∏

q∈Qc

p[Projq∈Qcγ (Qc,Γ c, c) = Projq∈Qc (G) |Γ c = g], (8.1)

where G is a set of values indexed by Qc and g is a specific value of Γ c. Did we not have to use
this assumption? Within our conceptual framework, we did not. Once outcome determinism is
accepted as trivially satisfied, factorisability has to be accepted too. Indeed, all probabilities in this
equation equal 0 or 1, and the left-hand side probability is 1 if and only if all the right-hand side
probabilities are 1.

9. Conclusion
Let us summarise.

1. The propositions that are usually presented as the assumption of free choice and
the assumption of context-independent mapping in constructing HVMs, when taken
separately, are not in fact assumptions. Rather they are two inter-translatable and
universally satisfiable ways of describing joint distributions of random variables in a
system. Because of their equivalence and their substantive emptiness these notions are
mere technical labels in HVMs: one should not take them as saying anything about
freedom of choice or physical influences exerted by contexts in the sense in which these
notions would be discussed in science or philosophy.

2. The conjunction of free choice and context-independent mapping is a falsifiable (and de
facto inapplicable to some systems) model. However, rather than being a conjunction of
two assumptions (as they were viewed, e.g. in the historic discussion [14]), it is a single
assumption in precisely the same sense in which a single sentence can consist of two
parts neither of which is a sentence. One can avoid using the terminology of free choice
and context-independent mapping altogether, even as technical labels, by interpreting
HVM+FC

+CIM as an HVM with context-irrelevance: no distributions in this model may depend
on context.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 J

an
ua

ry
 2

02
4 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A382:20230015

...............................................................

3. The positions just formulated are obtained almost automatically if one systematically
and carefully uses the language of random variables in discussing HVMs. This also
allows one to avoid the necessity of certain additional assumptions, such as outcome
determinism and factorisability. To utilise the advantages of this language one has
to pay meticulous attention to the distinction between jointly distributed variables
and stochastically unrelated ones. ‘Hidden variables’ are nothing more than a tool for
representing jointly distributed variables as measurable functions defined on the same
probability space—which is true essentially by definition. The variables from different
contexts, however, cannot be presented as functions of a single source of randomness,
even in the HVMs with context-irrelevance: the hidden variables in these models must
still be indexed by contexts.
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