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Abstract
This is a non-technical introduction into theory of contextuality. More precisely, it presents

the basics of a theory of contextuality called Contextuality-by-Default (CbD). One of the main
tenets of CbD is that the identity of a random variable is determined not only by its content
(that which is measured or responded to) but also by contexts, systematically recorded condi-
tions under which the variable is observed; and the variables in different contexts possess no
joint distributions. I explain why this principle has no paradoxical consequences, and why it
does not support the holistic “everything depends on everything else” view. Contextuality is
defined as the difference between two differences: (1) the difference between content-sharing
random variables when taken in isolation, and (2) the difference between the same random
variables when taken within their contexts. Contextuality thus defined is a special form of
context-dependence rather than a synonym for the latter. The theory applies to any empir-
ical situation describable in terms of random variables. Deterministic situations are trivially
noncontextual in CbD, but some of them can be described by systems of epistemic random
variables, in which random variability is replaced with epistemic uncertainty. Mathematically,
such systems are treated as if they were ordinary systems of random variables.

1 Contents, contexts, and random variables
The word contextuality is used widely, usually as a synonym of context-dependence. Here, however,
contextuality is taken to mean a special form of context-dependence, as explained below. Histori-
cally, this notion is derived from two independent lines of research: in quantum physics, from studies
of existence or nonexistence of the so-called hidden variable models with context-independent map-
ping [1–10],1 and in psychology, from studies of the so-called selective influences [11–18]. The two
lines of research merged relatively recently, in the 2010’s [19–24], to form an abstract mathematical
theory, Contextuality-by-Default (CbD), with multidisciplinary applications [25–57].2

The example I will use to introduce the notion of contextuality reflects the fact that even as
I write these lines the world is being ravaged by the Covid-19 pandemic, forcing lockdowns and
curtailing travel.

Suppose we ask a randomly chosen person two questions:

q1 : would you like to take an overseas vacation this summer?
q2 : are you wary of contracting Covid-19?

1Here, I mix together the early studies of nonlocality and those of contextuality in the narrow sense, related to
the Kochen-Specker theorem [3]. Both are special cases of contextuality.

2The theory has been revised in two ways since 2016, the changes being presented in Refs. [39, 42].
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Suppose also we ask these questions in two orders:

c1 : first q1 then q2
c2 : first q2 then q1

To each of the two questions, the person can respond in one of two ways: Yes or No. And since we
are choosing people to ask our questions randomly, we cannot determine the answer in advance. We
assume therefore that the answers can be represented by random variables. A random variable is
characterized by its identity (as explained shortly) and its distribution: in this case, the distribution
means responses Yes and No together with their probabilities of occurrence.3

One can summarize this imaginary experiment in the form of the following system of random
variables:

R1
1 R1

2 c1 = q1 → q2
R2

1 R2
2 c2 = q2 → q1

q1 = "vacation?" q2 = "Covid-19?" system C2(a)
. (1)

This is the simplest system that can exhibit contextuality (as defined below). The random variables
representing responses to questions are denoted by R with subscripts and superscripts determining
its identity. The subscript of a random variable in the system refers to the question this random
variable answers: e.g., R1

1 and R2
1 both answer the question q1. The superscript refers to the context

of the random variable, the circumstances under which it is recorded. In the example the context
is the order in which the two questions are being asked. Thus, R1

2 answers question q2 when this
question is asked second, whereas R2

2 answers the same question when it is is asked first.
The question a random variable answers is generically referred to as this variable’s content.

Contents can always be thought of as having the logical function of questions, but in many cases
other than in our example they are not questions in the colloquial meaning. Thus, a q may be one’s
choice of a physical object to measure, say, a stone to weigh, in which case the stone will be the
content of the random variable Rc

q representing the outcome of weighing it (in some context c). Of
course, logically, this Rc

q answers the question of how heavy the stone is, and q can be taken to
stand for this question.

Returning to our example, each variable Rc
q in our set of four variables is identified by its content

(q = q1 or q = q2) and by its context (c = c1 or c = c2). It is this double-identification that imposes
a structure on this set, rendering it a system (specifically, a content-context system) of random
variables. There may be other variable circumstances under which our questions are asked, such as
when and where the questions were asked, in what tone of voice, or how high the solar activity was
when they were asked. However, it is a legitimate choice not to take such concomitant circumstances
into account, to ignore them. If we do not, which is a legitimate choice too, our contexts will have to
be redefined, yielding a different system, with more than just four random variables. The legitimacy
of ignoring all but a select set of contexts is an important aspect of contextuality analysis, as we
will see later.

The reason I denote our system C2(a) is that it is a specific example (the specificity being
indicated by index a) of a cyclic system of rank 2, denoted C2. More generally, cyclic systems of
rank n, denoted Cn, are characterized by the arrangement of n contents, n contexts, and 2n random
variables shown in Figure 1.

3I set aside the intriguing issue of whether responses Yes and No may be indeterministic but not assignable
probabilities.
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Figure 1: A cyclic system of rank n.

A system of the C2-type is the smallest such system (not counting the degenerate system con-
sisting of R1

1 alone):
R1

1
contextc1

R1
2

content q2

R2
1

content q1

R2
2

context c2

.

What else do we know of our random variables? First of all, the two variables within a context,(
R1

1, R
1
2

)
, or

(
R2

1, R
2
2

)
, are jointly distributed. By the virtue of being responses of one and same

person, the values of these random variables come in pairs. So it is meaningful to ask what the
probabilities are for each of the joint events

R1
1 = +1 and R1

2 = +1,
R1

1 = +1 and R1
2 = −1,

R1
1 = −1 and R1

2 = +1,
R1

1 = −1 and R1
2 = −1,

where +1 and −1 encode the answers Yes and No, respectively. One can meaningfully speak of
correlations between the variables in the same context, probability that they have the same value,
etc.

By contrast, different contexts, in our case the two orders in which the questions are asked, are
mutually exclusive. When asked two questions, a given person can only be asked them in one order.
Respondents represented by R1

1 answer question q1 asked first, before q2, whereas the respondents
represented by R1

1 answer question q1 asked second, after q2. Clearly, these are different sets of
respondents, and one would not know how to pair them. It is meaningless to ask, e.g., what the
probability of

R1
1 = +1 and R2

1 = +1
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may be. Random variables in different contexts are stochastically unrelated.

2 Intuition of (non)contextuality
Having established these basic facts, let us consider now the two random variables with content q1,
and let us make at first the (unrealistic) assumption that their distributions are the same in both
contexts, c1 and c2:

value probability
R1

1 = +1 a
R1

1 = −1 1− a
and

value probability
R2

1 = +1 a
R2

1 = −1 1− a
. (2)

If we consider the variables R1
1 and R2

1 in isolation from their contexts (i.e., disregarding the other
two random variables), then we can view them as simply one and the same random variable. In
other words, the subsystem

R1
1 c1 = q1 → q2

R2
1 c2 = q2 → q1

q1 = "vacation?” C2(a)/only q1
appears to be replaceable with just

R1

q1 = "vacation?”
,

with contexts being superfluous.
Analogously, if the distributions of the two random variables with content q2 are assumed to be

the same,

value R1
2 = +1 R1

2 = −1
probability b 1− b and

value R2
2 = +1 R2

2 = −1
probability b 1− b , (3)

and if we consider them in isolation from their contexts, the subsystem

R1
2 c1 = q1 → q2

R2
2 c2 = q2 → q1

q2 = "Covid-19?” C2(a)/only q2
appears to be replaceable with

R2

q2 = "Covid-19?”
.

It is tempting now to say: we have only two random variables, R1 and R2, whatever their contexts.
But a given pair of random variables can only have one joint distribution, this distribution cannot
be somehow different in different contexts. We should predict therefore, that if the probabilities in
system C2(a) are

Pr
[
R1

1 = +1, R1
2 = +1

]
= r1 and Pr

[
R2

1 = +1, R2
2 = +1

]
= r2,
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then
r1 = r2.

Suppose, however, that this is shown to be empirically false, that in fact r1 > r2. For instance,
assuming 0 < a < b, suppose that the joint distributions in the two contexts of system C2(a) are

context c1 R1
2 = +1 R1

2 = −1
R1

1 = +1 r1 = a 0 a
R1

1 = −1 b− a 1− b 1− a
b 1− b

(4)

and

context c2 R2
2 = +1 R2

2 = −1
R2

1 = +1 r2 = 0 a a
R2

1 = −1 b 1− a− b 1− a
b 1− b

. (5)

Clearly, we have then a reductio ad absurdum proof that the assumption we have made is wrong,
the assumption being that we can drop contexts in R1

1 and R2
1 (as well as in R1

2 and R2
2), and that

we can therefore treat them as one and the same random variable R1 (respectively, R2). This is
the simplest case when we can say that a system of random variables, here, the system C2(a), is
contextual.

This understanding of contextuality can be extended to more complex systems. However, is
far from being general enough. It only applies to consistently connected systems, those in which
any two variables with the same content are identically distributed.4 This assumption is often
unrealistic. Specifically, it is a well-established empirical fact that the individual distributions of
the responses to two questions do depend on their order [58]. Besides, this is highly intuitive in our
example. If one is asked about an overseas vacation first, the probability of saying “Yes, I would
like to take an overseas vacation” may be higher than when this question is asked second, after the
respondent has been reminded about the dangers of the pandemic.

In order to generalize the notion of contextuality to arbitrary systems, we need to develop
answers to the following two questions:

A: For any two random variables sharing a content, how different are they when taken in isolation
from their contexts?

B: Can these differences be preserved when all pairs of content-sharing variables are taken within
their contexts (i.e., taking into account their joint distributions with other random variables
in their contexts)?

For our system C2(a) with the within-context joint distributions given by (4) and (5), our informal
answer to question A was that two random variables with the same content (i.e., R1

1 and R2
1 or

R1
2 and R2

2) are not different at all when taken in isolation. The informal answer to question B,
however, was that in these two pairs (or at least in one of them) the random variables are not the
same when taken in relation to other random variables in their respective contexts. One can say
therefore that

4The term “consistent connectedness” is due to the fact that in CbD the content-sharing random variables are
said to form connections (between contexts). In quantum physics consistent connectedness is referred to by such
terms as lack of signaling, lack of disturbance, parameter invariance, etc.
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the contexts make R1
1 and R2

1 (and/or R1
2 and R2

2) more dissimilar than when they are
taken without their contexts.

This is the intuition we will use to construct a general definition of contextuality.

3 Making it rigorous: Couplings
First, we have to agree on how to measure the difference between two random variables that are not
jointly distributed, like R1

1 and R2
1. Denote these random variables X and Y , both dichotomous

(±1), with
Pr [X = +1] = u and Pr [Y = +1] = v.

Consider all possible pairs of jointly distributed variables (X ′, Y ′) such that

X ′
dist
= X,Y ′

dist
= Y,

where dist
= stands for “has the same distribution as.” Any such pair (X ′, Y ′) is called a coupling of

X and Y . For obvious reasons, two couplings of X and Y having the same joint distribution are
not distinguished.

Now, for each coupling (X ′, Y ′) one can compute the probability with whichX ′ 6= Y ′ (recall that
the probability of X 6= Y is undefined, we do need couplings to make this inequality a meaningful
event). It is easy to see that among the couplings (X ′, Y ′) there is one and only one for which this
probability is minimal. This coupling is defined by the joint distribution

Y ′ = +1 Y ′ = −1
X ′ = +1 min (u, v) u−min (u, v) u
X ′ = −1 v −min (u, v) min (1− u, 1− v) 1− u

v 1− v

, (6)

and the minimal probability in question is obtained as

(u−min (u, v)) + (v −min (u, v)) = |u− v| .

This probability is a natural measure of difference between the random variables X and Y :5

δ (X,Y ) = min
all couplings

(X ′, Y ′) of X and Y

Pr [X ′ 6= Y ′] = |u− v| . (7)

If X and Y are identically distributed, i.e. u = v, the joint distribution of X ′ and Y ′ can be chosen
as

context c1 Y = +1 Y = −1
X = +1 u 0 u
X = −1 0 1− u 1− u

u 1− u

,

5It is a special case of the so-called total variation distance, except that it is usually defined between two probability
distributions, while I use it here as a measure of difference (formally, a pseudometric) between two stochastically
unrelated random variables.
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yielding
δ (X,Y ) = min

all couplings
(X ′, Y ′) of X and Y

Pr [X ′ 6= Y ′] = 0.

Let us apply this to our example, in order to formalize the intuition behind our saying earlier
that two identically distributed random variables, taken in isolation, can be viewed as being “the
same.” For R1

1 and R2
1 in (2),

δ
(
R1

1, R
2
1

)
= min

all couplings(
S1
1 , S

2
1

)
of R1

1 and R2
1

Pr
[
S1
1 6= S2

1

]
= 0,

and, analogously, for R1
2 and R2

2 in (3),

δ
(
R1

2, R
2
2

)
= min

all couplings(
S1
2 , S

2
2

)
of R1

2 and R2
2

Pr
[
S1
2 6= S2

2

]
= 0.

4 Making it rigorous: Contextuality
What is then the rigorous way of establishing that these differences cannot both be zero when
considered within their contexts? For this, we need to extend the notion of a coupling to an entire
system. A coupling of our system C2(a) is a set of corresponding jointly distributed random variables

S1
1 S1

2

S2
1 S2

2
(8)

such that (
S1
1 , S

1
2

) dist
=
(
R1

1, R
1
2

)
,
(
S2
1 , S

2
2

) dist
=
(
R2

1, R
2
2

)
. (9)

In other words, the distributions within contexts, (4) and (5), remain intact when we replace the
R-variables with the corresponding S-variables,

S1
2 = +1 S1

2 = −1
S1
1 = +1 a 0 a
S1
1 = −1 b− a 1− b 1− a

b 1− b

and

S2
2 = +1 S2

2 = −1
S2
1 = +1 0 a a
S2
1 = −1 b 1− a− b 1− a

b 1− b

. (10)

Such couplings always exist, not only for our example, but for any other system of random
variables. Generally, there is an infinity of couplings for a given system.6 Thus, to construct a

6One need not have separate definitions of couplings for pairs of random variables and for systems. In general,
given any set of random variables R, its coupling is a set of random variables S, in a one-to-one correspondence with
R, such that the corresponding variables in R and S have the same distribution, and all variables in S are jointly
distributed. To apply this definition to R representing a system of random variables one considers all variables within
a given context as a single element of R. In our example, (8) is a coupling of two stochastically unrelated random
variables,

(
R1

1, R
1
2

)
and

(
R2

1, R
2
2

)
.
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coupling for system C2(a), one has to assign probabilities to all quadruples of joint events,

S1
1 S1

2 S2
1 S2

2 probability
+1 +1 +1 +1 p++++

+1 +1 +1 −1 p+++−
...

...
...

...
...

−1 −1 −1 −1 p−−−−

so that the appropriately chosen subsets of these probabilities sum to the joint probabilities shown
in (10):

p++++ + p+++− + p++−+ + p++−− = Pr
[
S1
1 = +1, S1

2 = +1
]
= a,

p+−++ + p+−+− + p+−−+ + p+−−− = Pr
[
S1
1 = +1, S1

2 = −1
]
= 0,

p++++ + p+−++ + p−+++ + p−−++ = Pr
[
S2
1 = +1, S2

2 = +1
]
= 0,

etc.

This is a system of seven independent linear equations with 16 unknown p-probabilities, subject
to the additional constraint that all probabilities must be nonnegative. It can be shown that this
linear programming problem always has solutions, and infinitely many of them at that, unless one
of the probabilities a and b equals 1 or 0 (in which case the solution is unique).

Unlike in system C2(a) itself, in any coupling (8) of this system the random variables have joint
distributions across the contexts. In particular,

(
S1
1 , S

2
1

)
is a jointly distributed pair. Since from

(9) we know that
S1
1

dist
= R1

1 and S2
1

dist
= R2

1,(
S1
1 , S

2
1

)
is a coupling of R1

1 and R1
2. Similarly,

(
S1
2 , S

2
2

)
is a coupling of R1

2 and R2
2. We ask now:

what are the possible values of

Pr
[
S1
1 6= S2

1

]
and Pr

[
S1
2 6= S2

2

]
across all possible couplings (8) of the entire system C2(a)? Consider two cases.

Case 1. In some of the couplings (8),

Pr
[
S1
1 6= S2

1

]
= 0 and Pr

[
S1
2 6= S2

2

]
= 0.

We can say then that both δ
(
R1

1, R
2
1

)
and δ

(
R1

1, R
2
1

)
preserve their individual (in-isolation) values

when considered within the system. The system C2(a) is then considered noncontextual.
Case 2. In all couplings (8), at least one of the values

Pr
[
S1
1 6= S2

1

]
and Pr

[
S1
2 6= S2

2

]
is greater than zero. That is, when considered within the system, δ

(
R1

1, R
2
1

)
and δ

(
R1

1, R
2
1

)
cannot

both be zero. Intuitively, the contexts “force” either R1
1 and R2

1 or R1
2 and R2

2 (or both) to be more
dissimilar than when taken in isolation. The system C2(a) is then considered contextual.

We can quantify the degree of contextuality in the system in the following way. We know that

δ
(
R1

1, R
2
1

)
+ δ

(
R1

2, R
2
2

)
= min

all couplings(
S1
1 , S

2
1

)
of R1

1 and R2
1

(
Pr
[
S1
1 6= S2

1

])
+ min

all couplings(
S1
2 , S

2
2

)
of R1

2 and R2
2

(
Pr
[
S1
2 6= S2

2

])
= 0.
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This quantity is compared to

δ
((
R1

1, R
2
1

)
,
(
R1

2, R
2
2

))
= min

all couplings(
S1
1 , S

1
2 , S

2
1 , S

2
2

)
of system C2(a)

(
Pr
[
S1
1 6= S2

1

]
+ Pr

[
S1
2 6= S2

2

])
,

which can be interpreted as the total of the pairwise differences between same-content variables
within the system. The system is contextual if this quantity is greater than zero, and this quantity
can be taken as a measure of the degree of contextuality. This is by far not the only possible
measure, but it is arguably the simplest one within the conceptual framework of CbD.

5 Generalizing to arbitrary systems
Consider now a realistic version of our example, when

Pr
[
R1

1 = +1
]
= a1,Pr

[
R1

2 = +1
]
= b1,

Pr
[
R2

1 = +1
]
= a2,Pr

[
R2

2 = +1
]
= b2,

with a1 allowed to be different from a2, and b1 from b2. The within-context joint distributions then
generally look like this:

context c1 R1
2 = +1 R1

2 = −1
R1

1 = +1 r1 a1 − r1 a1
R1

1 = −1 b1 − r1 1− a1 − b1 + r1 1− a1
b1 1− b1

(11)

and

context c2 R2
2 = +1 R2

2 = −1
R2

1 = +1 r2 a2 − r2 a2
R2

1 = −1 b2 − r2 1− a2 − b2 + r2 1− a2
b2 1− b2

. (12)

Let us call the system in (1) with these within-context distributions C2(b). We clearly have
context-dependence now (unless the two joint distributions are identical), but can we also say that
the system is contextual? If we follow the logic of the definition of contextuality as it was presented
above, for consistently connected systems, the answer cannot automatically be affirmative. The
logic in question requires that we answer the questions A and B formulated in Section 2. By now
we have all necessary conceptual tools for this.

To answer A we look at all possible couplings
(
S1
1 , S

2
1

)
and

(
S1
2 , S

2
2

)
of the content-sharing pairs{

R1
1, R

2
1

}
and

{
R1

2, R
2
2

}
, respectively, and determine

δ
(
R1

1, R
2
1

)
= min

all couplings(
S1
1 , S

2
1

)
of
{
R1

1, R
2
1

} Pr
[
S1
1 6= S2

1

]
,

and
δ
(
R1

2, R
2
2

)
= min

all couplings(
S1
2 , S

2
2

)
of
{
R1

2, R
2
2

} Pr
[
S1
2 6= S2

2

]
.
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To answer B, we look at all possible couplings

S1
1 S1

2

S2
1 S2

2

of the entire system C2(b), and determine if we can find couplings in which

Pr
[
S1
1 6= S2

1

]
= δ

(
R1

1, R
2
1

)
and

Pr
[
S1
2 6= S2

2

]
= δ

(
R1

2, R
2
2

)
.

If such couplings exist, we say that the system is noncontextual, even if it exhibits context-
dependence in the form of inconsistent connectedness.

Recall that consistently connected systems are those in which any two variables with the same
content are identically distributed, as it was in our initial (unrealistic) example. For such systems
δ
(
R1

1, R
2
1

)
= 0 and δ

(
R1

2, R
2
2

)
= 0. However, if

R1
1

dist

6= R2
1,

then δ
(
R1

1, R
2
1

)
> 0, and analogously for δ

(
R1

2, R
2
2

)
. In fact, we know from (6) and (7) that if the

within-context distributions in the system are as in (11) and (12), then

δ
(
R1

1, R
2
1

)
= |a1 − a2| , δ

(
R1

2, R
2
2

)
= |b1 − b2| .

This means that system C2(b) is contextual if and only if

δ
((
R1

1, R
2
1

)
,
(
R1

2, R
2
2

))
= min

all couplings(
S1
1 , S

1
2 , S

2
1 , S

2
2

)
of system C2(b)

(
Pr
[
S1
1 6= S2

1

]
+ Pr

[
S1
2 6= S2

2

])

> |a1 − a2|+ |b1 − b2| .

Indeed, this inequality indicates that in all couplings either

Pr
[
S1
1 6= S2

1

]
> δ

(
R1

1, R
2
1

)
,

or
Pr
[
S1
2 6= S2

2

]
> δ

(
R1

2, R
2
2

)
,

or both. The intuition remains the same as above: the contexts “force” the same-content variables
to be more dissimilar than they are in isolation. The difference

δ
((
R1

1, R
2
1

)
,
(
R1

2, R
2
2

))
− δ

(
R1

1, R
2
1

)
− δ

(
R1

2, R
2
2

)
is a natural (although by far not the only) measure of the degree of contextuality.7

7For other measures of contextuality, see Refs. [50, 53–55]
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6 Other examples
The system C2(b) of the previous section, with the within-context distributions (11) and (12), is not
a toy example, despite its simplicity. Except for the specific choice of the questions, it describes an
empirical situation one sees in polls of public opinion, with two questions asked in one order of a
large group of participants, and the same two questions asked in the other order of another large
group of participants [58,59].

In quantum physics, system of the C2-type can describe the outcomes of successive measurements
of two spins along two directions, encoded 1 and 2, in the same spin-1/2 particle (e.g., electron).
Without getting into details, in such an experiment the spin-1/2 particles are prepared in one and
the same quantum state, and then subjected to two measurements in one of the two orders. Each
measurement results in one of two outcomes, spin up (+1) or spin down (−1).

R1
1 R1

2 c1 = q1 → q2
R2

1 R2
2 c2 = q2 → q1

q1 = "is spin in direction 1 up?" q2 = "is spin in direction 2 up?" system C2(c)
. (13)

The computations in accordance with the standard quantum-mechanical rules yield the following
two results [30]. First, the system is inconsistently connected, i.e. generally the probability of
spin-up in a given direction depends on whether it is measured first or second,

Pr
[
R1

1 = +1
]
6= Pr

[
R2

1 = +1
]
and Pr

[
R1

2 = +1
]
6= Pr

[
R2

2 = +1
]
.

Second, the system is noncontextual,8 i.e., it is always the case that

δ
((
R1

1, R
2
1

)
,
(
R1

2, R
2
2

))
≤ δ

(
R1

1, R
2
1

)
+ δ

(
R1

2, R
2
2

)
.

As we see, systems of the C2-type may be of interest in both physics and behavioral studies.
However, in both these fields, the origins of the research of what we now call contextuality are

dated back to another cyclic system, in which the arrangement shown in Figure 1 specializes to

R1
1

contextc1
R1

2

content q2

R4
1

contentq1

R2
2

contextc2

R4
4

contextc4

R2
3

contentq3

R3
4

content q4

R3
3

context c3

.

8For those familiar with CbD, this follows from the fact the expected values
〈
R1

1R
1
2

〉
and

〈
R2

1R
2
2

〉
are always

equal to each other, whereas the criterion for contextuality of a cyclic system [36], when specialized to n = 2, is∣∣〈R1
1R

1
2

〉
−
〈
R2

1R
2
2

〉∣∣ > ∣∣〈R1
1

〉
−
〈
R2

1

〉∣∣+ ∣∣〈R1
2

〉
−
〈
R2

2

〉∣∣ .
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Figure 2: A schematic representation of the EPR/Bohm experimental set up. Explanations in the
text.

Figure 2 illustrates the empirical situation described by this system, and the first for which contex-
tuality was mathematically established [2, 4–6,60]. Two spin-1/2 particles are prepared in a special
quantum state making them entangled, and they move away from each other. The “left” particle’s
spin is measured along one of the two directions (encoded 1 and 3) by someone we will call Zora,
and simultaneously the “right” particle’s spin is measured along one of the two directions (encoded 2
and 4) by a Nico.9 The outcomes of the measurements are spin-up or spin-down, and each random
variable Rj

i answers the question

qi : is the spin in direction i up? (i = 1, 2, 3, 4).

In the form of a content-context matrix the system can be presented as

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

q1
(Zora’s 1)

q2
(Nico’s 2)

q3
(Zora’s 3)

q4
(Nico’s 4) C4(a)

. (14)

The measurements by Zora and Nico are made simultaneously, or at least close enough in time so
that no signal about Zora’s choice of a direction can reach Nico before he makes his measurement,
and vice versa. Because of this, the system is consistently connected,

Rj
i

dist
= Rj′

i

for any content qi and two contexts cj and cj
′
in which qi is measured. Following the logic of

contextuality analysis, we first establish that (because of the consistent connectedness)

δ
(
R1

1, R
4
1

)
= δ

(
R1

2, R
2
2

)
= δ

(
R2

3, R
3
3

)
= δ

(
R3

4, R
4
4

)
= 0.

9For no deep reason, I decided to deviate from the established tradition to call the imaginary performers of the
measurements in this task Alice and Bob.
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Then we compute

δ
((
R1

1, R
4
1

)
,
(
R1

2, R
2
2

)
,
(
R2

3, R
3
3

)
,
(
R3

4, R
4
4

))
= min

all couplings(
S1
1 , S

1
4 , S

2
1 , S

2
2 , S

3
2 , S

3
3 , S

4
3 , S

4
4

)
of system C4(a)

(
Pr
[
S1
1 6= S4

1

]
+ Pr

[
S1
2 6= S2

2

]
+ Pr

[
S2
3 6= S3

3

]
+ Pr

[
S3
4 6= S4

4

])
.

The system is noncontextual if and only if this quantity is zero. As it turns out (and this is what
was established by John Bell in his celebrated papers in the 1960s, [1,2]), the directions 1, 2, 3, 4 can
be chosen so that, by the laws of quantum mechanics, this quantity is greater than zero, making
the system contextual.

In psychology, systems of the same C4-type have been of interest as representing the following
empirical situation [11–13, 15–18, 23]. Consider two variables having two values each, that can be
manipulated in an experiment. Think, e.g., of a briefly presented visual object that can have one
of two colors (red or green) and one of two shapes (square or oval), combined in the 2 × 2 ways.
In the experiment, an observer responds to the object by answering two Yes-No questions: “is the
object red?” and “is the object square?”. If we simply identify these questions with contents, the
resulting system of random variables looks like this:

R1
1 R1

2 c1 : red and oval
R2

1 R2
2 c2 : green and oval

R3
1 R3

2 c3 : red and square
R4

1 R4
2 c4 : green and square

q1 : red? q2 : square? R

, (15)

with the contexts describing the object being presented, and the contents the questions asked.
Although possible, this is not, however, an especially interesting way of conceptualizing the

situation. It is more informative to describe the contents of the random variables as color and
shape responses to the color and shape of the visual stimuli, respectively:

q1 : does this red object appear red?
q2 : does this square object appear square?
q3 : does this green object appear red?
q4 : does this oval object appear square?

With the contexts remaining as they are in system (15), the experiment is now represented by a
system of the C4-type:

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

q1
(red)

q2
(square)

q3
(green)

q4
(oval) C4(b)
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Compared to system C4(c) in (14), the physical situation described by C4(b) is, of course, very
different: e.g., instead of Rj

1 and Rj
3 being outcomes of spin measurements by Zora along two

different directions, these random variables represent now responses to the color question when the
color is red and when it is green, respectively. However, the logic of the contextuality analysis
does not change. If this system turns out to be consistently connected and noncontextual, the
interpretation of this in psychology is that the judgment of color is selectively influenced by object’s
color (irrespective of its shape), and the judgment of shape is selectively influenced by object’s shape
(irrespective of its color). Deviations from this pattern of selective influences, whether in the form
of inconsistent connectedness or contextuality, or both,10 provide an interesting way of classifying
(and quantifying) the ways object’s color may influence one’s judgment of its shape and vice versa.

7 What if the system is deterministic?
A deterministic quantity r is a special case of a random variable: it is a random variable R that
attains the value r with probability 1:

Pr [R = r] = 1.

It is convenient to present this as
R ≡ r.

A deterministic system is one containing only deterministic variables. For instance,

r11 r12 r14 c1

r21 r23 c2

r32 r33 r34 r35 c3

r43 r45 c4

q1 q2 q3 q4 q5 D

(16)

is a deterministic systems in which rji represents a random variable Rj
i ≡ rji . The system can

be consistently connected (if the value of rji does not depend on j) or inconsistently connected
(otherwise).

It is easy to see, however, that a deterministic system is always noncontextual.11 Indeed, any
two content-sharing Rj

i ≡ r
j
i and Rj′

i ≡ r
j′

i in this system have a single coupling (Sj
i ≡ r

j
i ,S

j
i ≡ r

j
i ),

10System C4(d) is almost certainly inconsistently connected (guessing of an imaginary experiment based on the
results of many real ones).

11This fact was first mentioned to me years ago by Matt Jones of the University of Colorado.
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consisting of the same deterministic quantities but considered jointly distributed.12 It follows that

δ
(
rji , r

j′

i

)
=

{
1 if rji 6= rj

′

i

0 if rji = rj
′

i

.

The entire deterministic system in (16) also has a single coupling, one containing the same deter-
ministic quantities as the system itself, but considered jointly distributed. Clearly, the subcoupling(
Sj
i ≡ r

j
i , S

j′

i ≡ r
j′

i

)
extracted from this coupling is precisely the same as the coupling of Rj

i ≡ rji

and Rj′

i ≡ r
j′

i taken in isolation, and

δ
({(

rji , r
j′

i

)
: all such pairs

})
=

∑
all such pairs

δ
(
rji , r

j′

i

)
.

One might conclude that deterministic systems are of no interest for contextuality analysis. This
is not always true, however. There are cases when we know that a system is deterministic, but we
do not know which of a set of possible deterministic systems it is, because it can be any of them.
Let us look at this in detail, using as examples systems consisting of logical truth values of various
statements.

Consider first the following C4-type system:

R1
1 ≡ +1 R1

2 ≡ −1 c1

R2
2 ≡ +1 R2

3 ≡ −1 c2

R3
3 ≡ +1 R3

4 ≡ −1 c3

R4
1 ≡ −1 R4

4 ≡ +1 c4

q1 q2 q3 q4 C4(c)

, (17)

where +1 and −1 encode truth values (true and false), and the contents are the statements

q1 : "my name is Zora" q2 : "my name is Nico"
q3 : "my name is Max" q4 : "my name is Alex" .

Equivalently, the contents could also be formulated as questions, “is my name Zora?” and “is my
name Nico?”, in which case +1 and −1 would encode answers Yes and No. In the following, however,
I will refer to the q’s as statements, and the values of the variables as truth values. The contexts
justifying the truth values in (17) are

c1 : the statements are made by Zora c2 : the statements are made by Nico
c3 : the statements are made by Max c4 : the statements are made by Alex .

12There is a subtlety here, first pointed out to me by Janne Kujala of Turku University. If Rj
i ≡ rji and Rj′

i ≡ rj
′

i ,

one may be tempted to say that the joint event
(
Rj

i ≡ rji , R
j′

i ≡ rj
′

i

)
has the probability one, and this would create

an exception from the principle that random variables in different contexts are not jointly distributed. This is wrong,
however, because

(
Rj

i ≡ rji , R
j′

i ≡ rj
′

i

)
can only be thought of counterfactually, as it involves mutually exclusive

contexts. In fact, the only justification (or, better put, excuse) for the intuition that
(
Rj

i ≡ rji , R
j′

i ≡ rj
′

i

)
is a mean-

ingful joint event is that Rj
i ≡ rji and Rj′

i ≡ rj
′

i have a single coupling, and in this coupling Pr
[
Sj
i ≡ rji , S

j
i ≡ rji

]
= 1.

More generally, use of couplings is a rigorous way of dealing with counterfactuals [49].

15



This is a situation when the truth values are determined uniquely, the system is deterministic, and
consequently it is noncontextual (even though context-dependence in it is salient in the form of
inconsistent connectedness).

Consider next another system of the C4-type,

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

q1 : "q2 is true" q2 : "q3 is true" q3 : "q4 is true" q4 : "q1 is false" C4(d)

,

with contents/statements of a very different kind, and the contexts which here (at least provi-
sionally) can simply be defined by which statements they include: c1 includes (q1, q2), c2 includes
(q2, q3), etc.

One can recognize here a formalization of the quadripartite version of the Liar antinomy: one
can begin with any statement, say q3, assume it is true, conclude that then q4 is true, then q1 is
false, then q2 is false, and then q3 is false; and if one assumes that q3 is false, then by the analogous
chain of assignments one arrives to q3 being true. There is no consistent assignment of truth values
in this system. In the language of CbD, the truth values of the statements in C4(d) can only be
described by an inconsistently connected deterministic system.

We come to the main issue now: C4(d) is certainly a deterministic system (because truth values of
statements within a context are fixed), but which deterministic system is it? There are 16 possible
ways of filling this system with truth values:

+1 +1
+1 +1

+1 +1
−1 +1

,

+1 +1
+1 +1

−1 −1
+1 −1

,

+1 +1
−1 −1

+1 +1
−1 +1

,

+1 +1
+1 +1

−1 −1
+1 −1

,

etc.

The only constraint in generating these systems is that

1. in the first three contexts (rows) the truth values of the two variables coincide (because the
first statement in them says that the second one is true, and the second one does not refer to
the first one);

2. in context c4 (the last row) the truth values of the two variables are opposite (because q4 says
that q1 is false, and q1 does not refer to q4).

We see that although random variability in C4(d) is absent, we have in its place epistemic uncer-
tainty. This opens the possibility of attaching epistemic (Bayesian) probabilities to the 16 possible
deterministic variants of C4(d), and obtaining as a result a system of epistemic random variables.
Mathematically, such a variable is treated in precisely the same way as an ordinary (“frequentist”)
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random variable. For instance, we can say that an epistemic variable R can have values +1 and −1
with Bayesian probabilities p and 1− p. This means that R in fact is a deterministic quantity that
can be either +1 or −1, and the degree of rational belief that R is +1 (given what we know of it)
is p. In all computational respects, however, R is treated as if it was a variable that sometimes can
be +1 and sometimes −1.

If we choose equal weights for all 16 deterministic variants of C4(d) (simply because we have no
rational grounds for preferring some of them to others), the resulting system will have the following
Bayesian distributions:

context ci,
i = 1, 2, 3

Ri
i+1 = +1 Ri

i+1 = −1

Ri
i = +1 1/2 0 1/2

Ri
i = −1 0 1/2 1/2

1/2 1/2

(18)

and

context c4 R4
1 = +1 R4

1 = −1
R4

4 = +1 0 1/2 1/2
R4

4 = −1 1/2 0 1/2
1/2 1/2

. (19)

This system is clearly contextual. Indeed, since it is consistently connected,

δ
(
R1

1, R
4
1

)
= δ

(
R1

2, R
2
2

)
= δ

(
R2

3, R
3
3

)
= δ

(
R3

4, R
4
4

)
= 0. (20)

At the same time,

δ
((
R1

1, R
4
1

)
,
(
R1

2, R
2
2

)
,
(
R2

3, R
3
3

)
,
(
R3

4, R
4
4

))
= min

all couplings(
S1
1 , S

1
4 , S

2
1 , S

2
2 , S

3
2 , S

3
3 , S

4
3 , S

4
4

)
of system C4(d)

(
Pr
[
S1
1 6= S4

1

]
+ Pr

[
S1
2 6= S2

2

]
+ Pr

[
S2
3 6= S3

3

]
+ Pr

[
S3
4 6= S4

4

])
> 0.

(21)

This is easy to see. This quantity could be zero only if, in some coupling of C4(a), the equalities in
the first row below all held with probability 1:

S4
1 = S1

1

��

S1
2 = S2

2

��

S2
3 = S3

3

��

S3
4 = S4

4

��
S1
1 = S1

2

88

S2
2 = S2

3

88

S3
3 = S3

4

88

S4
4 6= S4

1

.

But in any coupling of C4(a), the equalities in the second row also hold with probability 1, because
they copy (18) and (19). Reading now all the equalities above from left to right along the arrows
as a chain

S4
1 = S1

1 = S1
2 = S2

2 = . . . ,
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R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

R5
1 R5

1 R5
1 R5

1 c5

q1 q2 q3 q4 E

Figure 3: “Ascending-Descending” by M. C. Escher. The four flights of stairs are enumerated
q1, q2, q3, q4. The epistemic random variables have values ascending and descending, and in each
of the the first four contexts they are perfectly correlated. The fifth context is a mixture of the
quadruples of values precisely two of which are ascending (so that travelers always end up in the
same place from where they started). The resulting epistemic system is contextual [55].

one arrives at a contradiction
S4
1 6= S4

1 .

In essence, this is the same reasoning as that establishing the unremovable contraction in the
Liar antinomy. However, this time it merely serves the purpose of establishing that our system is
contextual. In fact, the degree of contextuality here, computed as the difference between (21) and
the (zero) sum of the deltas in (20), is maximal among all possible systems of the C4-type.

We could use other multipartite versions of the Liar paradox, with three or five or any number
of statements, all leading to the same outcome. A special mention is needed of the bipartite version.
In this system it is no longer possible to define the contexts simply by the contents of the variables
they include. Instead we once again need to use the order of the contents, this time interpreted as
the direction of inference: q → q′ means that we assign truth values to q and infer the corresponding
truth values for q′.13 The resulting system is

R1
1 R1

2 c1 : q1 → q2
R2

1 R2
2 c2 : q2 → q1

q1 = "q2 is true" q2 : "q1 is false" C2(d)
,

13The interpretation of contexts in terms of the direction of inference is the right one also in systems with larger
number of statements. It is merely a coincidence that for n > 2 in the systems depicting the n-partite Liar paradox
the direction of inference in a context is uniquely determined by the pairs of contents involved in this context.
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with four possible deterministic variants:

+1 +1
−1 +1

,
+1 +1
+1 −1 ,

−1 −1
−1 +1

,
+1 +1
+1 −1 .

Mixing them with equal epistemic probabilities creates a consistently connected and highly contex-
tual system (maximally contextual among all cyclic systems of rank 2).

Logical paradoxes are not, of course, the only application of contextuality analysis with epistemic
random variables. It seems that many “strange” or “paradoxical” situations can be converted into
contextual epistemic systems [55, 57]. Among other applications are such objects as the Penroses’
“impossible figures” and M. C. Escher pictures (as in Figure 3).

8 The right to ignore (or not to)
I will mention now some aspects of the Contextuality-by-Default theory (CbD) that seem to pose
difficulties for understanding. Questions about them are being asked often and in spite of having
been repeatedly addressed in published literature.

The most basic aspect of CbD is double indexation of the random variables. The response to
a given question q is a random variable Rc

q whose identity is determined not only by q but also by
the context c in which q is responded to. This looks innocuous enough, but it puzzles some when
a system being analyzed is consistently connected, i.e. when changing c in Rc

q does not change the
distribution. And the puzzlement may increase when our knowledge tells us there is no possible
way in which different contexts c can differently influence the random variables Rc

q.
Consider again the system C4(a) in (14), from which we date contextuality studies. I reproduce

it here for reader’s convenience:

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

q1
(Zora’s 1)

q2
(Nico’s 2)

q3
(Zora’s 3)

q4
(Nico’s 4) C4(a)

.

In this system, Nico’s choice between directions 2 and 4 can in no ways affect Zora’s measurements
of spin along direction 1. Nevertheless, when Nico switches from direction 2 to 4, the random
variable describing the outcome of Zora’s measurement of spin along direction 1 ceases to be R1

1

and becomes R4
1. It looks like Nico has influenced Zora’s measurements after all. Isn’t it an example

of what Albert Einstein famously called a “spooky action at a distance”?
The answer is, it is not. Nico’s choices are undetectable by Zora. Whether he chooses direction

2 or direction 4, Zora can see no changes in the statistical properties of what she observes when she
measures spins along direction 1. “Action” means information transmitted, and no information is
transmitted from Nico to Zora (and vice versa). The fact that in at least one of the pairs{

R1
1, R

4
1

}
,
{
R1

2, R
2
2

}
,
{
R3

3, R
4
3

}
,
{
R3

4, R
4
4

}
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the two random variables cannot be viewed as being the same can be established by neither Zora
nor Nico. It can only be established by a Max who receives the choice of directions and outcomes of
measurements from both Zora and Nico and computes the joint distributions in contexts c1, c2, c3, c4.

An important point here is that compared to Max, Zora does not misunderstand or miss anything
when she sees no difference between R1

1 and R4
1 or between R3

3 and R4
3. Her understanding is no

less complete or less correct. Zora and Max simply deal with different systems of random variables.
In the same way Max’s understanding is no less complete or less correct than that of an Alex who,
in addition to knowing what Max knows, observes whether solar activity during the measurements
is high or low. In Alex’s system, each context of system C4(a) is split into two contexts, e.g., c1 is
replaced with

R1,high
1 R1,high

2 c1,high

R1,low
1 R1,low

2 c1,low

q1 q2 q3 q4 C4(a)/c1 only
.

In studying a system of random variable one always can ignore any of the circumstances that do
not affect the distributions of the variables.14 Or one can choose not to ignore such circumstances,
to systematically record them and make them part of the contexts. If a circumstance is irrelevant
(as it may be in the case of Alex’s recording of solar activity), one will find this out by considering
couplings of the system. Thus, one may establish that the contextuality analysis of the system does
not change if all couplings are constrained by

Pr
[
Sj,high
i = Sj,low

i

]
= 1,

for any Rj
i in the original system C4(a). This would mean that Rj,high

i and Rj,low
i can be viewed

as being one and the same random variable (assuming, of course, that solar activity is indeed
irrelevant).

This reasoning fully applies to the issue often raised by those who enjoy shallow paradoxes. If
one records values of a random variable R in, say, chronological order, and simultaneously records
the ordinal positions of these values in the sequence (as part of their contexts),

r1 r2 . . . rn . . .
1 2 . . . n . . .

,

would not this transform all these realizations of a single random variable into pairwise stochastically
unrelated random variables

R1, R2, . . . , Rn, . . .

with a single realization each? The answer is yes, if one so wishes (one may also choose to ignore
the ordinal positions of the observations altogether), but then a standard view is immediately
restored when one considers couplings of these random variables. For instance, the iid coupling
(corresponding to the standard statistical concept of independent identically distributed variables)

14This statement can even be extended to ignoring circumstances when distributions do change (inconsistent
connectedness). However, this issue has more complex ramifications, and we will set it aside.
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has the structure
R1 R2 . . . Rn . . .

S1 r11 = r1 r12 . . . r1n . . .

S2 r21 r22 = r2 . . . r2n . . . ,

...
...

...
. . .

...
. . .

Sn rn1 rn2 . . . rnn = rn . . .

...
...

...
. . .

...
. . .

where the boxed values are those factually observed, whereas all other values are independently
sampled from the distribution of R. More details are available in Refs. [37, 61].

Finally, does the double-indexation in CbD lend any support to the holistic view of the universe,
the view that “everything depends on everything else”? The answer is that the opposite is true, CbD
supports a radically analytic view. First, as we have established, unless distributions of two given
content-sharing variables are found to be different (which is ubiquitous but not universal) one can
ignore the difference between their contexts, i.e., disregard all other variables in these contexts. This
will redefine the system, but will not be wrong. Second, the difference in the identity of two content-
sharing variables in different contexts (whether their distributions are the same or not) involves no
change in the colloquial meaning of the word. The notion of a change implies that something
that preserves its identity (e.g., a moving body) changes some of its properties (e.g., position in
space). However, R1

2 and R2
2 (having the same content in different contexts) are simply different

random variables, stochastically unrelated because they occur in mutually exclusive contexts. The
difference between them is precisely the same as that between R1

2 and R1
1 (different contents in the

same context). By choosing a different question to ask, one switches to considering another random
variable rather than “changes” the previous one. The same happens when one chooses a different
context: one simply switches to considering a different random variable. If I see Max and then see
Alex, it does not mean that Max has changed into Alex.

The core of these and other problems with understanding CbD, it seems to me, is in the tendency
to view random variables as empirical objects. They are not. Random variables are our descriptions
of empirical objects. They are part of our knowledge of the world, and the same as any other
knowledge, they can appear, disappear, and be revised as soon as we adopt a new point of view or
gain new evidence.
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