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Fechnerian scaling is a theory of how a certain (Fechnerian) metric can be
computed in a continuous stimulus space of arbitrary dimensionality from
the shapes of psychometric (discrimination probability) functions taken in
small vicinities of stimuli at which these functions reach their minima. This
theory is rigorously derived in this paper from three assumptions about psy-
chometric functions: (1) that they are continuous and have single minima
around which they increase in all directions; (2) that any two stimulus
differences from these minimum points that correspond to equal rises in
discrimination probabilities are comeasurable in the small (i.e., asymptoti-
cally proportional), with a continuous coefficient of proportionality; and (3)
that oppositely directed stimulus differences from a minimum point that
correspond to equal rises in discrimination probabilities are equal in the
small. A Fechnerian metric derived from these assumptions is an internal (or
generalized Finsler) metric whose indicatrices are asymptotically similar to
the horizontal cross-sections of the psychometric functions made just above
their minima. � 2001 Academic Press

1. INTRODUCTION

1.0. Outlines. Intuitively, Fechnerian scaling is a method for computing distances
among stimuli from the probabilities with which each of these stimuli can be
discriminated from its very close neighbors. Dzhafarov and Colonius (1999a)
proposed a comprehensive theory that applies this metric-from-discriminability idea
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to continuous stimulus spaces of arbitrary dimensionality (such as the CIE space of
colors, the amplitude�frequency space of tones, and a space of parametrized
geometric shapes). What motivates this theory is the vague belief that, the dis-
crimination among stimuli being arguably the most basic cognitive function and the
probability of discrimination being a universal measure of discriminability, distances
computed from discrimination probabilities should have a fundamental status
among behavioral measurements. In other words, the expectation is that, although
the theory of Fechnerian scaling in its present form makes no predictions of the
kind, many different behavioral measures, such as response times, direct estimates
of stimulus dissimilarities, and the discrimination probabilities themselves, in a final
analysis could be expressed as functions of Fechnerian distances among the stimuli
involved.

In the present work we further develop the theory of Fechnerian scaling by
elaborating its mathematical foundations and establishing operational meanings for
its principal concepts and assumptions (by which we mean their linkage to observ-
ables and empirical procedures). More specifically, the development presented in
this paper is as follows.

We place the notion of a Fechnerian metric in the context of the general
geometry of internal metrics, which means that the Fechnerian distance between
two stimuli in a stimulus space is defined as the infimum of the psychometric lengths
of all well-behaved curves connecting the two stimuli within the space. The psy-
chometric length, in turn, is defined through the notion of an indicatrix attached to
a stimulus, a geometric device that allows one to measure the magnitude of any
vector of change that originates at the stimulus. We establish the empirical meaning
of Fechnerian indicatrices in terms of the shapes of the discrimination probability
( psychometric) functions defined on a stimulus space. Essentially, horizontal cross-
sections of the psychometric functions, made at a fixed small elevation with respect
to their minima, are geometrically similar to the indicatrices attached to the stimuli
at which the minima are achieved.

A different aspect of the shape of a psychometric function is related to the global
psychometric transformation, another central concept in the theory. A transition
from a stimulus to one of its ``immediate'' neighbors corresponds to an infinitesimal
rise in the psychometric function whose minimum coincides with the original
stimulus. The global psychometric transformation makes this rise comeasurable in
the small with the suitably defined magnitude of physical transition (see the
Appendix, Comment 1). We establish the operational meaning for the fundamental
assumption of Fechnerian scaling, that the global psychometric transformation is,
as the term indicates, global: it is one and the same for all stimuli and for all
directions of stimulus change. Essentially, this assumption means that vertical cross-
sections of the psychometric functions, made through their minima in various
directions and considered between the minima and the horizontal cross-sections
mentioned earlier, are scaled (in the horizontal dimension) replicas of each other.

All properties of the Fechnerian metrics that we consider in this paper are
derived from three clearly stipulated assumptions about the shapes of the psy-
chometric functions, when considered in very small vicinities of their minima. This
is worth emphasizing: in spite of the paper's abstract mathematical style, the
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properties of the mathematical notions involved are not postulated, but derived
from certain properties of observable entities. These properties are not guaranteed
to be true, and they can be, in principle, experimentally falsified if they are de facto
wrong. At the same time, the philosophy of our approach dictates that the empiri-
cal assumptions put in the foundation of Fechnerian scaling be made as weak as
possible. Other assumptions can always be added to the ``minimalist'' list adopted
in this paper, but only if warranted by empirical evidence, or if they offer an inter-
esting theoretical development on top of the basic theory.

1.1. Terminological notes. The adjectives ``Fechnerian'' and ``Fechner'' attached
in this paper to mathematical and psychophysical concepts are due to the sugges-
tion made in Dzhafarov and Colonius (1999a) that the metric-from-discriminability
idea constitutes the essence of Gustav Theodor Fechner's original theory (Fechner,
1851, 1860, 1877, 1887): in a unidimensional stimulus continuum, the ``subjective''
distance between a and b is computed as

G(a, b)=|
b

a
$(x) dx,

where $(x) is a measure of local discriminability (that Fechner approximated by the
reciprocal of a ``differential threshold''). This approach can be shown (see
Dzhafarov 6 Colonius, 1999a, for details) to be a unidimensional specialization of
our definition of a Fechnerian distance, provided the discriminability measure $(x)
is computed from the probabilities with which stimulus x is discriminated from
stimuli x\2x, 2x � 0+.

Geometrically, the Fechnerian metrics are identified in Dzhafarov and Colonius
(1999a) as Finsler metrics (after Paul Finsler who proposed them in 1918; see
Busemann, 1950, and Rund, 1959, for history). Because of this, one of the basic
concepts of the Dzhafarov�Colonius theory is termed the ``Fechner�Finsler metric
function.'' This term is retained here for the sake of continuity, but the adjective
``Finsler'' in this paper refers to the generalized Finsler metrics, a term that we take
to be synonymous with internal metrics. Finsler metrics in the narrow sense are
induced by indicatrices whose shapes satisfy a strong form of convexity, which in
the present context means a strong restriction imposed on the shapes of psy-
chometric functions. This restriction may very well hold empirically, but one has no
reason for postulating it in the basic theory. In abstract mathematics, by relaxing
this convexity requirement in different ways one obtains various forms and levels of
generalization for Finsler metrics. The level adopted in this paper (internal metrics)
is achieved if one imposes no constraints on the shapes of the indicatrices at all. In
the mathematical literature the terms ``Finsler metrics'' and ``generalized Finsler
metrics'' do not seem to have rigidly established boundaries (compare, e.g., Asanov,
1985; Aleksandrov 6 Berestovskii, 1995; Busemann, 1942, 1955).

1.2. Mathematical language of the paper. This paper only deals with most basic
aspects of the theory proposed in Dzhafarov and Colonius (1999a), but it does so
in a significantly more rigorous and thorough way. A familiarity with that paper
may be helpful but is not assumed.
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We follow the notation and conventions adopted in Dzhafarov and Colonius
(1999a): boldface letters, x, u, etc., denote vectors with components (x1, ..., xn),
(u1, ..., un), etc., the superscript (contravariant) and subscript (covariant) notation
being used in accordance with their traditional use in differential geometry, but
with no involvement of tensor algebra. A familiarity with differential geometry or
calculus of variations may be helpful, but no knowledge is assumed beyond the
level of standard calculus of several variables and elementary topology.

Although the paper presents a new psychophysical theory, the abstract mathe-
matical results it contains are not entirely new from a mathematician's point of
view. The theorems applicable to abstract internal metrics (rather than Fechnerian
metrics specifically, related to psychometric functions) can be found in or derived
without much ingenuity from the existing mathematical literature. However, the
general approach, precise networking of the concepts involved and the order
in which the propositions are derived, as well as the derivations themselves,
significantly deviate from the literature known to us. This is one reason why we
present or outline all the proofs, instead of undertaking or leaving to the reader the
labor of negotiating all the differences in premises, logical order, and notation that
one would encounter in trying to justify the propositions of this paper by referring
to the mathematical literature. Another reason is that we want this paper to serve
as a self-contained introduction to Fechnerian scaling (which, as a byproduct,
makes it also a self-contained, if nonstandard, introduction to the general geometry
of internal metrics).

2. PSYCHOMETRIC FUNCTIONS: BASIC ASSUMPTIONS

2.0. Outlines. All computations in our theory of Fechnerian scaling are based
on the shapes of psychometric functions within arbitrarily small areas around the
points where the functions reach their minima. A psychometric function shows the
probabilities with which each (comparison) stimulus in a stimulus space is dis-
criminated from a fixed (reference) stimulus. In this paper we do not discuss various
empirical procedures by which the psychometric functions can be obtained. Nor do
we discuss hypothetical psychological mechanisms underlying the decision making
in any such procedure. On the present level of abstraction, the psychometric func-
tions are taken as observable primitives of Fechnerian scaling that are assumed to
satisfy certain assumptions. There are three of them.

The first assumption is that a psychometric function is a continuous function of
comparison stimulus, varies continuously as a function of reference stimulus, and,
in addition, reaches a single minimum at some point in the stimulus space.

The second assumption (considered to be the most fundamental assumption of
Fechnerian scaling) is based on the fact that, given a psychometric function, a
transition from its point of minimum to a neighboring stimulus corresponds to a
rise in the value of the psychometric function. The assumption is that the (suitably
defined) transition magnitudes corresponding to one and the same rise are comea-
surable in the small, that is, asymptotically proportional, across all psychometric
functions and directions of transition.
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The third assumption is that any two oppositely directed transitions from the mini-
mum point of a psychometric function that cause the same rise in its value are asymptoti-
cally equivalent. This assumption, rather secondary in its importance, serves to ensure
that the Fechnerian distance from a to b is the same as that from b to a.

2.1. Stimulus space and allowable paths. Although the theory can easily be
constructed by viewing a stimulus space as a general smooth manifold, we can

FIG. 1. A stimulus space and its diffeomorphic transformation, with the trajectory of an allowable
path connecting two points.
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think of no situation when the following, more specialized, definition would not be
sufficient.

A space of stimuli, denoted by M(n) (Fig. 1), is an open pathwise-connected
region of Ren endowed with conventional topology (say, induced by the Euclidean
or supremal metric; see the Appendix, Comment 2). The points of M(n) are vectors
x=(x1, ..., xn) with the coordinates representing physical dimensions of the stimuli.
Precisely how the stimulus dimensions are chosen is immaterial: any diffeomorphic
transformation of a stimulus space M(n) (see the Appendix, Comment 3) is considered
an equivalent reparametrization of M(n). The Fechnerian metric to be constructed,
therefore, must be invariant with respect to all diffeomorphic transformations. As
shown below, this invariance is achieved ``automatically,'' because the values of the
psychometric functions defined on the stimulus space remain invariant.

(The invariance under reparametrizations of the stimulus space also implies that
our version of Fechnerian scaling has no room for any general or privileged form
of a ``psychophysical law'' relating Fechnerian distances to stimulus coordinates. In
this respect our theory radically departs from Fechner's original approach.)

The pathwise-connectedness of M(n) means that any two points in this stimulus
space can be connected by an allowable (oriented ) path lying entirely in M(n). An
allowable path x(t)b

a connecting stimulus a=x(a) to b=x(b) (where a<b are some
real numbers) is a continuous function x: [a, b] � M(n) whose tangent x* (t) is
a continuous nonvanishing function on each interval [ti&1 , t i] of some finite
partition a=t0<t1< } } } <tn=b (n=1, 2, ...).

A path z({) ;
: such that z[{(t)]=x(t), where {(t) is a diffeomorphism

[a, b] � [:, ;] with {* (t)>0 (positive diffeomorphism), is considered an equivalent
reparametrization of x(t)b

a (Fig. 2). All path-related constructs, such as its
psychometric length, defined below, must therefore be invariant under positive
diffeomorphic transformations.

2.2. Tangent spaces and line elements. In addition to the stimuli themselves, the
theory also makes prominent use of the transitions (conceptual rather than physi-
cal) from a stimulus x to a stimulus x+us, u{0, or, put differently, from x in a
direction u=(u1, ..., un) by a (small) amount s (see the Appendix, Comment 4). As
stated in the previous subsection, any diffeomorphic transformation of a stimulus
space M(n) is considered equivalent to M(n). It is necessary, therefore, to know how
to determine the direction of transition from x to x+us as the two stimuli undergo
a diffeomorphic transformation.

If x̂=x̂(x) is such a transformation, then (see the Appendix, Comment 5)

x̂(x+us)=x̂(x)+
�x̂
�x

us+o[s]. (1)

where

�x̂
�x

={�x̂i

�x j= i, j=1, ..., n
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FIG. 2. An allowable path a and its diffeomorphic reparametrization b in a two-dimensional space;
c is the trajectory of the path.

is the Jacobian matrix of x̂=x̂(x) and u is treated as a column vector. Denote

û=
�x̂
�x

_u, (2)

or, componentwise,

ûi= :
n

j=1

�x̂i(x)
�x j u j, i=1, ..., n.
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FIG. 3. (Top) A point in a stimulus space, and the tangent space attached to it. (Bottom) The same
under a diffeomorphic transformation of the stimulus space.

If, under any diffeomorphic transformation x � x̂, a direction vector u # Ren&[0]
transforms into û according to (2), the vector u is called a contravariant vector
attached to x # M(n). Note that, since the Jacobian matrix �x̂��x in (2) is non-
degenerate, as u sweeps the entire Ren&[0], so does û.

The space C (n)
x that consists of all (nonzero) contravariant vectors attached to x

is called the space of directions (endowed with conventional topology) or the
tangent space attached to x (Fig. 3). The term ``direction u,'' therefore, always
implies u{0 and the contravariant transformation law, but otherwise it can be any
vector having the same dimensionality as M(n). Any stimulus-direction pair (x, u)
forms a line element, ``from point x in direction u,'' that can be thought of as a
descriptor for the transition from x to x+us, as s � 0+.

2.3. Psychometric functions: First Assumption. Each stimulus x of a stimulus
space is associated with a psychometric function

�x(y)=Prob[y is discriminated from x], x, y # M(n). (3)

Note that the reference stimulus x is treated as the parameter (index) of a psy-
chometric function, while the comparison stimulus y is its argument. Occasionally,
however, by abuse of language, �x(y) is taken to denote the entire indexed set of
the psychometric functions,

[�x(y)]x # M(n) ,

viewed as a single function of both x and y.
The First Assumption about psychometric functions is that �x(y) is continuous in

(x, y), and that, for any given x, it attains its single minimum at some diffeomorphi-
cally related to x point y=h(x) # M(n), in a vicinity of which �x(y) increases in all
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FIG. 4. Top: possible appearances of psychometric functions. Bottom: one of these functions, in detail.

directions (Fig. 4). In other words, one can find a neighborhood of h(x) within
which, for any u # C (n)

x ,

�x[h(x)+us]&�x[h(x)]

increases in s>0; and �x(y) has no other minima. (It is not assumed here that the
minimum level of a psychometric function, �x[h(x)], must be the same for different
reference stimuli, x.)

The difference h(x)&x is traditionally (in a unidimensional case) referred to as
the constant error of discrimination, whereas h(x) is considered the ``point of subjec-
tive equality'' for the reference stimulus x.

678 DZHAFAROV AND COLONIUS



One can always redefine the psychometric functions so that they are indexed by
their points of minimum (i.e., the ``points of subjective equality'') rather than by
their reference stimuli;

�� x(y)=Prob[y is discriminated from h&1(x)], x, y # M� (n)=h(M(n)). (4)

It is easy to verify that the restricted stimulus space M� (n) has all the properties
of the original space M(n) (open pathwise-connected region of Ren, with the same
definition of allowable paths), and that �� x(y) is continuous in (x, y) and attains its
minimum at y=x # M� (n). Representation (4) is merely a reindexation of (3), except
that the comparison stimuli y are now only considered within the restricted space
M� (n)�M(n). This shrinkage of the domain, however, is immaterial, because
Fechnerian scaling is only based on the behavior of psychometric functions in
arbitrarily small neighborhoods of their minima. Besides, as follows from the proce-
dure to be described later, all allowable paths of M(n) that can be of use in
Fechnerian scaling would have to lie within M� (n) anyway (because any point of
such a path must be a minimum point of some psychometric function).

With no loss of generality, therefore, we assume for the rest of this paper that
psychometric functions are (re)defined as in (4), so that �x(y) and M(n) always
stand for �� x(y) and M� (n), respectively.

Our First Assumption about psychometric functions can now be formulated
simply: �x(y) is continuous in (x, y), and, for any given x, it attains its single mini-
mum at y=x, in a vicinity of which it increases in all directions.

It may often be desirable, and innocuous from an empirical point view, to impose
additional smoothness constraints on psychometric functions (this is not needed
in this paper). One such constraint is that the rise in the value of a psychometric
function from its minimum,

�x(x+us)&�x(x), u{0

(a prominent quantity in Fechnerian scaling), is infinitely differentiable in s>0.
Occasionally one may wish to strengthen this assumption further by requiring that
�x(y) be infinitely Fre� chet-differentiable at almost all values of x and y (see the
Appendix, Comment 6). One should be careful, however, not to omit, unless
warranted by empirical evidence, the qualifier ``almost.'' The point of minimum, for
example, should always be considered a potential singularity (as in Fig. 4, bottom):
the differentiability at this point is a very stringent constraint that may very well be
empirically false. Also, some additional assumptions (e.g., probability summation
models, not discussed in this paper) may lead to psychometric functions with sharp
edges emanating from their minima (Fig. 5).

2.4. Psychometric functions: Second ( fundamental ) Assumption. To formulate
the next assumption, we first introduce a concept that plays a prominent role in all
computations involved in Fechnerian scaling. The psychometric differential at a
stimulus x # M(n) in a direction u # C (n)

x is defined as

h=�x(x+us)&�x(x), s � 0+. (5)
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FIG. 5. A psychometric function, in the vicinity of its minimum, derived from a certain probability
summation model.

This is the ray-differential (i.e., one-sided directional differential) taken at the
minimum of the psychometric function �x(y) in the direction u (Fig. 6).

Plainly, the psychometric differential vanishes at s=0 and (due to the First
Assumption) continuously increases as a function of s>0, at least within an inter-
val of sufficiently small values of s. We denote this function by 8&1

x, u(s), so that one
has the identity

8x, y[�x(x+us)&�x(x)]=s,

for sufficiently small s�0. We call

s=8x, u(h), h � 0+, (6)

the stimulus differential at (x, u). Given a set of the psychometric functions �x(y),
the stimulus differentials 8x, u(h) are uniquely defined at all possible line elements
(x, u), and they are continuously increasing at small values of h�0 and vanishing
at h=0. Observe the symmetry: to compare two psychometric differentials, (5), one
has to take them at the same value of the physical differential, (6), and vice versa.

The Second Assumption about psychometric functions is that, for some fixed
(x0 , u0) and arbitrary (x, u), the stimulus differentials 8x, u(h) and 8x0 , u0

(h) are
comeasurable in the small (i.e., asymptotically proportional),

0< lim
h � 0+

8x0 , u0
(h)

8x, u(h)
<�, (7)

and that, moreover, the asymptotic proportionality coefficient (i.e., the value of the
limit) is continuous in (x, u).
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FIG. 6. A psychometric differential in two different directions, and the corresponding stimulus
differentials.

The fundamental importance of the Second Assumption for Fechnerian scaling
lies in the fact that (7) implies

lim
h � 0+

8x0 , u0
(h)

8x, u(h)
= lim

s � 0+

8x0 , u0
[�x(x+us)&�x(x)]

8x, u[�x(x+us)&�x(x)]

= lim
s � 0+

8x0 , u0
[�x(x+us)&�x(x)]

s
.

By renaming 8x0 , u0
into 8, this equation can be written as

F (x, u)= lim
s � 0+

8[�x(x+us)&�x(x)]
s

, (8)

where the transformation 8 is one and the same for all x and u, while F (x, u) is con-
tinuous and positive. It is easy to see that (8) determines F (x, u) and 8 essentially
uniquely: to preserve (8) one can only multiply F(x, u) by some constant k>0, and
one can only substitute for 8 an asymptotically equivalent function multiplied by
the same k. Indeed, if (8) holds together with

F *(x, u)= lim
s � 0+

8*[�x(x+us)&�x(x)]
s

,
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then

F *(x, u)
F (x, u)

= lim
s � 0+

8*[�x(x+us)&�x(x)]
8[�x(x+us)&�x(x)]

= lim
h � 0+

8*(h)
8(h)

=k,

for some positive k. All these facts are summarized in

Theorem 2.4.1 (Fundamental Theorem of Fechnerian Scaling). There exists a
transformation 8(h), continuously increasing at small values of h�0 and vanishing
at h=0, that makes all psychometric differentials �x(x+us)&�x(x), as s � 0+,
comeasurable in the small with s,

8[�x(x+us)&�x(x)]=F (x, u) s+o[s], s � 0+, (9)

with F (x, u) being positive and continuous. F (x, u) is determined uniquely and 8(h)
asymptotically uniquely (as h � 0+), up to the multiplication with one and the same
arbitrary constant k>0. That is, all allowable substitutions for F (x, u) and 8(h) are
given by

F *(x, u)=kF (x, u)
. (10)

8*(h)=k8(h)+o[8(h)], h � 0+

We call 8 a global psychometric transformation on a given stimulus space M(n)

(endowed with a given set of psychometric functions), while F (x, u) is referred to
as the (Fechner�Finsler) metric function associated with 8. Due to (10), any func-
tion k8+o[8] is a global psychometric transformation, too, for which kF (x, u) is
the associated metric function.

Next we look at what happens with the global psychometric transformation 8
and the metric function F (x, u) under diffeomorphisms of the stimulus space. The
psychometric functions, under such a diffeomorphism x � x̂, transform as

�� x̂(ŷ)=�x(y),

and we have

F (x, u)= lim
s � 0+

8[�x(x+us)&�x(x)]
s

= lim
s � 0+

8[�� x̂[x̂(x+us)]&�� x̂(x̂)]
s

.

Making use of (1), with û defined by (2),

F (x, u)= lim
s � 0+

8[�� x̂[x̂+ûs+o[s]]&�� x̂(x̂)]
s

= lim
s � 0+

8[�� x̂(x̂+ûs)&�� x̂(x̂)]
s

=F� (x̂, û).
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This proves

Theorem 2.4.2 (Invariance under Diffeomorphisms). The global psychometric
transformation 8 and the value of the Fechner�Finsler metric function F (x, u) remain
invariant under all diffeomorphisms of stimulus space M(n).

2.5. Power function version of Fechnerian scaling. It is argued in Dzhafarov and
Colonius (1999a) that, with little loss for the sphere of applicability of the theory,
the global psychometric transformation in a stimulus space M(n) can be assumed to
be a power function,

8(h)= +
- h, +>0. (11)

In view of (8), this is equivalent to

lim
s � 0+

�x(x+us)&�x(x)
s + =[F (x, u)] +,

that is, all psychometric differentials �x(x+us)&�x(x), as s � 0+, are comea-
surable in the small with s +. If one adopts this power function version of Fechnerian
scaling, then the exponent + (uniquely determined, due to the Fundamental
Theorem) is referred to as the psychometric order of the stimulus space M(n). It is
easy to see, for example, that if �x(y) is analytic at y=x, that is, if

�x(x+us)&�x(x)=s :
n

i=1

��x(x)
�xi ui+

s2

2
:
n

i=1

:
n

j=1

�2�x(x)
�xi �x j u iu j+ } } } ,

then the psychometric order + is the order of the first nonzero summand, which
must be an even integer since the expansion is made at the point of minimum,

�x(x+us)&�x(x)=
sr

r !
:
n

i1=1

} } } :
n

ir=1

�r�x(x)
�x i1 } } } �xir

ui1 } } } u ir+o[sr], r=2, 4, 6, ...

In this case

F (x, u)= r� :
n

i1=1

} } } :
n

ir=1

# i1 } } } ir
ui1 } } } uir, 8(h)= r

- h, +=r.

(This important special case provides the main reason why it is more convenient to
define the psychometric order as + rather than 1�+.)

Of course, one can think of situations in which (11) is not true for any +, because
of which 8(h) cannot be a power function. As an example, if

�x(x+us)&�x(x)=.(x, u)[s + log +(1�s)]+o[s + log +(1�s)],
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then the global psychometric transformation can be presented as

8(h)= +
- h�log(1� +

- h).

This function is not asymptotically proportional to any power function, even
though it can be shown that in this case

�x(x+us)&�x(x)
�x0

(x0+u0 s)&�x0
(x0)

�
.(x, u)

.(x0 , u0)
=

F (x, u) +

F (x0 , u0) + ,

that is, the limit ratio is the same as for 8(h)= +
- h.

2.6. Psychometric functions: Third Assumption. The Third Assumption about
psychometric functions is that, for any stimulus x # M(n) and direction u # C(n)

x , the
two stimulus differentials 8x, u(h) and 8x, &u(h) are asymptotically equivalent,

lim
h � 0+

8x, u(h)
8x, &u(h)

=1. (12)

Since this statement is equivalent to

lim
h � 0+

8(h)
8x, u(h)

= lim
h � 0+

8(h)
8x, u(h)

,

and since, by the Fundamental Theorem,

lim
h � 0+

8(h)
8x, \u(h)

= lim
s � 0+

8[�x(x\us)&�x(x)]
s

=F (x, \u),

we conclude that (12) is equivalent to

F (x, u)=F (x, &u), (13)

for all line elements (x, u). In its turn, (13) is clearly equivalent to

lim
s � 0+

�x(x+us)&�x(x)
�x(x&us)&�x(x)

=1. (14)

The Third Assumption about psychometric functions only serves to ensure that
the Fechnerian metrics are symmetrical: the Fechnerian distance between a and b
is the same as that between b and a. This symmetry requirement, while traditionally
one of the defining properties of the concept of a metric, plays a rather minor role
in the theory of internal metrics in general and of Fechnerian metrics in particular:
its addition to other defining properties of a metric does not seem to lead to signifi-
cant new insights. In the mathematical literature it is common therefore to consider
potentially asymmetric (directed) metrics and to view the symmetry requirement as
optional or secondary in importance (see, e.g., Asanov, 1985; Busemann 6 Mayer,
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1941; Rund, 1959). Without embarking on a discussion of possible interpretations
of asymmetric metrics, we adopt the same approach in this paper: unless it is
specifically pointed out that the Third Assumption is invoked, all our results are
derived from the First and Second Assumptions only.

2.7. Properties of Metric Function. The Fechner�Finsler metric function F (x, u)
can be viewed as the magnitude of the direction vector u # C(n)

x attached to the
stimulus x # M(n). Note that this magnitude is defined in the tangent space C (n)

x

rather than in the stimulus space M(n).
From the Fundamental Theorem we know that F (x, u) is positive and con-

tinuous. Under the Third Assumption, in addition, one has F (x, u)=F (x, &u).
Another important property of a metric function is its Euler homogeneity, proved
next.

Theorem 2.7.1 (Euler Homogeneity). For any k>0,

F (x, ku)=kF (x, u). (15)

Under the Third Assumption,

F (x, ku)=|k| F (x, u), (16)

for any k{0.

Proof. For k>0, from the Fundamental Theorem,

F (x, ku)= lim
s � 0+

8[�x(x+kus)&�x(x)]
s

=k lim
ks � 0+

8[�x(x+u(ks))&�x(x)]
ks

=kF (x, u).

For k<0, the proof is obtained by using the symmetry property, F (x, u)=
F (x, &u). K

In general, any positive, continuous, and Euler homogeneous function ,(x, u)
defined on the set of all line elements and invariant under all stimulus space diffeo-
morphisms can be viewed as a metric function, and, by the procedure described in
the next section, it can be used to construct an internal metric.

To construct a Finsler metric in the narrow sense, the metric function should, in
addition, be postulated to be sufficiently smooth (e.g., infinitely differentiable) and
have the following regularity property: the quantities

gij (x, u)=
1
2

�2,(x, u)2

�ui �u j , i, j=1, ..., n,

(called the components of the Finsler metric tensor) form a positive-definite matrix.
Dzhafarov and Colonius (1999a) postulate this for the Fechner�Finsler metric
function F (x, u). No such assumption is made in this paper.
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3. FECHNERIAN METRICS AND FECHNERIAN INDICATRICES

3.0. Outlines. Once the notion of the Fechner�Finsler metric function F (x, u) is
introduced, the procedure of Fechnerian scaling is straightforward. Since F (x, u) is
interpreted as the magnitude of the direction vector u attached to stimulus x, it can
be used to measure the magnitude of the tangent vector x* (t) at a point x(t) of
any allowable path x(t)b

a connecting a=x(a) with b=x(b). This magnitude is
F[x(t), x* (t)]. By integrating this quantity along the path,

L[x(t)b
a]=|

b

a
F[x(t), x* (t)] dt,

one gets what can be called the psychometric length of this path (i.e., the length
derived from psychometric functions). The Fechnerian distance from a to b is
computed as the infimum of the psychometric lengths of all allowable paths connecting
the two points.

This construction makes the Fechnerian metric a special case of an internal
metric (or generalized Finsler metric). Internal metrics can be defined through the
notion of a metric function, as has just been done, or they can also be defined
through the notion of an indicatrix, the set of the unit-magnitude direction vectors
u originating at a given point x. Although the indicatrices and the metric functions
uniquely determine each other (because the indicatrix centered at x is described by
the equation F (x, u)=1), the introduction of the indicatrices significantly enriches
the analysis of both internal metrics in general and the Fechnerian metrics in
particular.

In the present context, the most important development brought forth by the
notion of a Fechnerian indicatrix is that the latter, unlike the notion of the
Fechner�Finsler metric function, has a direct geometric interpretation in terms of
the shapes of psychometric functions: the indicatrix centered at x is approximated
by a horizontal (i.e., parallel to the stimulus space) cross-section of the psycho-
metric function �x(y) made at a very small elevation from its minimum level, �x(x).
This interpretation provides one with an unexpected theoretical bonus, a dissociation
of Fechnerian indicatrices (and thereby metric functions) from the global
psychometric transformation: within any compact subset of stimuli, the Fechnerian
indicatrices can be ascertained without this transformation being known (although
under the assumption that it exists).

The global psychometric transformation relates to another (orthogonal to the
horizontal cross-sections, both logically and geometrically) aspect of the shape of
psychometric functions, the unidimensional contours of the vertical cross-section of
a psychometric function �x(y) effected by the half-planes passing through its point
of minimum in all possible directions u. The Fundamental Theorem of Fechnerian
scaling amounts to the assertion that all such contours (more precisely, small
portions thereof between the minima and the horizontal cross-sections made at a
fixed elevation from the minima) are asymptotically identical to each other if their
bases (the radii of the horizontal cross-sections) are normalized to a unity. In the
power function version of Fechnerian scaling, which we believe to be of the greatest
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FIG. 7. A Fechnerian indicatrix (right) attached to a stimulus. The magnitude of any vector is
computed as its ratio to the codirectional vector of the indicatrix.

applied importance, the Fundamental Theorem states that all the vertical cross-
section contours (in the vicinity of the minima) are approximated by power functions,
bx, us +, with one and the same exponent and continuously varying coefficient.

3.1. Indicatrices. For any stimulus x, the set of vectors

Ix=[u # C (n)
x : F (x, u)=1] (17)

is called the (Fechnerian) indicatrix attached to (or centered at) x (Fig. 7). This is
a central mathematical concept of this paper, although its importance may not be
apparent until the notion of a Fechnerian metric is defined and related to the
shapes of psychometric functions. By abuse of language, familiar from our dealing
with �x(u), we occasionally use the term ``indicatrix Ix'' to designate the entire set
of the indicatrices indexed by the stimuli x # M(n).

Note that the indicatrix Ix lies within the tangent space C (n)
x rather than within

the stimulus space M(n). The endpoints of the direction vectors constituting Ix form
a closed (n&1)-dimensional contour in C (n)

x . The closedness follows from the fact
that for any direction vector u # C(n)

x one can find one and only one codirectional
vector u0 # Ix (the codirectionality meaning that u=*u0 , *>0),

u # C (n)
x �

u
F (x, u)

=u0 # Ix .

Put differently, any vector u0 # Ix , possibly produced, intersects with the contour
of Ix at one and only one point.

The unit-vector function 1x(u): C (n)
x � Ix mapping any direction vector u # C (n)

x

into the codirectional vector belonging to Ix ,

1x(u)=
u

F (x, u)
, (18)

uniquely represents the indicatrix Ix , which can be viewed as the codomain
of 1x(u). As usual, we occasionally consider 1x(u) to be a single function of both u
and x. Then the function represents the indicatrix Ix viewed as a function of x.
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FIG. 8. The two indicatrices are different even thought they have identical contours.

Theorem 3.1.1 (Properties of Unit-Vector Function). The unit-vector function
1x(u) is continuous in (x, u), and

1x(ku)=1x(u) (19)

for any k>0 (under the Third Assumption, any k{0).

Proof. The proof follows from the properties of F (x, u). K

It is important to realize that the contour of an indicatrix Ix does not determine
this indicatrix uniquely. It only does so in conjunction with the position of the
center (the null vector) within the bounds of this contour (Fig. 8). A point set
image of an indicatrix Ix consists, therefore, of an (n&1)-dimensional contour and
a point within its bounds, interpreted as the center of Ix and attached to the
stimulus x. Under the Third Assumption, however, the center of an indicatrix is,
obviously, the baricenter of its contour, because of which its position is determined
by the contour uniquely.

An arbitrary ``freehand drawing'' of a closed contour around a central point does
not necessarily create an indicatrix. It is necessary, in addition, that any vector
connecting the center with a point on the contour be ``unobstructed,'' that is, that
this vector does not intersect with the contour at any other points (Fig. 9). This is
a point set interpretation of the uniqueness and continuity of 1x(u) in u.

In a unidimensional case, n=1, the indicatrix Ix attached to a point x reduces
to a pair of points u&<0 and u+>0 in Re (with u&=&u+ under the Third
Assumption), provided the coordinate of the center is considered to be zero. It is
interesting to note, in relation to the criticism of Fechner's original theory by Elsass
(1886) and Luce and Edwards (1958), that the controversy is resolved by simply
pointing out that the indicatrix [u& , u+] belongs to the tangent space (here, line),
rather than the space (here, line) of stimuli. We return to this issue in the Conclusion
(see also Dzhafarov and Colonius, 1999a).

In a general theory of internal metrics (of which the Fechnerian metrics are a
special case) one can introduce indicatrices Ix as primitives and then define the
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FIG. 9. This is not an indicatrix: a vector from the central point intersects the contour at more than
one point.

metric function by means of (18). It is useful to spell this out (refer to Fig. 7). Given
an indicatrix Ix in C(n)

x , one computes the magnitude of a direction vector
OU=u # C (n)

x attached to x (which stimulus is identified with O) by finding the
intersection U0 of OU, possibly produced, with the contour of Ix and putting

F (x, u)=OU�OU0 .

An indicatrix is a radical generalization of a Euclidean unit sphere, which is
the indicatrix of the Euclidean metric, whose corresponding metric function is the
conventional Euclidean norm,

F� (x, u)=|u|
(20)

1� x(u)=u�|u|.

Moreover, any indicatrix Ix can be viewed as a homeomorphic transformation of
a unit Euclidean sphere,

1x(u)=1� x(u)
|u|

F (x, u)
.

One important consequence of this simple fact is that the indicatrix Ix , being the
codomain of 1x(u), is a compact set in C (n)

x .

3.2. Psychometric length. For any path x(t), the tangent vector x* (t), wherever
it exists (which is everywhere except, possibly, at a finite number of t-values), is a
contravariant vector attached to x(t), as one can easily prove by differentiating
x̂i[x(t)], i=1, ..., n. Hence x* (t) # C (n)

x(t) , and [x(t), x* (t)] is always a line element (see
Subsection 2.2). This line element determines the piece of the path x(t) between
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points x(t) and x(t+dt)=x(t)+x* (t) dt. It follows that the function F[x(t), x* (t)]
is well defined and can be interpreted as the length of the path x(t) between points
x(t) and x(t+dt).

It is natural therefore to introduce the functional L, defined on the set of all
allowable paths x(t)b

a in M(n),

L[x(t)b
a]=|

b

a
F[x(t), x* (t)] dt, (21)

and to call it the (oriented ) psychometric length of the path x(t)b
a , induced by the

Fechner�Finsler metric function F (x, u) or, equivalently, by the corresponding
Fechnerian indicatrices Ix . Note that a<b, but x(a) may coincide with x(b). Note
also that since the metric function F (x, u) is determined up to an arbitrary scaling
factor k>0, so is the psychometric length L.

Due to (18), the psychometric length of x(t)b
a can also be written as

L[x(t)b
a]=|

b

a

x* (t)
1x(t)[x* (t)]

dt, (22)

lending itself to the following interpretation (Fig. 10). At each point x(t) of the path
x(t)b

a there is a Fechnerian indicatrix Ix(t) attached to it. This indicatrix allows one
to measure the magnitude of the tangent vector x* (t) # C (n)

x(t) by the procedure dis-
cussed above (Fig. 7). When integrated along the entire path, this tangent vector
magnitude yields what is natural to interpret as the length of the path. As a familiar
example, in the case of the Euclidean indicatrix, (20), one gets

L� [x(t)b
a]=|

b

a
|x* (t)| dt,

the Euclidean length of a path.
The following theorem justifies our calling the functional L a length.

Theorem 3.2.1 (Properties of Psychometric Length).

(i) L[x(t)b
a] is a finite positive number for any x(t)b

a .

(ii) For any a<b<c, L[x(t)c
a]=L[x(t)b

a]+L[x(t)c
b].

(iii) L[x(t)b
a] is invariant under all positive diffeomorphic reparametrizations

of x(t)b
a .

(iv) L[x(t)b
a] is invariant under all diffeomorphic transformations of M(n).

Proof. (The reader is reminded that in x(t)b
a , a<b.) The continuity of F (x, u)

and the allowability of the path ensure that F[x(t), x* (t)] is continuous in t,
because of which the integral in (21) exists, in the Riemann sense. That it is positive
for a<b is obvious. The additivity is obvious as well. The invariance under a
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FIG. 10. The magnitude of a tangent vector taken at a point on a path is measured by the
Fechnerian indicatrix attached to this point. The psychometric length of the path is the integral of this
magnitude along the path.

positive diffeomorphic reparametrization {(t) follows from the fact that if z[{(t)]=
x(t), then, at all points where x* (t) exists,

F[x(t), x* (t)] dt=F _z({),
d{
dt

z* ({)& dt=F[z({), z* ({)]
d{
dt

dt=F[z({), z* ({)] d{.

Finally, the invariance under all stimulus space diffeomorphisms follows from the
same property of F (x, u). K

In view of the Third Assumption, it is convenient to introduce the concept of a
path oppositely oriented with respect to a given path x(t)b

a . We refer thus to any
path z({) ;

: such that z[{(t)]=x(t), where {(t) is a negative diffeomorphism
[a, b] � [:, ;], {* (t)<0. If the original path connects a=x(a) with b=x(b), an
opposite path connects b=z(:) with a=z( ;) (note that :<;).

Addendum to Theorem 3.2.1 (Symmetry of Length). Under the Third Assump-
tion, L[x(t)b

a] is invariant under all negative diffeomorphic reparametrizations of x(t)b
a .
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Proof. Using z[{(t)]=x(t), as introduced in the previous paragraph,

L[x(t)b
a]=|

b

a
F[x(t), x* (t)] dt

=|
b

a
F _z({),

d{
dt

z* ({)& dt=|
b

a
F[z({), z* ({)] \&

d{
dt+ dt

=|
;

:
F[z({), z* ({)] d{=L[z({) ;

: ]. K

Since the stimulus space M(n) possesses conventional topology that can be viewed
as induced by the Euclidean metrization of M(n), it is important to understand the
constraints imposed on the psychometric length of a path that lies within a small
Euclidean ball. A Euclidean ball B(a, R)�Ren, centered at a with radius R, is con-
sidered allowable if it lies entirely within M(n). Consider a path x(t)b

a lying entirely
within an allowable ball B(a, R),

|x(t)&a|�R.

It is well-known that x(t)b
a permits what is called its natural parametrization (e.g.,

Kreyszig, 1968, p. 29), that is, it can be parametrized as z({)E
0 , where { is the

Euclidean length of x(t)b
a between x(a) and x(t),

{(t)=|
t

a
|x* (t)| dt.

Thus E is the Euclidean length of the entire path z({)E
0 . It is easy to show (essentially,

by the Pythagorean theorem applied in the small; see Kreyszig, 1968, p. 31) that in
this parametrization all tangents of z({)E

0 (that exist and change continuously at all
but a finite number of points) have a unit Euclidean norm,

|z* ({)|=1. (23)

The set of all line elements (z, u~ ) such that z # B(a, R) and |u~ |=1 is compact
(including the case R=0), because of which F (z, u~ ) attains on this set its precise
minimum, Fmin(a, R)>0, and its precise maximum, Fmax(a, R)>0. It follows, due
to (23), that

|
E

0
F[z({), z* ({)] d{�Fmax(a, R) E

and

|
E

0
F[z({), z* ({)] d{�Fmin(a, R) E�Fmin(a, R) |z(0)&z(E)|.
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These results are summarized in

Lemma 3.2.1 (Euclidean Bounds for Psychometric Length). For any allowable
ball B(a, R), R�0, one can find two numbers Fmin(a, R)>0 and Fmax(a, R)>0, such
that, for any path x(t)b

a never leaving B(a, R),

L[x(t)b
a]�Fmin(a, R) |x(a)&x(b)|, (24)

L[x(t)b
a]�Fmax(a, R) E, (25)

where E is the Euclidean length of the path.

In particular, if x(t)b
a=s(t)b

a is a straight line segment,

s(t)b
a=

b&t
b&a

x(a)+
t&a
b&a

x(b),

then (25) becomes

L[s(t)b
a]�Fmax(a, R) |x(a)&x(b)|. (26)

3.3. Fechnerian distance. We approach the final step in the construction of a
Fechnerian metric. Denote by [a [ b] the class of all allowable oriented paths
x(t)b

a with a=x(a), b=x(b), and put

G(a, b)= inf
x(t)a

b # [a [ b]
L[x(t)b

a]. (27)

This infimum must exist, since all psychometric lengths are nonnegative. We say
that G(a, b) is the Fechnerian metric induced by the (Fechner�Finsler) metric function
F (x, u) or, equivalently, by the corresponding Fechnerian indicatrices Ix . Recall
that the psychometric length L is determined up to an arbitrary scaling factor k>0,
because of which the same applies to G(a, b).

Lemma 3.2.1 leads to the following important

Lemma 3.3.1 (Euclidean Bounds for Fechnerian Metric). For any a # M(n) and
any allowable Euclidean ball B(a, R), if b # B(a, R), then

G(a, b)�Fmax(a, R) |a&b|, (28)

G(a, b)� Fmin(a, R) |a&b|. (29)

Proof. The first inequality follows from (26) on observing that G(a, b)�
L[s(t)b

a]. Due to (24), the infimum of L[x(t)b
a] for all paths lying entirely within

B(a, R) cannot fall below Fmin(a, R) |x(a)&x(b)|=Fmin(a, R) |a&b|, while the
infimum of L[x(t)b

a] for all paths puncturing the sphere of B(a, R) cannot fall
below Fmin(a, R) R. Since R�|x(a)&x(b)|, this proves the second inequality. K
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Clearly, the analogues of (28) and (29) for the terminal point, b, also hold: if
a # B(b, R), then

G(a, b)�Fmax(b, R) |a&b|, (30)

G(a, b)�Fmin(b, R) |a&b|. (31)

The following theorem justifies our calling G(a, b) a metric.

Theorem 3.3.1 (Metric Properties). G(a, b) is a continuous oriented distance on
M(n), that is,

(i) a{b O G(a, b)>0,

(ii) G(a, a)=0,

(iii) G(a, b)�G(a, x)+G(x, b),

(iv) G(a, b) is continuous in (a, b) (with respect to the conventional topology on
M(n)),

(v) under the Third Assumption, G(a, b)=G(b, a), and

(vi) G(a, b) is invariant under all diffeomorphic transformations of M(n).

Proof. Proposition (i) follows from (24), by considering an allowable ball
B(a, R) with R�|a&b|: any path originating at a and reaching b should puncture
the sphere of this ball, because of which it is bounded from below by Fmin(a, R) R.

The proofs for (ii), (iii), (v), and (vi) are trivial.
To prove (iv), assume ak � a, bk � b (k=1, 2, ...). Using the triangle inequality,

(iii), one derives

&G(ak , a)&G(b, bk)�G(a, b)&G(ak , bk)�G(a, ak)+G(bk , b).

Beginning with some k, all ak and bk must be confined to allowable Euclidean
balls B(a, R) and B(b, R), respectively. Applying (28) to G(a, ak) and G(b, bk), and
applying (30) to G(ak , a) and G(bk , b), one gets

&Fmax(a, R) |a&ak |&Fmax(b, R) |b&bk |

�G(a, b)&G(ak , bk)

�Fmax(a, R) |a&ak |+Fmax(b, R) |b&bk |.

Since the bounds tend to zero, (iv) is proved. K

A metric in which the distance between two points is defined as the infimum of
the lengths of all paths connecting these points is called an internal, or generalized,
Finsler metric. The Fechnerian metric on the stimulus space is, therefore, an inter-
nal metric.

In this paper we are not concerned with establishing conditions under which the
infimum in (27) is the minimum, that is, when the set [a [ b] contains a
Fechnerian geodesic, an allowable path whose psychometric length equals G(a, b).
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Nor are we concerned with the existence of any (not necessarily allowable) path
whose length, appropriately defined, equals G(a, b) (called a shortest, or Hilbert,
path). Thorough discussions of the mathematical issues involved in these problems
can be found in Busemann (1955), Busemann 6 Mayer (1941), and Caratheodory
(1982, Chap. 16).

For several reasons, however, it is important to investigate the problem of
Fechnerian geodesics in the small, that is, the existence and properties of an
allowable path a+x(t)b

a s connecting a to b=a+us, whose psychometric length
tends to the Fechnerian distance G(a, a+us) as s � 0+. It should be mentioned,
although with no intention of elaborating this further, that the issue of the
Fechnerian geodesics in the small has a practical significance for computing
Fechnerian distances, especially in the case of ``brute force'' techniques utilizing
fine-mesh discretizations of a stimulus space. More importantly, however, within
the logic of this paper this issue serves as a bridge to the subsequent analysis of the
shapes of the Fechnerian indicatrices and of their relationship to Fechnerian distances.
It should be noted that this approach deviates from the existing mathematical tradition.

3.4. Min-metric function and Fechnerian geodesics in the small. Given an indicatrix
Ix (associated with the metric function F (x, u)) and a direction vector u # C (n)

x , we
call a sequence of (not necessarily distinct) direction vectors u1 # C (n)

x , ..., un # C (n)
x a

minimizing chain for u at Ix , if u=u1+ } } } +un , and

F (x, u1)+ } } } +F (x, un)�F (x, v1)+ } } } +F (x, vm), (32)

for any sequence v1 # C (n)
x , ..., vm # C (n)

x , m�n, such that u=v1+ } } } +vm . That a
minimizing chain (not necessarily unique) exists for any u at any Ix is proved by
the following reasoning.

Recall that C (n)
x does not include the null vector, so all the vectors in (32) are

nonvanishing. It is convenient, however, to extend the metric function F (x, v) to
vanishing vectors by putting

F*(x, v)={F (x, v)
0

if v{0
if v=0

.

Then the problem can be reformulated as that of finding the minimum value
of F*(x, v1)+ } } } +F*(x, vn) across all vector n-tuples (v1 , ..., vn) such that u=
v1+ } } } +vn . One can confine the analysis to only those (v1 , ..., vn) for which
F*(x, vi)�F (x, u), i=1, ..., n. Indeed, since u=(u�n)+ } } } +(u�n), the minimum
value of F*(x, v1)+ } } } +F*(x, vn), if it exists, cannot exceed nF (x, u�n)=F (x, u).
The set of all (v1 , ..., vn) such that u=v1+ } } } +vn and F*(x, vi)�F (x, u) is
compact, as it describes the intersection of an n(n&1)-dimensional hyperplane
with the n2-dimensional body formed by the Cartesian product of compact sets
[vi : F*(x, vi)�F (x, u)], i=1, ..., n. The function F*(x, v1)+ } } } +F*(x, vn), being
continuous on this set, attains its precise minimum, F�(x, u), at some (v1 , ..., vn).
Since v1+ } } } +vn=u{0, some of these vectors, say, u1=vi1

, ..., uk=vik
, k�n, are
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nonzero. One has, therefore, a number k�n and vectors u1 # C (n)
x , ..., uk # C (n)

x such
that

F (x, u1)+ } } } +F (x, uk)= F�(x, u)�F (x, v1)+ } } } +F (x, vm)

for all possible vector m-tuples (v1 # C (n)
x , ..., vm # C (n)

x ) such that u=v1+ } } } +vm .
It remains to observe that one can always replace u1 with the sum of n&k+1
identical vectors u1 �(n&k+1) to obtain a minimizing chain u1 # C (n)

x , ..., un # C (n)
x

satisfying (32). We have proved

Theorem 3.4.1 (Existence of Minimizing Chains). Given an indicatrix Ix , there
is a minimizing chain (u1 , ..., un) for any u # C (n)

x at Ix , with the minimum value
F�(x, u)=F (x, u1)+ } } } +F (x, un) that does not exceed F (x, u). K

For reasons made apparent in the next subsection, we refer to the function
F�(x, u), the magnitude of a minimizing chain for u at Ix , as the min-metric function
associated with Ix . Clearly, F�(x, ku)=kF�(x, u), for any k>0. Because of this one
can confine the discussion of minimizing chains to vectors u with a fixed norm, for
example, u=u� , where F (x, u� )=1. The following geometric interpretation of F�(x, u)
plays a useful role in the analysis of indicatrices (Fig. 11). If u� =v1+ } } } +vn , each
vi can be presented as F (x, vi) v� i , v� i # Ix , i=1, ..., n. Then

$u� =#1v� 1+ } } } +#nv� n , (33)

where

$=
1

F (x, v1)+ } } } +F (x, vn)
, #i=

F (x, vi)
F (x, v1)+ } } } +F (x, vn)

, i=1, ..., n.

Consider the contour of the indicatrix Ix with its center O attached to x. Denoting
OU=u� , OU$=$u� , and OVi=v� i , i=1, ..., n, (33) says that the interior of the n-gon
V1 } } } Vn (not necessarily distinct) intersects OU, possibly produced, at the point
U$. If (v1 , ..., vn)=(u1 , ..., un) is a minimizing chain for u at Ix , the value of $ is at
its maximum,

$(x, u� )=
1

F (x, u1)+ } } } +F (x, un)
=

1

F�(x, u� )
. (34)

We see that F�(x, u� ) corresponds to the maximal possible extension OU$=$u� of
OU=u� for which one can still find an n-gon V1 } } } Vn , with all its vertices (not
necessarily distinct) on the contour of Ix , that contains U $ within its interior
(Fig. 11, right). For a general u # C (n)

x ,

F�(x, u)=
F (x, u)
$(x, u� )

. (35)

Observe that $(x, u� )�1, because F�(x, u)�F (x, u), by Theorem 3.4.1.
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FIG. 11. A geometric interpretation of the min-metric function for a vector OU of an indicatrix.
Considering all possible polygons (here, straight line segments) V1V2 whose interiors intersect the
vector, possibly produced (left panel), one finds its maximal extension for which such a polygon exists
(right panel). When this happens, OU�OU$ equals the min-metric function. Observe that for the second,
unlabeled direction shown, the maximal extension is achieved when V1=V2=U=U$.

Theorem 3.4.2 (Global Minimization). For any (v1 , ..., vm ) such that u=v1+
} } } +vm , F�(x, u)�F (x, v1 )+ } } } +F (x, vm ).

Proof. If m�n, this is true by definition. Suppose therefore that m>n. With no
loss of generality, let u=u� # Ix . By the same geometric construction as above, the

endpoint of some extension OU $=$u� of OU=u� lies within the interior of the
m-gon V1 } } } Vm formed by the endpoints of v� 1=1x (v1), ..., v� m=1x (vm), not
necessarily distinct,

$u� =:1v� 1+ } } } +:nv� m ,

where

$=
1

F (x, v1)+ } } } +F (x, vm)
.

If this m-gon lies within a hyperplane of dimensionality r<n (Fig. 12, left), then, by
considering all possible n-gons with their vertices chosen from (V1 , ..., Vm), with
replacement, we should find at least one (say, V1 } } } Vk ) that contains U $ within its
interior. Then (33) holds for some vectors (v$1 , ..., v$n ) that are codirectional with
(v1 , ..., vn), and it holds with the same value of $. Therefore

F (x, v1 )+ } } } +F (x, vm)=
1
$

=F (x, v$1)+ } } } +F (x, v$n)� F�(x, u� ).
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FIG. 12. An illustration for the Global Minimization Theorem.

The remaining case is when the m-gon V1 } } } Vm is an n-dimensional polyhedron,
and U $ lies within it (Fig. 12, right). Then one can produce OU $ farther, until it hits
an (n&1)-dimensional face of the polyhedron at some point U", falling within its
interior, or the interior of one of its subpolygons. Clearly,

$=OU$�OU�OU"�OU�$(x, u� ),

and this case reduces to the previous one. K

Theorem 3.4.3 (Invariance under diffeomorphisms). The min-metric function
F�(x, u) is invariant under diffeomorphisms of the stimulus space.

Proof. Under a diffeomorphism x � x̂, all direction vectors in C (n)
x undergo

the linear transformation (2) that does not change linear relations among these
vectors. In particular, if u=u1+ } } } +un , then û=û1+ } } } +ûn . Since F�(x, u)=
F (x, u1)+ } } } +F (x, un), the invariance in question follows from the invariance of
the (Fechner�Finsler) metric function F. K

We are finally prepared to prove the main result of this subsection. Consider any
allowable path a+x(t)1

0 s with x(0)=0, x(1)=u; this path connects a to a+us. Let
(u1 , ..., un) be a minimizing chain for u at Ia . We compare the psychometric length

FIG. 13. Fechnerian geodesic in the small: As point B tends to point A along a given direction, the
Fechnerian distance between them tends to the sum of (here) two segments whose directions form a
minimizing chain for the direction from A to B at the indicatrix attached to A.
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of a+x(t)1
0 s with the length of the path formed by the straight line segments

(Fig. 13)

s1(t) s
0=a+tu1 , s2(t) s

0=a+su1+tu2 , ..., sn(t)s
0=a+su1+ } } } +sun&1+tun ,

each segment being parametrized separately by 0�t�s. The first segment connects
a to a+su1 the second a+su1 to a+s(u1+u2), and so on, until the last segment
connects a+s(u1+ } } } +un&1) to a+s(u1+ } } } +un)=a+su. We have

|
1

0
F[a+x(t) s, x* (t) s] dt

:
n

i=1
|

s

0
F \a+s :

i&1

j=1

uj+ui t, ui+ dt

=

:
k

i=1
_F \a+s :

i&1

j=1

vj , vi+ s+o[s]

:
n

i=1
_F \a+s :

i&1

j=1

uj , ui+ s+o[s]&
, (36)

where the interval [0, 1] for the numerator has been partitioned by 0=
t0<t1< } } } <tk=1 in such a way that x* (t) is continuous on any [ti , t i+1] and

vi=
x(t i)&x(ti&1)

t i&t i&1

, i=1, ..., k.

In other words, the (Riemann) integral in the numerator of (36) has been
approximated by the values of x(t) at points a, a+sv1 , a+s(v1+v2), ..., a+
s(v1+ } } } +vk)=a+su, with x* (t) being continuous in between. As s � 0+, (36)
tends to

:
k

i=1

F (a, vi)

:
n

i=1

F (a, u i)

=

:
k

i=1

F (a, vi)

F�(x, u)
�1, (37)

where the inequality follows from Theorem 3.4.2. Since this is true for any path
a+x(t)1

0 s, and since the sequence of the segments a+tu1 , a+su1+tu2 , ..., a+
su1+ } } } +sun&1+tun forms an allowable path from a to a+us, this sequence
forms a Fechnerian geodesic in the small. Conversely, if it is known that, for some
sequence of segments a+tu1 , a+su1+tu2 , ..., a+su1+ } } } +sun&1+tun connect-
ing a to a+us, the limit of the ratio in (36) does not fall below 1 for any allowable
path a+x(t)1

0 s connecting the same two points, then the inequality (37) must hold.
Because of this (u1 , ..., un) must be a minimizing chain for u # C (n)

x at Ix . We
summarize these results in

Theorem 3.4.4 (Fechnerian Geodesics in the Small). An n-tuple of vectors
(u1 # C (n)

x , ..., un # C (n)
x ) is a minimizing chain for u # C (n)

x at Ix if and only if the
sequence of segments s1(t) s

0=a+tu1 , s2(t) s
0=a+su1+tu2 , ..., sn(t)s

0=a+su1+
} } } +sun&1+tvn forms a Fechnerian geodesic in the small from a to a+us,

lim
s � 0+

G(a, a+us)
L[s1(t) s

0]+ } } } +L[sn(t) s
0]

= lim
s � 0+

G(a, a+us)

F�(x, u) s
=1.
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This theorem has a corollary in many respects more important than the theorem
itself.

Corollary to Theorem 3.4.4 (Differentiability of Fechnerian Distance).
G(x, x+us) is differentiable at s=0+, the derivative being equal to the min-metric
function F�(x, u):

dG(x, x+us)
ds } s=0+

= lim
s � 0+

G(x, x+us)
s

= F�(x, u).

3.5. Shapes of Indicatrices and Convex Closure. Refer to the geometric construction
illustrated in Fig. 11: given a direction vector OU=u # C(n)

x , there is its maximal
possible extension OU$=$(x, u� ) u� , $(x, u� )�1, for which one can still find an n-gon
V1 } } } Vn , with all its vertices on the contour of Ix , that contains U$ within its
interior (the existence of this maximal extension is guaranteed by (34) and the
existence of minimizing chains). For convenience, we refer to n-gons V1 } } } Vn with
the properties just mentioned as terminal n-gons in the direction u. Both the value
of $(x, u� ) and the dimensionality of the terminal n-gons V1 } } } Vn can be used for
classification purposes.

Any terminal n-gon V1 } } } Vn in the direction u, if produced, forms a hyperplane
of dimensionality 0�r�n&1. We refer to the maximum value of r, across all
possible terminal n-gons V1 } } } Vn in a given direction, as the order of flatness of the
indicatrix Ix in this direction (see the Appendix, Comment 7). Zero order, for
example, indicates that the only terminal n-gon V1 } } } Vn for u is a single point (it
is easy to see then that this point can only be U, the endpoint of u, i.e., $(x, u� ) can
only be 1); the order 1 indicates that some of the terminal n-gons V1 } } } Vn for u are
(collinear) straight line segments, while others in the same direction may only
be single-points. The maximal order, n&1, indicates that some terminal n-gon
V1 } } } Vn is an (n&1)-dimensional hyperplanar face (Figs. 14, 15).

Figures 14 and 15 also illustrate the next notion. The indicatrix Ix is called
convex or concave in the direction u according to whether $(x, u� )=1 or $(x, u� )>1,
respectively. If Ix is convex in the direction u, the order of flatness in this direction
can be any number from zero to n&1: the case of convexity with zero order of flat-
ness corresponds to the traditional notion of strict convexity. If Ix is concave in the
direction u, the order of flatness in this direction can be any number from 1 to
n&1.

Theorem 3.5.1 (Invariance under Diffeomorphisms). Given an indicatrix Ix and
a vector u� # Ix , the value of $(x, u� ) and the order of flatness in the direction u� are
invariant under diffeomorphisms of the stimulus space.

Proof. The invariance of $(x, u� ) follows from (34) and from the invariance of
F�(x, u) (Theorem 3.4.3). The invariance of the order of flatness follows from the
fact that the transformation (2) preserves all linear and incidence relations among
the direction vectors. K
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FIG. 14. Two three-dimensional indicatrices (left) with their cross-sections (right) are shown. The
number attached to a direction vector indicates the order of flatness in this direction. Zero flatness is
always associated with (strict) convexity. In the other directions shown, with the order of flatness 1 and
2, the indicatrices are concave.

Theorem 3.5.2 (Convexity and Minimizing Chains). Given an indicatrix Ix with
a corresponding metric function F (x, u) and a direction vector u, the following
statements are equivalent:

(i) Ix is convex in the direction u;

(ii) F�(x, u)=F (x, u);

(iii) (u1=u�n, ..., un=u�n) is a minimizing chain for u at Ix; and

(iv) the segment s(t)s
0=x+tu is a Fechnerian geodesic in the small from x to

x+us.

Proof. Statement (ii) is equivalent to (i) because of (35). That statement (iii) is
equivalent to (ii) follows from the definitions of the minimizing chains and the min-
metric function. The equivalence of (iii) and (iv) follows from Theorem 3.4.4. K
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FIG. 15. The same as in Fig. 14, except that the indicatrices here are convex in the directions with
the order of flatness 1 and 2.

The significance of the implication (i) � (iv) above is worth emphasizing. If the
Fechnerian indicatrix Ix is convex in a direction u, then the Fechnerian geodesic
in the small that connects x to x+us is a straight line segment. It follows that we
have

Corollary to Theorem 3.5.2 (Fechnerian Geodesics in the Small under Con-
vexity of Indicatrices). If all Fechnerian indicatrices Ix are convex in all directions,
then, for any (x, u), the segment s(t) s

0=x+tu is a Fechnerian geodesic in the small
from x to x+us, s � 0+.

The vector set

I
�

x=[u: u=$(x, u� ) u� , u� # Ix]

is called the convex closure of the indicatrix Ix (Fig. 16): it is obtained by extending
each vector u� of the indicatrix Ix by the factor of $(x, u� ). Since u can always be
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FIG. 16. Convex closure of an indicatrix (n=2) is shown. For n=3, the indicatrices shown in
Fig. 15 are convex closures of the correspondingly placed indicatrices in Fig. 14.

presented as F (x, u) u� , the equation u=$(x, u� ) u� is equivalent to F (x, u)=$(x, u� ),
and, on taking into account (35), it is equivalent to F�(x, u)=1. The convex closure
of the indicatrix Ix can therefore be presented as

I
�

x=[u # C (n)
x : F�(x, u)=1]. (38)

The similarity with the definition of the indicatrix Ix itself, (17), is more than
superficial. It turns out that

Theorem 3.5.3 (Convex Closure Theorem). The min-metric function F�(x, u)
associated with an indicatrix Ix is a metric function: that is, F�(x, u) is a positive,
continuous, and Euler homogeneous function defined on the set of all line elements and
invariant under all stimulus space diffeomorphisms. The indicatrix corresponding to
F�(x, u) is the convex closure I

�
x of the indicatrix Ix .

Proof. The positiveness and Euler homogeneity of F�(x, u) directly follow from
the fact that F�(x, u) is F (x, u1)+ } } } +F (x, un), for some direction vectors
u1 , ..., un . The invariance under stimulus space diffeomorphisms is proved in
Theorem 3.4.2. It remains to prove the continuity of F�(x, u) in (x, u).

Suppose that uk � u, (u1 , ..., un) is a minimizing chain for u, and (u1k , ..., unk) is
a minimizing chain for uk , k=1, 2, ... . Obviously, one can find a sequence of vector
n-tuples (v1k , ..., vnk) such that v1k+ } } } +vnk=uk and (v1k , ..., vnk) � (u1 , ..., un);
and one can find a sequence of vector n-tuples (w1k , ..., wnk) such that w1k+ } } } +
wnk=u and |(w1k , ..., wnk)&(u1k , ..., unk)| � 0. Due to the continuity of the metric
function, if xk � x, then
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F (xk , v1k)+ } } } +F (xk , vnk) � F (x, u1)+ } } } +F (x, un)= F�(x, u),

|[F (x, w1k)+ } } } +F (x, wnk)]&[F (xk , u1k)+ } } } +F (xk , unk)]|

=|[F (x, w1k)+ } } } +F (x, wnk)]& F�(xk , uk)| � 0.

From the first of these limit statements we deduce that, for any =>0, one can
choose k= so that

F�(xk , uk)� F�(x, u)\=, k>k= .

Analogously, we deduce from the second limit statement that

F�(x, u)� F�(xk , uk)\=, k>k= .

Since = can be made arbitrarily small, it follows that, as uk � u and xk � x,

F�(xk , uk) � F�(x, u).

That the indicatrix corresponding to F�(x, u) is the convex closure I
�

x of the
indicatrix Ix is true by definition, (38). K

The proof of the following theorem trivially follows from the construction of I
�

x .

Theorem 3.5.4 (Properties of Convex Closure).

(i) The convex closure I
�

x of an indicatrix Ix is convex in all directions.

(ii) For any given direction, I
�

x has the same degree of flatness as the
indicatrix =Ix .

(iii) An indicatrix coincides with its convex closure, I
�

x=Ix , if and only if Ix

is convex in all directions. In particular, I
��

x= I
�

x .

(iv) I
�

x is contained within any convex body that contains Ix .

For completeness, having shown that I
�

x is an indicatrix corresponding to a
metric function F�(x, u), it is natural to introduce also the corresponding unit-
vector function,

1
�

x (u)=
u

F� (x, u)
=

1x(u)
$(x, 1x(u))

. (39)

This function, which is convenient to refer to as the convex closure of the unit-vector
function 1x(u), uniquely represents the indicatrix I

�
x .

Recall now the Corollary to Theorem 3.4.4: the min-metric function F�(x, u)
associated with an indicatrix Ix can be obtained by differentiating, at s=0+, the
Fechnerian distance G(x, x+us) induced by the same indicatrix Ix . One comes to
a very interesting mathematical situation. By means of one indicatrix, Ix , or, equiv-
alently, the corresponding metric function F (x, u), one uniquely computes a certain
Fechnerian metric G(a, b), following the procedure described earlier. Then from this
metric G(a, b) one uniquely obtains another indicatrix, I

�
x , that corresponds to the
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min-metric function F�(x, u). Clearly, the indicatrix I
�

x or, equivalently, F�(x, u),
induces on the stimulus space a certain internal metric. Denoting this metric by
G�(a, b), one is naturally led to the question: How does G�(a, b) relate to the
Fechnerian metric G(a, b)? The answer is remarkable.

Theorem 3.5.5 (The Busemann�Mayer Identity). G�(a, b)=G(a, b).

Proof. (This is the main theorem in Busemann 6 Mayer, 1941, proved there in
a very different way.) Since F�(x, u)�F (x, u), it follows that L�[x(t)b

a]�L[x(t)b
a]

and G�(a, b)�G(a, b). At the same time, by the Corollary to Theorem 3.4.3,

L�[x(t)b
a]=|

b

a
F� [x(t), x* (t)] dt=|

b

a

dG[x(t), x(t)+x* (t) s]
ds } s=0+

dt

= :
n

i=1
|

ti

ti&1

dG[x(t), x(t)+x* (t) dt]
dt

dt

=|
b

a
G[x(t), x(t+dt)]�G[x(a), x(b)],

where the partition a=t0<t1< } } } <tn=b is chosen so that x* (t) exists on each of
the intervals [t i&1 , t i]. It follows that G�(a, b)�G(a, b), hence G�(a, b)=G(a, b). K

Thus, the Fechnerian metric induced by a Fechnerian indicatrix (equivalently, a
Fechner�Finsler metric function) is also induced by the convex closure of this
indicatrix (equivalently, the min-metric function associated with the Fechnerian
indicatrix). Some of the immediate consequences of this statement are as follows.

Corollary 1 to Theorem 3.5.5 (Fechnerian Triad). The Fechnerian metric
G(a, b), the convex closure I

�
x of the Fechnerian indicatrix Ix, and the min-metric

function F�(x, u) associated with Ix determine each other uniquely.

Corollary 2 to Theorem 3.5.5 (Equivalence of Indicatrices). Different Fechnerian
indicatrices induce one and the same Fechnerian metric G(a, b) if and only if they
have one and the same convex closure.

It must be clear now why the function F�(x, u) is referred to as the min-metric
function: among all possible metric functions generating a given Fechnerian metric
(Fig. 17), F�(x, u) has the smallest possible value for any (x, u).

In view of the Corollary to Theorem 3.5.2, we also have

Corollary 3 to Theorem 3.5.5 (Geodesics in the Small under Convex
Closure). For any Fechnerian metric G(a, b), if the indicatrix Ix that induces it is
replaced with its convex closure, I

�
x , then, for any (x, u), the segment s(t)s

0=x+tu
is a Fechnerian geodesic in the small from x to x+us, s � 0+.

We conclude this subsection by a remark on the issue of metric symmetry,
G(a, b)=G(b, a). The symmetry is guaranteed by the Third Assumption, but, as
shown in Fig. 18, it is possible that G(a, b)=G(b, a) while the Third Assumption
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FIG. 17. All the indicatrices shown correspond to the same min-metric function and locally induce
the same Fechnerian metric. The last indicatrix coincides with its convex closure and corresponds to the
min-metric function.

does not hold (which is another reason for considering this assumption to be
secondary in importance). One can now formulate the necessary and sufficient
conditions for the metric symmetry.

Theorem 3.5.6 (Symmetry). A Fechnerian metric is symmetrical, G(a, b)=
G(b, a), if and only if the min-metric function inducing this metric is symmetrical,
F�(x, u)= F�(x, &u).

FIG. 18. The left indicatrix is not symmetrical but it has a symmetrical convex closure (the right
indicatrix), locally inducing thereby a symmetrical Fechnerian metric.
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Proof. The sufficiency is obvious. The necessity follows from the Corollary to
Theorem 3.4.4, on observing that

dG(x+us, x)
ds } s=0+

= lim
s � 0+

G[(x+us), (x+us)&us]
s

= lim
s � 0+

F�(x+us, &u)= F�(x, &u). K

3.6. Indicatrices and psychometric functions. In spite of the abstract character
and great generality of the results established so far, one should keep in mind that
the notion and properties of the Fechner�Finsler metric function F (x, u), upon
which all the results of this section are based, are derived from properties of psy-
chometric functions (Section 2). Here, we return to an explicit analysis of the
psychometric functions in order to establish the empirical meaning of the principal
notions involved.

Given a psychometric function �x(y), its horizontal cross-section at an elevation
h>0 from its minimum (Fig. 19) is defined as the set of stimuli

Fx, h=[y: �x(y)&�x(x)=h], (40)

considered together with its center x. Even though the set Fx, h lies within the
stimulus space M(n), it can be put in a linear correspondence with C(n)

x ,

y # Fx, h W u # C (n)
x if and only if y&x=u. (41)

This correspondence allows one to establish the geometric relationship of Fx, h to
the Fechnerian indicatrix Ix attached to the center of Fx, h .

Due to the First Assumption, one should be able, by choosing h*(x) sufficiently
small, to ensure that for all direction vectors u # C (n)

x , the psychometric differential
in (5),

h=�x(x+us)&�x(x),

increases in s�0 whenever h<h*(x). This implies that, for any direction vector u
and any h<h*(x), one can uniquely find the stimulus y # Fx, h such that z=y&x
is codirectional with u. The cross-section Fx, h , therefore, can be represented by a
vector function of direction,

y&x=zx, h(u) (42)

(that h<h*(x) is hereafter assumed tacitly). As s in the psychometric differential is
an increasing function of h>0, vanishing at h=0, (6), we have

zx, h(u)=u8x, u(h). (43)
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FIG. 19. Horizontal cross-sections of a psychometric function at three elevations from its minimum.

Clearly, for any k>0,

zx, h(ku)=zx, h(u), (44)

8x, ku(h)=
1
k

8x, u(h). (45)

Consider now the indicatrix Ix , attached to the center of Fx, h , and the
associated unit-vector function 1x(u). By definition,

lim
s � 0+

8[�x(x+1x(u) s)&�x(x)]
s

=F[x, 1x(u)]=1.
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This can also be written as

lim
s � 0+

s
8[�x(x+1x(u) s)&�x(x)]

=1.

Viewing s as a function of h, (6), we have

lim
h � 0+

8x, 1x(u)(h)
8(h)

=1.

Due to (43), this is equivalent to

lim
h � 0+

zx, h[1x(u)]
8(h)

= lim
h � 0+

1x(u) 8x, 1x(u)(h)
8(h)

=1x(u),

which, in view of (44), can be written as

lim
h � 0+

1
8(h)

zx, h(u)=1x(u). (46)

On recalling (42), we have proved (see the Appendix, Comment 8)

Theorem 3.6.1 (Homothety between Indicatrix and Horizontal Cross-section). The
horizontal cross-section Fx, h , represented ( for sufficiently small h) by a vector function
zx, h(u), and the Fechnerian indicatrix Ix , represented by the unit-vector function
1x(u), are asymptotically homothetic,

zx, h(u)
1x(u)

=8(h)+o[8(h)], h � 0+, (47)

with the coefficient of homothety 8(h) equal to the global psychometric transformation
(and therefore one and the same for all x and u).

Recall that the Fechner�Finsler metric function and, hence, the Fechnerian
indicatrices, too, are determined up to an arbitrary scaling factor k>0. Because of
this, assuming that one is able to choose h=h0 so small that o[8(h0)]�8(h0) in
(47) is negligible, one can replace 8(h0) with any arbitrary constant, say, unity. In
other words, one can take the cross-section Fx, h0

as a direct approximation for the
concentric Fechnerian indicatrix (Fig. 20),

zx, h0
(u)

1x(u)
r1. (48)

The dependence of the error value o[8(h)]�8(h) on the direction vector u is
immaterial, because both zx, h0

(u) and 1x(u) are invariant under positive scaling of
u, (44), and (19). The ratio in (47), therefore, is a continuous function of 1x(u),
because of which o[8(h)]�8(h) is bounded from above for any given h. As a result,
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FIG. 20. A horizontal cross-section at a very small elevation is homothetic to and can be identified
with the Fechnerian indicatrix attached to the minimum point of the psychometric function.

the value h=h0 at which o[8(h0)]�8(h0) is negligible can be chosen the same for
all u, for any given x.

Unless additional assumptions are introduced (which we are not willing to do in
the basic theory), however, one cannot deal similarly with the dependence of the
error value on x, as well as the dependence on x of the bound h*(x) brought up
above. One has to keep in mind, therefore, that the approximation (48), with one
and the same elevation h0 used to cross-section more than one psychometric func-
tion, requires that the stimuli x be confined to a compact (but otherwise arbitrarily
large) subset of the stimulus space M(n). In practice, this constraint is not stringent,
as the stimulus space has to be approximated by a finite mesh of stimuli anyway,
with the indicatrices for the remaining values being subsequently interpolated and
extrapolated from those computed on this mesh.

The operational meaning of saying that h0 is sufficiently small to warrant the
approximation (48) can be presented in the following way. It follows from (47) that

zx, h2
(u)

zx, h1
(u)

=
8(h2)+o[8(h2)]
8(h1)+o[8(h1)]

=
8(h2)
8(h1)

+o {8(h2)
8(h1)= , h2<h1 � 0. (49)

Unlike (47), this ratio involves only observable quantities. The approximation error

o[8(h2)�8(h1)]
8(h2)�8(h1)

can also be expressed in terms of the observables, as

zx, h2
(u)�zx, h1

(u)&zx0 , h2
(u0)�zx0 , h1

(u0)

zx0 , h2
(u0)�zx0 , h1

(u0)
, (50)

where (x0 , u0) is an arbitrarily chosen line element. Then an elevation h0 can be
considered sufficiently small to warrant (48), if (50) is shown to be smaller than a
preset level of error, whenever h2<h1<h0 , for all directions and all stimuli within
a compact subset of M(n) (Fig. 21).
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FIG. 21. If the horizontal cross-sections made at two small elevations are homothetic, with one and
the same coefficient of homothety across a compact set of stimuli, then the elevations can be considered
sufficiently small to warrant the identification of the Fechnerian indicatrices with the cross-sections made
at either of the two elevations.

We come to a remarkable conclusion: the Fechnerian indicatrices can be com-
puted, to any desired degree of approximation, with no knowledge of the global
psychometric transformation involved. Since the Fechnerian indicatrices determine
a Fechnerian metric uniquely, one can also say that no knowledge of the global
psychometric transformation is required to compute the Fechnerian metric,
provided that the indicatrices can be with a sufficient precision extrapolated from a
compact subset of M(n) to the entire stimulus space. The existence of the global
psychometric transformation, however, one and the same for all stimuli and directions
of change, remains the fundamental assumption underlying the entire enterprise of
Fechnerian scaling, including the approximations just described.

The homothetic relationship between Fx, h and the Fechnerian indicatrix Ix

stated in Theorem 3.6.1 is established by linearly projecting Fx, h on the tangent
space C (n)

x , by means of (41). It is also of interest, however, to simply take Fx, h for

711MULTIDIMENSIONAL FECHNERIAN SCALING: BASICS



what it is, a set of stimuli, and to find out Fechnerian distances between the central
point x and these stimuli. In other words, we are interested in the value of

G(x, y)=G[x, x+zx, h (u)], h � 0+.

Due to (47),

G[x, x+zx, h (u)]=G[x, x+1x(u)(8(h)+o[8(h)])],

and

lim
h � 0+

G[x, x+zx, h (u)]
8(h)

= lim
8(h) � 0+

G[x, x+1x (u)(8(h)+o[8(h)])]
8(h)

= lim
s � 0+

G[x, x+1x (u) s]
s

.

Then, by the Corollary to Theorem 3.4.4,

lim
h � 0+

G[x, x+zx, h (u)]
8(h)

= lim
s � 0+

G[x, x+1x (u) s]
s

= F�[x, 1x (u)]= F�_x,
u

F(x, u)&=
F�(x, u)
F(x, u)

,

and we have proved

Theorem 3.6.2 (Center-to-Contour Distances for Horizontal Cross-section).
The Fechnerian distance from x to the contour of the horizontal cross-section Fx, h of
�x(y) at an elevation h is

G[x, x+zx, h(u)]=
F�(x, u)
F(x, u)

8(h)+o[8(h)].

We see that Fx, h generally is not a Fechnerian sphere: the stimuli on its contour
are not (asymptotically) equidistant from the center. It is easy to see that we have

Corollary to Theorem 3.6.2 (Convex Horizontal Cross-sections as Fechnerian
Spheres). The Fechnerian distances G[x, x+zx, h (u)] in different directions u are
asymptotically equal to each other,

G[x, x+zx, h (u)]=8(h)+o[8(h)],

if and only if the Fechnerian indicatrix Ix is convex in all directions.

None of the assumptions made in this paper guarantees that the horizontal cross-
sections of psychometric functions �x(y) have convex contours at sufficiently small
elevations h (see the Appendix, Comment 9). Due to Theorem 3.5.5, however, to
compute a Fechnerian metric one can always replace the Fechnerian indicatrix Ix with
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its convex closure I
�

x. If one uses (47), or (48), to estimate Ix, then, by convexly

closing the contour of Fx, h , one obviously gets an estimate of I
�

x . By the Corollary
to Theorem 3.6.2 and by Corollary 3 to Theorem 3.5.5, the convex closure of Fx, h

is a Fechnerian sphere in the small with straight line radii: as these radii get smaller,
their psychometric lengths get closer to each other.

3.7. Global psychometric transformation. As shown in the previous subsection,
Fechnerian indicatrices can be estimated, to any desired degree of approximation,
by horizontal cross-sections of psychometric functions, and this estimation does not
require any knowledge of the global psychometric transformation. This remarkable
fact becomes less surprising when one realizes that the global psychometric
transformation, compared to a horizontal cross-section, pertains to a different,
orthogonal (both logically and geometrically) aspect of psychometric functions.
Namely, the psychometric differential �x(x+us)&�x (x) describes the vertical
cross-section of the psychometric function �x (y), made in the direction u. Geometri-
cally, this is the contour of the intersection of �x(y) with the (two-dimensional)
half-plane swept by the ray x+us, s>0, moving orthogonally to the stimulus space
(Fig. 22). Here, we discuss the operational meaning of the global psychometric
transformation, 8, and the fundamental assumption of Fechnerian scaling, that 8
is the same for all stimuli and all directions of change. It is tacitly assumed that the
consideration is restricted to a compact subset of stimuli, as discussed in the pre-
vious subsection.

For a small elevation h0 and the corresponding horizontal cross-section Fx, h0
,

represented by zx, h0
(u), we have

lim
s � 0+

8[�x (x+zx, h0
(u) s)&�x (x)]

s
=F[x, zx, h0

(u)]. (51)

Due to (47),

F[x, zx, h0
(u)]=F[x, 1x (u)(8(h0)+o[8(h0 )])]

=F[x, 1x (u)][8(h0)+o[8(h0)]], h0 � 0+,

and, since F[x, 1x (u)]=1, (51) becomes

lim
s � 0+

8[�x (x+zx, h0
(u)s)&�x(x)]

s
=[8(h0)+o[8(h0)]], h0 � 0+.

Equivalently,

8[�x (x+zx, h0
(u)s)&�x (x)]

=[8(h0)+o[8(h0)]] s+o[s], h0 � 0+, s � 0+. (52)
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FIG. 22. Two vertical cross-sections of a psychometric function, considered between its minimum
and a low-elevation horizontal cross-section.

Since s and h=�x(x+zx, h0
(u) s)&�x(x) are asymptotically proportional, we can

write

o[s]=o[8(h)],

and, as h�h0 (for s�1),

o[s]=o[8(h0)].

Then (52) can be written as

8[�x(x+zx, h0
(u)s)&�x(x)]=8(h0)s+o[8(h0)], h0 � 0+. (53)

Assuming now that an elevation h0 is chosen sufficiently small by the criteria dis-
cussed in the previous subsection, one can replace 8(h0) with unity, as in (48), and
obtain

8[�x(x+zx, h0
(u) s)&�x(x)]rs. (54)

This approximation should hold, to a desired degree of precision (that deter-
mines the choice of h0 ), for all h�h0 (i.e., for all s�1), across different u and x.

We arrive now at the operational meaning of the global psychometric transfor-
mation and the fundamental assumption of Fechnerian scaling. For any stimulus x
and direction vector u, one estimates the transformation 8 by plotting the value of
s, between 0 and 1, against the corresponding value of �x(x+zx, h0

(u) s)&�x(x),
ranging from 0 to h0 ; according to the fundamental assumption, this function must
be (approximately) the same for all x and u (Fig. 23).
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FIG. 23. If the radii (R) of the horizontal cross-section that serve as bases for the vertical cross-
sections are normalized to a unity, then all vertical cross-sections have the same shape (across different
directions, as shown, but also across different stimuli).

This interpretation acquires an especially simple form if one adopts the power
function version of Fechnerian scaling, that is, if one assumes that the global psy-
chometric transformation is a power function, (11), possibly multiplied by a
positive constant. Then, by plotting �x(x+zx, h0

(u)s)&�x(x) against s, between 0
and 1, one should be able to uniquely find a value of +, such that, for all line
elements (x, u),

�x(x+zx, h0
(u) s)&�x(x)rh0 s+.

Conversely, given a Fechnerian indicatrix Ix and a global psychometric transfor-
mation 8, one can reconstruct, essentially uniquely, the shape of the psychometric
function �x(y) in a very small vicinity of its minimum, y=x,

�x(y)&�x(x)r8&1 _ y&x
zx, h0

(y&x)& ,

where 8 has been multiplied with a positive constant that ensures 8(h0)=1.
For the power function version of Fechnerian scaling,

�x(y)&�x(x)rh0 _ y&x
zx, h0

(y&x)&
+

.

4. CONCLUSION

As stated in the opening paragraph of this paper, Fechnerian scaling is motivated
by the vague belief that Fechnerian distances could lie in the foundation of other
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behavioral measurements. A prominent feature of Fechnerian scaling that con-
tributes to this belief is that Fechnerian distances are computed from strictly local
(in-the-small) considerations: we know that this is how metrics are derived in
physics. At present, however, as this vague belief has been neither tested nor for-
mulated more rigorously, one can only take Fechnerian scaling for what it undoub-
tedly is, a powerful mathematical language for psychophysics, and develop it by
relating it to as broad a variety of psychophysical problems and approaches as
possible. It is demonstrated in Dzhafarov and Colonius (1999a) that sometimes a
mere formulation of a long-standing problem in the language of Fechnerian scaling
is sufficient to solve it (we refer here to the problem of Fechnerian distances
between isosensitivity curves).

Another famous historical example is the internal inconsistency found in
Fechner's original theory by Elsass (1886) and Luce and Edwards (1958). Recall
that in a unidimensional case the indicatrix Ix attached to a point x is (under the
Third Assumption) a pair of points [&u(x), u(x)], u>0. Stated in terms of the
present theory, the criticism in question is as follows: If u(x) is claimed to be
``subjectively constant'' across different values of x (Fechner's Postulate), so that its
subjective magnitude can be equated to 1, and if one uses (22) and (27) to compute
the Fechnerian (``subjective'') distances G(a, b), then, the argument goes,
G[a, a+u(a)] must be constant (in fact, equal to 1) across different values of a.
This is not, however, the case. The application of (22) and (27) in this situation
leads to

G[a, a+u(a)]=|
a+u(a)

a

dx
u(x)

,

which varies with a in all cases except when u(x)=cx (Luce 6 Edwards's
argument), and even in the latter case

G[a, a+ca]=
1
c

log (1+c){1

(Elsass's argument). As mentioned in Subsection 3.1, this controversy is resolved by
simply pointing out that the indicatrix [&u(x), u(x)] belongs to the tangent space,
rather than the stimulus space. Quite aside from the issue of how the value of u is
estimated (in Fechner's theory, by measuring ``differential thresholds''), the subjec-
tive constancy of u(x) postulated by Fechner should be understood as the con-
stancy of the magnitude of the indicatrix radii. This constancy holds by the defini-
tion of an indicatrix, whereas the constancy of distances G[a, a+u(a)] in the
stimulus space can only be true approximately, as discussed in Subsection 3.6, and
as Fechner (1887, p. 167) pointed out in his rejoinder to Elsass.

Many empirical and theoretical problems are being led to by Fechnerian scaling
in a natural fashion. It remains an open question, for example, whether the same
Fechnerian distances can be derived from different kinds of psychometric functions,
say, those obtained from direct ``same�different'' judgments and those obtained
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from forced choices between (x, x) and (x, y) pairs. The theory of Fechnerian scal-
ing does not predict that these distances should be the same, but it would simply
become less interesting if they turn out to be completely unrelated. This is an
empirical issue. An important theoretical problem is how the discrimination
probabilities �x(y) are related to Fechnerian distances G(x, y): In particular, must
�x(y) be a function of G(x, y) if it is a function of some distance between x and y?
Another important theoretical problem is that of determining the constraints
imposed on Fechnerian indicatrices and on global psychometric transformations by
the assumption that psychometric functions are derived from a model of a
Thurstonian kind, the model in which stimuli are represented by random events in
a hypothetical perceptual space and two stimuli are judged to be different if and
only if their perceptual representations differ by more than a critical distance, in
some suitably defined perceptual metric. Yet another important problem is that of
the relationship between the Fechnerian metric in a stimulus space M(n) and the
Fechnerian metrics in the lower-dimensionality subspaces of M(n). One aspect of
this problem involves such issues as perceptual separability and stochastic inde-
pendence in the perception of different physical attributes (Ashby 6 Townsend,
1986; Thomas, 1996). Some preliminary results obtained when Fechnerian scaling
is applied to these problems are described in Dzhafarov and Colonius (1999b).

It should be emphasized that although Fechnerian scaling can be viewed as a
mathematical language for psychophysics, it is also an empirical theory, based on
assumptions that may or may not be true. Due to the fact that all but one of these
assumptions deal with asymptotic (limit) properties of psychometric functions (the
one exception being the single-minimum part of the First Assumption), one might
be inclined to think that they cannot be refuted experimentally even if they are
de facto wrong. This opinion is unsubstantiated. In the context of response time
decompositions, for example, the possibility of choosing empirically among compet-
ing assumptions involving asymptotic properties is demonstrated in Dzhafarov
(1992) and Dzhafarov and Rouder (1996). Colonius (1995) shows how certain
asymptotic properties of theoretical response time distributions can be determined
from the tail behavior of a sample distribution function. In the present context, con-
sider, as a possible scenario, that one finds that a certain elevation h0 for horizontal
cross-sections of several psychometric functions is sufficiently small by the criteria
established in Subsection 3.6, in the discussion related to (49) and (50); one also
finds that each of the vertical cross-sections of these psychometric functions, made
in several different directions, can be well approximated by power functions (see
Subsection 3.7); but one finds that the exponents of these functions are significantly
different for different psychometric functions, or different directions of change. This
would constitute a convincing empirical refutation for the fundamental Second
Assumption, invalidating thereby the entire enterprise of Fechnerian scaling.

APPENDIX: TECHNICAL COMMENTS

1. The term ``in the small'' is used throughout this paper as a synonym for
``local'' or ``in the limit'' and indicates that the quantities considered tend to zero or

717MULTIDIMENSIONAL FECHNERIAN SCALING: BASICS



the areas considered tend to points. A specific definition is given every time the term
is used in a given context for the first time.

2. This means that the convergence of points in the stimulus space can be
defined through vanishing Euclidean or supremal distances, among other metrics:
xk � x, k=1, 2, ..., if and only if |xk&x| � 0, where | } } } | is the Euclidean norm,
or, equivalently, xk � x if and only if maxi=1, ..., n ( |x i

k&xi | ) � 0.

3. A diffeomorphic transformation x̂(x) is a one-to-one (onto) continuously
differentiable transformation whose inverse x(x̂) is also continuously differentiable.
The Jacobian of a diffeomorphism, det[�x̂��x], never vanishes.

4. Calling s the amount (or magnitude) of stimulus change is a somewhat
subtle point. Observe that if the corresponding components of x and u are
measured in the same units, s is dimensionless. Observe also that if u1 and u2 are
codirectional (i.e., u2=*u1 , *>0) they are nevertheless considered different direc-
tion vectors, and the changes from x by the same amount s in the directions u1 and
u2 are different changes arriving at different stimuli.

5. The term o[s] in (1) and hereafter denotes a quantity of a higher order of
infinitesimality than s � 0+; in other words, o[s]�s � 0 as s � 0+.

6. Fre� chet differentiability is a vectorial generalization of the conventional
differentiability. The reader not familiar with the concept need not be concerned,
as it is not used in the subsequent development.

7. The minimum possible value of r (``lower order of flatness'') also has a
classificatory value, but we refrain here from discussing these issues in greater detail.
A more comprehensive presentation should also include theorems linking our
notions to the traditional definitions of convexity and strong convexity of metric
functions (Busemann, 1955, pp. 99�100).

8. The term ``homothety'' in the formulation of the theorem means geometric
similarity (proportionality) of two concentric contours. The proportionality factor
is called the coefficient of homothety.

9. The regularity property mentioned at the end of Section 2 does imply,
however, that the Fechnerian indicatrices are strictly convex (moreover, have
positive Gaussian curvature). To induce a Finsler metric in the narrow sense, there-
fore, psychometric functions must have horizontal cross-sections satisfying this
property at small elevations.
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