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This paper provides a systematic yet accessible presentation of the Contextuality-by-Default the-
ory. The consideration is confined to finite systems of categorical random variables, which al-
lows us to focus on the basics of the theory without using full-scale measure-theoretic language.
Contextuality-by-Default is a theory of random variables identified by their contents and their con-
texts, so that two variables have a joint distribution if and only if they share a context. Intuitively,
the content of a random variable is the entity the random variable measures or responds to, while
the context is formed by the conditions under which these measurements or responses are obtained.
A system of random variables consists of stochastically unrelated “bunches,” each of which is a set of
jointly distributed random variables sharing a context. The variables that have the same content in
different contexts form “connections” between the bunches. A probabilistic coupling of this system
is a set of random variables obtained by imposing a joint distribution on the stochastically unrelated
bunches. A system is considered noncontextual or contextual according to whether it can or cannot
be coupled so that the joint distributions imposed on its connections possess a certain property (in
the present version of the theory, “maximality”). We present a criterion of contextuality for a special
class of systems of random variables, called cyclic systems. We also introduce a general measure of
contextuality that makes use of (quasi-)couplings whose distributions may involve negative numbers
or numbers greater than 1 in place of probabilities.
KEYWORDS: contextuality, couplings, connectedness, random variables.

1. INTRODUCTION

Contextuality-by-Default (CbD) is an approach to
probability theory, specifically, to the theory of random
variables. CbD is not a model of empirical phenomena,
and it cannot be corroborated or falsified by empirical
data. However, it provides a sophisticated conceptual
framework in which one can describe empirical data and
formulate models that involve random variables.

In Kolmogorovian Probability Theory (KPT) random
variables are understood as measurable functions map-
ping from one (domain) probability space into another
(codomain) probability space. CbD can be viewed as
a theory within the framework of KPT if the latter is
understood as allowing for multiple domain probability
spaces, freely introducible and unrelated to each other.
However, CbD can also be (in fact, is better) formulated
with no reference to domain probability spaces, with ran-
dom variables understood as entities identified by their
probability distributions and their unique labels within
what can be called sets of random variables “in existence”
or “in play.”

Although one cannot deal with probability distri-
butions without the full-fledged measure-theoretic lan-
guage, we avoid technicalities some readers could find
inhibitive by focusing in this paper on finite systems of
categorical random variables (those with finite numbers
of possible values). Virtually all of the content of this
paper, however, is generalizable mutatis mutandis to ar-
bitrary systems of arbitrary random entities.
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† E-mail: jvk@iki.fi

1.1. A convention

In the following we introduce sets of random variables
classified in two ways, by their contexts and by their con-
tents, and we continue to speak of contexts and contents
throughout the paper. The two terms combine nicely,
but they are also easily confused in reading. For this
reason, in this paper we do violence to English grammar
and write “conteXt” and “conteNt” when we use these
words as special terms.

1.2. Two conteNts in two conteXts

We begin with a simple example. A person ran-
domly chosen from some population is asked two ques-
tions, q and q′. Say, q = “Do you like bees?” and q′ =
“Do you like to smell flowers?”. The answer to the first
question (Yes or No) is a random variable whose identity
(that which allows one to uniquely identify it within the
class of all random variables being considered) clearly in-
cludes q, so it can be denoted Rq. We will refer to the
question q as the conteNt of the random variable Rq.
The second random variable then can be denoted Rq′ ,
and its conteNt is q′. The set of all random variables
being considered here consists of Rq and Rq′ , and we do
not confuse them because they have distinct conteNts:
we know which of the two responses answers which ques-
tion.

The two random variables have a joint distribution
that can be presented, because they are binary, by values
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of the three probabilities

Pr [Rq = Yes] , Pr [Rq′ = Yes] ,

Pr [Rq = Yes and Rq′ = Yes] .

The joint distribution exists because the two responses,
Rq and Rq′ , occur together in a well-defined empirical
sense: the empirical sense of “togetherness” of the re-
sponses here is “to be given by one and the same per-
son.” In other situations the empirical meaning can be
different, e.g., “to be recorded in the same trial.”

Our example is too simple for our purposes. Let us
assume therefore that the two questions q, q′ are asked
under varying controlled conditions, e.g., one randomly
chosen person can be asked these questions after having
watched a movie about the killer bees spreading north-
wards (let us call this condition c), another after watch-
ing a movie about deciphering the waggle dances of the
honey bees (c′). Most people would consider q as one and
the same question whether posed under the condition c
or the condition c′; and the same applies to the question
q′. In other words, the conteNts q and q′ of the two re-
spective random variables would normally be considered
unchanged by the conditions c and c′.

However, the random variables themselves (the re-
sponses) are clearly affected by these conditions. In par-
ticular, nothing guarantees that the joint distribution of
(Rq, Rq′) will be the same under the two conditions. It is
necessary therefore to include c and c′ in the description
of the random variables representing the responses. We
will call c and c′ conteXts of (or for) the corresponding
random variables and present them as Rcq, Rcq′ , R

c′

q , R
c′

q′ .
There are now four random variables in play, and we do
not confuse them because each of them is uniquely iden-
tified by its conteNt and its conteXt.

1.3. Jointly distributed versus stochastically
unrelated random variables

In each of the two conteXts, the two random variables
are jointly distributed, i.e., we have well-defined proba-
bilities

Pr
[
Rcq = Yes

]
,

Pr
[
Rcq′ = Yes

]
,

Pr
[
Rcq = Yes and Rcq′ = Yes

]

 in conteXt c,

and

Pr
[
Rc
′

q = Yes
]
,

Pr
[
Rc
′

q′ = Yes
]
,

Pr
[
Rc
′

q = Yes and Rc
′

q′ = Yes
]


in conteXt c′.

No joint probabilities, however, are defined between the
random variables picked from different conteXts. We
cannot determine such probabilities as

Pr
[
Rcq = Yes and Rc

′

q′ = Yes
]
,

Pr
[
Rcq = Yes and Rc

′

q = Yes
]
,

Pr
[
Rcq = Yes and Rc

′

q = Yes and Rc
′

q′ = Yes
]
,

etc.

We express this important fact by saying that any
two variables recorded in different conteXts are stochas-
tically unrelated. The reason for stochastic unrelated-
ness is simple: no random variable in conteXt c can
co-occur with any random variable in conteXt c′ in the
same empirical sense in which two responses co-occur
within either of these conteXts, because c and c′ are mu-
tually exclusive conditions. The empirical sense of co-
occurrence in our example is “to be given by the same
person,” and we have assumed that a randomly chosen
person is either shown one movie or another. If some
respondents were allowed to watch both movies before
responding, we would have to redefine the classification
of our random variables by introducing a third conteXt,
c′′ = (c, c′). We would then have three pairwise mu-
tually exclusive conteXts, c, c′, c′′, and six random vari-
ables, Rcq, Rcq′ , R

c′

q , R
c′

q′ , R
c′′

q , R
c′′

q′ , such that, e.g., Rc
′′

q is
jointly distributed with Rc

′′

q′ but not with Rcq.
In case one is tempted to consider joint probabilities

involving Rcq and Rc
′

q simply equal to zero (because these
two responses never co-occur), this thought should be
dismissed. Indeed, then all four joint probabilities,

Pr
[
Rcq = Yes and Rc

′

q′ = Yes
]
,

Pr
[
Rcq = Yes and Rc

′

q′ = No
]
,

Pr
[
Rcq = No and Rc

′

q′ = Yes
]
,

Pr
[
Rcq = No and Rc

′

q′ = No
]
,

would have to be equal to zero, which is not possible as
they should sum to 1. These probabilities are not zero,
they are undefined.

1.4. Bunches and connections in conteXt-conteNt
matrices

The picture of the system consisting of our four random
variables is now complete. Let us call this system A. It is
an example of a conteXt-conteNt (c-c) system of random
variables, and it can be schematically presented in the
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Rc
q Rc

q′ c

Rc′
q Rc′

q′ c′

q q′ A

Figure 1. A conteXt-conteNt matrix for system A in our
opening example. The system consists of two bunches Rc =(
Rc

q, R
c
q′
)
, Rc′ =

(
Rc′

q , Rc′
q′

)
defined by (or defining) the con-

teXts c and c′, respectively. The notation Rc, Rc′ reflects the
fact that each bunch is a single random variable in its own
right, because its components are jointly distributed. The
system has two connections

(
Rc

q, R
c′
q

)
,
(
Rc

q′ , R
c′
q′

)
defined by

(or defining) the conteNts q and q′, respectively. The con-
nections are not random variables because their components
are stochastically unrelated. System A may be contextual or
noncontextual, depending on the distributions of the bunches
Rc, Rc′ .

form of the conteXt-conteNt (c-c) matrix in Fig. 1. All
random variables in a c-c system are double-indexed: the
lower index indicates their conteNt, the upper index in-
dicates their conteXt. The random variables within each
conteXt are jointly distributed, they form what we call
a bunch (of random variables). One bunch corresponds
to one conteXt and occupies one row of the c-c matrix.
Any two variables that belong to different bunches are
stochastically unrelated. However, a random variable
in conteXt c may have a counterpart in conteXt c′ that
shares the same conteNt with it. In the system A this
is true for each of the two random variables in c (or c′):
Rcq and Rc

′

q represent answers to one and the same ques-
tion, and so do Rcq′ and Rc

′

q′ . The set (in our example,
the pair) of all random variables sharing the same con-
teNt is called a connection (because they bridge stochas-
tically unrelated bunches). One connection, in our exam-
ple

(
Rcq, R

c′

q

)
or
(
Rcq′ , R

c′

q′

)
, corresponds to one conteNt

and occupies one column of the c-c matrix.
We will see in Section 5 that A is the simplest system

within the class of so-called cyclic systems. It can, of
course, model more than the opening example with bees,
flowers, and movies. The variety of possible applications
is great, both within psychology and without. The con-
teNts q, q′ can be two physical properties, e.g., spins of a
particle measured at two moments in time separated by
a fixed interval. The conteXts c, c′ can then be, respec-
tively, the presence and absence of a third measurement
made prior to these two measurements. Alternatively, c
and c′ could be two orders in which the two measure-
ments are conducted: c standing for “first q then q′” and
c′ for “first q′ then q.” In sociology and psychology the
prominently studied analogue of the latter example is
the paradigm in which two questions are posed in two
possible orders (Moore, 2001; Wang & Busemeyer, 2013;
Wang et al., 2014). One can also think of questions posed
in two different forms, in two different languages, or asked

R1
1 R1

2 · c1

R2
1 R2

2 R2
3 c2

R3
1 · R3

3 c3

q1 q2 q3 B

Figure 2. A c-c matrix representation of a c-c system B of
random variables. The seven random variables are grouped
into three bunches (shown by the rows of the matrix) and into
three connections (shown by the columns). The bunches are
defined by (or define) three conteXts. The connections are de-
fined by (or define) three conteNts. The empty cells (shown
with a dot for emphasis) correspond to the cases when a
given conteNt is not represented (measured, responded to) in
a given conteXt. The variables within a bunch are jointly dis-
tributed, so we have three random variables R1 =

(
R1

1, R
1
2

)
,

R2 =
(
R2

1, R
2
2, R

2
3

)
, and R3 =

(
R3

1, R
3
3

)
. The connections(

R1
1, R

2
1, R

3
1

)
,
(
R1

2, R
2
2

)
, and

(
R2

3, R
3
3

)
are not random vari-

ables because no two random variables within a connection
are jointly distributed.

of the representatives of two distinct populations (say,
male and female). There is also an inexhaustible variety
of psychophysical applications. For instance, q and q′

may be visual stimuli, and c, c′ may be any two variants
of the conditions under which they are presented, such as
the time interval or spatial separation between them, or
two versions of a previously presented adapting stimulus.

Fig. 2 shows a c-c matrix representation of a more com-
plex system, with three bunches and three connections.

A generalization to arbitrary c-c systems should be ob-
vious: given a set of conteXts and a set of conteNts the
cells in a c-c matrix can be filled (or left empty) in all
possible ways, although constraints could be imposed to
exclude matrices that are uninteresting for contextual-
ity analysis (e.g., empty matrices, or those with a single
random variable in a connection or in a bunch).

1.5. ConteXts and conteNts are non-unique but
distinct from each other

How do we know that in our opening example the ques-
tion q and not the movie c determines the conteNt of the
response, viewed as a random variable? How do we know
that the movie c and not the question q determines the
conteXt of this response? The answer is: we don’t. Some
theory or tradition outside the mathematical theory of
CbD tells us what the conteXts and the conteNts in a
given situation are, and then the mathematical compu-
tations may commence. In these computations, whatever
conteXts and conteNts are given to us, they are treated
as strictly distinct entities because the respective bunches
and connections they define are fundamentally different:
bunches are (multicomponent) random variables, while
connections are groups of pairwise stochastically unre-



4

Rc
q1 Rc

q2 · · c

· · Rc′
q3 Rc′

q4 c′

q1 = (q, c) q2 = (q′, c) q3 = (q, c′) q4 = (q′, c′) A′

Figure 3. The same opening example as in Fig. 1, but rep-
resented by a different system, A′. In this system the con-
teXts are the same as in A, but each new conteNt (question)
includes as its part the original conteXt in which it occurs
(the movie watched). The joint distributions within the two
bunches remain unchanged, but the system loses connections
between the bunches. Such a system is trivially noncontex-
tual.

lated ones.
It would be a completely different system if the con-

teNts in our opening example were defined not just by the
question asked but also by the movie previously watched.
The c-c matrix would then be as shown in Fig. 3. No con-
teNt in the system A′ occurs more than once, so there
is nothing to bridge the two bunches. It is not wrong to
present the experiment with the questions and movies in
this way, it may very well be the best way of treating this
situation from the point of view of some empirical model,
but the resulting system is not interesting for our contex-
tuality analysis. The latter is yet to be introduced, but it
should be sufficiently clear if we say that the system A′ is
uninteresting because contextuality pertains to how the
random variables that share conteNts differ in different
conteXts.

To prevent turning this discussion into a game of su-
perficial semantics, it would not do to point out that q1
and q3 in the system A′ share “part” of their conteNt,
and hence Rcq1 and Rc

′

q3 can be related to each other on
these grounds. If Rcq1 and Rc

′

q3 are members of the same
connection, then they should have the same conteNt, by
definition. A conteNts is, logically, merely a label for a
connection.

A symmetrical opposite of the system A′ is to include
the questions asked into the conteXts in which they are
being asked. This creates the c-c matrix A′′ shown in
Fig. 4. Since the empirical meaning of co-occurrence in
our example is “to be given by the same person,” repre-
senting our opening example by the system A′′ amounts
to simply ignoring the observed joint events. One only
records (and estimates probabilities of) the individual
events, as if the paired questions were asked separately
of different respondents. This would not be a reasonable
way of representing the situation (as it involves ignoring
available information), but it is logically possible.

The system A′′ becomes a reasonable representation,
however, in fact the only “natural” one, if the empirical
procedure is modified and the questions are indeed asked
one at a time rather than in pairs. Then the responses to
questions about the bees and about the flowers, whether
they are given after having watched the same movie or
different movies, come from different respondents, and

Rc1
q · c1 = (c, q)

Rc2
q · c2 = (c′, q)

· Rc3
q′ c3 = (c, q′)

· Rc4
q′ c4 = (c′, q′)

q q′ A′′

Figure 4. The same opening example as in Fig. 1, but repre-
sented by a different system, A′′. In this system the conteNts
are the same as in A, but each new conteXt is identified by
both the movie watched and the question asked. The connec-
tions are well-defined here, but each bunch contains a single
variable. Such a system is trivially noncontextual. This sys-
tem would more aptly be used to describe the experiment in
which the questions are posed one question per respondent
rather than in pairs.

Rc1
q1 · · · c1 = (c, q)

· Rc2
q2 · · c2 = (c′, q)

· · Rc3
q3 · c3 = (c, q′)

· · · Rc4
q4 c4 = (c′, q′)

q1 = (q, c) q2 = (q, c′) q3 = (q′, c) q4 = (q′, c′) A′′′

Figure 5. A combination of the modifications shown in Figs.
4 and 3: the original conteNts are treated as part of new
conteXts, and the original conteXts are treated as part of
new conteNts: the system consists of four unrelated to each
other random variables, and it is trivially noncontextual. The
order in which the q’s and c’s are listed in the definitions of
the conteXts and the conteNts is immaterial.

their joint probabilities are undefined.
The system A′′ has the same connections as A, but it

is as uninteresting from the point of view of contextuality
analysis as the system A′. A system without joint distri-
butions (i.e., one in which every bunch contains a single
random variable) is always trivially noncontextual.

For completeness, we should also consider a radical
point of view that combines those in the systems A′′ and
A′. It is shown in Fig. 5: every conteXt and every con-
teNt include information about both the question being
asked and the conditions under which it is asked. This
creates four unique conteNts in a one-to-one correspon-
dence with four unique conteXts.

1.6. Multiple connections crossing multiple
bunches

There is another aspect of the non-uniqueness of repre-
senting an empirical situation by a c-c system. As we see
in both system A of Fig. 1 and system B of Fig. 2, two
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R1
1 R1

2 · R1
12 c1

R2
1 R2

2 R2
3 R2

12 c2

R3
1 · R3

3 · c3

q1 q2 q3 q12 B′

Figure 6. If one wishes to establish connection between the
pair

(
R1

1, R
1
2

)
and the pair

(
R2

1, R
2
2

)
, the system B of Fig. 2

has to be redefined: a new conteNt, q12, should be created
that adds R1

12 =
(
R1

1, R
1
2

)
and R2

12 =
(
R2

1, R
2
2

)
to the two

respective bunches (for c1 and c2) as separate variables, each
of which is jointly distributed with the other variables within
the same bunch.

R1
1 R1

2 · R1
12 · c1

R2
1 R2

2 R2
3 R2

12 R2
13 c2

R3
1 · R3

3 · R3
13 c3

q1 q2 q3 q12 q13 B′′

Figure 7. Further redefinition of system B: in addition to the
new conteNt and connection shown in Fig. 6, a conteNt q13
is introduced adding R2

13 =
(
R2

1, R
2
3

)
and R3

13 =
(
R3

1, R
3
3

)
to

the two respective bunches (for c2 and c3).

or more bunches may very well intersect with the same
two or more connections. In the system B, the conteNts
q1 and q2 are represented by R1

1, R
1
2 in the conteXt c1 (a

short way of saying “in the bunch labeled by the conteXt
c1”), and the same q1 and q2 are represented by R2

1, R
2
2 in

the conteXt c2. This may make it desirable (but by no
means necessary) to introduce a new conteNt q12 and the
corresponding connection formed by R1

12 =
(
R1

1, R
1
2

)
and

R2
12 =

(
R2

1, R
2
2

)
. In our conceptual framework this means

replacing B with another system, shown in Fig. 6. The
new system has a different set of conteNts and its con-
textuality analysis generally will not coincide with that
of the system B.

One can analogously introduce a new connection
formed by R2

13 =
(
R2

1, R
2
3

)
and R3

13 =
(
R3

1, R
3
3

)
to bridge

the bunches for the conteXts c2 and c3. One can combine
this connection with the one for q12. (One could even add
a new variable R123 =

(
R2

1, R
2
2, R

2
3

)
to the second bunch,

for c2, but a connection consisting of a single bunch never
affects contextuality analysis and can be dropped.) The
approach to contextuality presented in this paper allows
for any such modifications. However, we do not consider
them obligatory, and in some cases, as in the system A
of Fig. 1, they may be considered too restrictive (see the
discussion in Section 1.8).

1.7. The intuition for (non)contextuality

The main idea can be intuitively presented as fol-
lows. We have defined a c-c system as a set of conteXt-
representing bunches together with connections between
these bunches that reflect commonality of conteNts. It
is equally possible, however, to view a c-c system as a
set of conteNt-representing connections related to each
other by bunches that reflect commonality of conteXts.
Thus, the system B depicted in Fig. 2 consists of the three
connections, the elements of each of which are pairwise
stochastically unrelated random variables. However, the
element R1

1 of the first connection is stochastically related
to the element R1

2 of the second connection because they
share a conteXt; and analogously for the other two con-
teXts.

We distinguish two forms of the dependence of random
variables on their conteXts. One of them is “contextual-
ity proper,” the other one we call “direct influences.” Let
us begin with the latter. Direct influences are reflected
in the differences, if any, between the distributions of
the elements of the same connection. For instance, if R1

1

and R2
1 have different distributions, then the change of

the conteXt from c1 to c2 directly influences the random
variable representing the conteNt q1. Direct influences
are important, but they are of the same nature as the
dependence of random variables on their conteNt. Thus,
if the distribution of responses to the question about bees
changes depending on what movie has been previously
watched, the influence of the movie on the response is
not any more puzzling than the influence of the question
itself. We prefer not to use the term “contextuality” for
such forms of conteXt-dependence. Instead we describe
them by saying that the system of random variables is in-
consistently connected if some of the elements of some of
the connections in it have different distributions. If in a
system all elements of any connection have the same dis-
tribution, then we call the system consistently connected.

There is a simple and universal (applicable to all sys-
tems) way to measure the degree of direct influences
within each connection. Although the connections in
a c-c system consist of pairwise stochastically unrelated
random variables, nothing prevents one from thinking
counterfactually of what their joint distribution could
be if they were jointly distributed. (The reader should
for now suspend criticism, as later on we will define this
counterfactual reasoning rigorously.)

Let us take, e.g., the connection
(
R1

1, R
2
1, R

3
1

)
in the

system B depicted in Fig. 2. If these random variables
were jointly distributed, then we would be able to com-
pute the probability with which they assume identical
values, Pr

[
R1

1 = R2
1 = R3

1

]
. One may ask: among all

possible “imaginary” joint distributions of
(
R1

1, R
2
1, R

3
1

)
(in which all three of them retain their individual dis-
tributions), what is the maximal possible value for
Pr
[
R1

1 = R2
1 = R3

1

]
? As it turns out, this maximal

probability is well-defined and uniquely determinable:
let us denote it max 1. We define max 2 for the con-
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nection
(
R1

2, R
2
2

)
as the maximal “imaginary” value for

Pr
[
R1

2 = R2
2

]
given the individual distributions ofR1

2 and
R2

2; and we define max3 for the connection
(
R2

3, R
3
3

)
anal-

ogously. These maximal probabilities of coincidence can
be viewed as reflecting the degree of direct influences of
conteXts upon the random variables: e.g., max1 = 1 if
and only if the distributions of all three random variables
in
(
R1

1, R
2
1, R

3
1

)
are the same; and max 1 = 0 if and only

if the direct influences are so prominent that the equal-
ity R1

1 = R2
1 = R3

1 becomes “unimaginable”: they cannot
occur in any of the imagined joint distributions because
the supports of the three variable (the subsets of possible
values that have nonzero probability masses) do not have
elements in common.

Now we come to “contextuality proper.” The maximal
probabilities just discussed are computed for each con-
nection taken separately, without taking into account the
bunches that reflect the commonality of conteXts across
the connections. The question arises: are these maximal
probability values,

Pr
[
R1

1 = R2
1 = R3

1

]
= max 1,

Pr
[
R1

2 = R2
2

]
= max 2,

Pr
[
R2

3 = R3
3

]
= max 3,

(1)

compatible with the observed bunches of the system? In
other words, can one achieve these maximal (imaginary)
probabilities in all three connections simultaneously if
one takes into account all the known (not imagined) joint
distributions in the bunches of the system? If the answer
is affirmative, then we can say that the knowledge of the
bunches representing different conteXts adds nothing to
what we already know of the direct influences by hav-
ing considered the connections separately — we call such
a system noncontextual. If the answer is negative, how-
ever, then the conteXts do influence the random variables
beyond any direct influences they exert on them — the
system is contextual. 1

1.8. (Non)contextuality of consistently connected
systems

A system that exhibits no direct influences at all (i.e., is
consistently connected) may very well be contextual. In a
consistently connected version of our system B the three
maximal probability values will all be 1, and a system

1 In reference to footnote 10 below, in the newer version of CbD
(Dzhafarov & Kujala, 2016a,b), in the case of more than two
random variables, as in

(
R1

1, R
2
1, R

3
1

)
, the maximum probability

should be considered not only for R1
1 = R2

1 = R3
1 but also for

each of R1
1 = R2

1, R
2
1 = R3

1, and R1
1 = R3

1.

will be contextual if the “imaginary” equalities

Pr
[
R1

1 = R2
1 = R3

1

]
= 1,

Pr
[
R1

2 = R2
2

]
= 1,

Pr
[
R2

3 = R3
3

]
= 1,

(2)

are incompatible with the observed bunches of the sys-
tem. This will be the case when one can say, by abuse
of language, that the system is contextual because the
elements in each of its connections cannot be viewed as
being essentially one and the same random variable.

Consistent connectedness, in special forms, is known
under a variety of other names. In psychology, within
the framework of so-called selective influences, the term
describing consistent connectedness is “marginal selec-
tivity” (Townsend & Schweickert, 1989). In quantum
physics it is often called “no-signaling” property, espe-
cially when dealing with the EPR-type paradigms dis-
cussed in Section 5 (Popescu & Rohrlich, 1994; Masanes,
Acin, & Gisin, 2006), or somewhat more generally,
“no-disturbance” property (Kurzynski, Cabello, & Kasz-
likowski, 2014). Cereceda (2000) lists several other terms.

Many scholars, especially in quantum mechanics, have
considered contextuality for consistently connected sys-
tems only (e.g., Dzhafarov & Kujala, 2014c; Fine, 1982;
Kurzynski, Ramanathan, Kaszlikowski, 2012; Kurzynski
et al., 2014). The same is true for the contextuality the-
ory of Abramsky and colleagues when it is applied to sys-
tems of random variables (Abramsky & Brandenburger,
2011; Abramsky et al., 2015). As a rule, however, con-
sistent connectedness is considered in a strong version,
wherein a consistently connected system should satisfy
the following property: in any two bunches R1, R2 that
share a set of conteNts q1, . . . , qk, the corresponding sets
of random variables

(
R1

1, . . . , R
1
k

)
and

(
R2

1, . . . , R
2
k

)
have

one and the same joint distribution. In the theory of se-
lective influences this property, or requirement, is called
“complete marginal selectivity” (Dzhafarov, 2003).

When applied to the system B in Fig. 2, the strong
form of consistent connectedness means that, in addition
to the same distribution of the random variables in each
of the three connections of B, we also posit the same dis-
tribution for

(
R1

1, R
1
2

)
and

(
R2

1, R
2
2

)
and for

(
R2

1, R
2
3

)
and(

R3
1, R

3
3

)
. It is easy to see that this amounts to replac-

ing the system B with the redefined system B′′ shown in
Fig. 7, and assuming that it is consistently connected in
the “ordinary” sense. The CbD theory allows for both B
and B′′ to represent one and the same empirical situa-
tion, the choice between them being outside the scope of
the theory. Therefore the notion of consistent connect-
edness in this paper includes the strong version thereof
as a special case.

The difference between the strong and weaker forms of
consistent connectedness is especially transparent if we
consider the system A of our opening example (Fig. 1).
Its consistent connectedness means that the distribution
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Rc
q Rc

q′
(
Rc

q, R
c
q′
)

c

Rc′
q Rc′

q′

(
Rc′

q , Rc′
q′

)
c′

q q′ q′′ A∗

(
Rc

q, R
c
q′
)

c(
Rc′

q , Rc′
q′

)
c′

q′′ A∗∗

Figure 8. Two modifications of system A in our opening ex-
ample that are required to consider this original system con-
sistently connected in the strong sense (“non-signaling,” or
“complete marginal selectivity”). The two modifications are
equivalent if they are consistently connected in the “ordinary”
sense.

of responses to a given question, q or q′, is the same irre-
spective of the conteXt, c or c′. The correlations between
the two responses, however, may very well be different in
the two conteXts. If this is the case, the consistently
connected system A can be shown to be contextual (see
Section 5). By contrast, if one assumes the strong form of
consistent connectedness, the system A is replaced with
the system A∗ shown in Fig. 8, consistently connected
in the “ordinary” sense. This system is trivially noncon-
textual, as its two bunches have the same distribution.
In Fig. 8 this system is shown together with the system
A∗∗ in which the first two columns of the c-c matrix rep-
resenting A∗ are dropped as redundant. Note, however,
that the systems A∗ and A∗∗ are not equivalent if they
are not consistently connected: the single-connection sys-
tem A∗∗, as should be clear from Section 1.7, is always
noncontextual, whereas the system A∗ may very well be
contextual.

2. CONTEXTS AND CONTENTS: A FORMAL
TREATMENT

Here, we present the basic conceptual set-up of our the-
ory: a random variable (confined to categorical random
variables), jointly distributed random variables (confined
to finite sets thereof), functions of random variables, and
systems of random variables, with bunches and connec-
tions. The reader who is not interested in a systematic
introduction may just skim through Sections 2.4 and 2.5
and proceed to Section 3.

Our view of random variables and relations among
them is “discourse-relative,” in the sense that the exis-
tence of these variables and relations depends on what
other random variables are “in play.”

2.1. Categorical random variables

We begin with a class E of (categorical) random vari-
ables that we consider “existing” (or “defined,” or “in-
troducible,” etc.). We need not be concerned with the
cardinality of E as in this paper we will always deal with

finite subsets thereof.2 A random variable X is a pair

X = (idX, diX) , (3)

where idX is its unique identity label (within the class
E), whereas diX (to be read as a single symbol) is its
distribution. The latter in turn is defined as a function

diX : VX → [0, 1], (4)

where VX is a finite set (called the set of possible values
of the random variable X), and∑

v∈VX

diX (v) = 1. (5)

The value diX (v) for any v ∈ VX is referred to as the
probability mass of X at its value v. For any subset W
of VX we define the probability of X ∈W as

Pr [X ∈W ] =
∑
v∈W

diX (v) . (6)

In particular, for v ∈ VX ,

Pr [X ∈ {v}] = diX (v) , (7)

and we may also write Pr [X = v] instead of Pr [X ∈ {v}].
Note that we impose no restrictions on the nature of

the values v, only that their set VX is finite. In particular,
if V1, . . . , Vn are finite sets, then a random variable Z ∈ E
with a distribution

diZ : V1 × . . .× Vn → [0, 1] (8)

is a categorical random variable. It can be denoted Z =
(X1, . . . , Xn), where Xi is called the ith component (or
the ith 1-marginal) of Z, with the distribution defined
by ∑

(v1,...,vi,...,vn)
∈V1×...×Vi−1

×{vi}
×Vi+1×...×Vn

diZ (v1, . . . , vn) = diXi (vi) , (9)

for any vi ∈ Vi. The summation in this formula is across
all possible n-tuples (v1, . . . , vn) with the value of vi being
fixed.

Definition 2.1. We will say that X1, . . . , Xn in E are
jointly distributed if they are 1-marginals of some Z =
(X1, . . . , Xn) in E. The random variable Z then can be
called a vector (sequence, n-tuple), of jointly distributed
X1, . . . , Xn. If X1, . . . , Xn are not jointly distributed,
they are stochastically unrelated (in E).

2 The cardinality need not even be defined, as we consider E a class
rather than a set.
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Note that according to this definition, X1, . . . , Xn

in E are not jointly distributed if E does not contain
(X1, . . . , Xn), even though one can always conceive of a
joint distribution for them. This reflects our interpreta-
tion of E as the class of the variables that “exist” (rather
than just “imagined,” as discussed in Section 1.7).

For any subsequence (i1, . . . , ik) of (1, . . . , n) one can
compute the corresponding k-marginal of Z. Without
loss of generality, let (i1, . . . , ik) = (1, . . . , k). Then the k-
marginal Y = (X1, . . . , Xk) has the distribution defined
by

∑
(v1,...,vk,vk+1...,vn)
∈{v1}×...×{vk}
×Vk+1...×VXn

diZ (v1, . . . , vn) = diY (v1, . . . , vk) ,

(10)
for any (v1, . . . , vk) ∈ V1 × . . . × Vk. The summation
in this formula is across all possible n-tuples (v1, . . . , vn)
with the values of v1, . . . , vk being fixed. This distribu-
tion of the k-marginal Y is referred to as a k-marginal
distribution.

2.2. Functions of random variables

Let X ∈ E be a random variable with the distribution
diX : VX → [0, 1], and let f : VX → f (VX) be some
function. The function f (X) of a random variable X is a
random variable Y such that X and Y are 1-marginals of
some random variable Z = (X,Y ) with the distribution
diZ : VX × f (VX)→ [0, 1] defined by

diZ (v, w) =

 diX (v) if w = f (v)

0 if otherwise
. (11)

It follows that the distribution of Y as a 1-marginal of Z
is defined by

diY (w) =
∑

v∈f−1({w})

diX (v) , (12)

for any w ∈ f (VX).
We stipulate as the main property of the class E that

any function of X in E belongs to E. This property
together with the definition of 1-marginals implies that
Z = (X, f (X)) belongs to E, i.e., X and f (X) are jointly
distributed.

If Y1 = f1 (X) and Y2 = f2 (X), we can consider
(f1, f2) as a function f mapping VX into f1 (VX) ×
f2 (VX). Then Y = (Y1, Y2) being a function of X is
merely a special case of the situation considered above.
Its meaning is that X and (Y1, Y2) are 1-marginals of
some random variable Z = (X, (Y1, Y2)) (that belongs to

E) whose distribution is defined by

diZ (v, (w1, w2)) =


diX (v) if (w1, w2)

= f (v) = (f1 (v) , f2 (v))

0 if otherwise

.

(13)
The (1-marginal) distribution of Y = (Y1, Y2) is defined
by

diY (w1, w2) =
∑
v∈f−1({(w1,w2)}) diX (v)

=
∑
v∈f−1

1 ({w1})∩f−1
2 ({w2}) diX (v) .

(14)

The random variables Y1 and Y2 themselves are 1-
marginals of Y = (Y1, Y2) just defined. Indeed, the sepa-
rate distribution of Y1 computed in accordance with (12)
is

diY1 (w1) =
∑

v∈f−1
1 ({w1})

diX (v) , (15)

for any w1 ∈ f1 (VX). We get the same formula from (14)
by applying to it the formula for computing 1-marginals,
(9):

diY1 (w1) =
∑
w2

∑
v∈f−1

1 ({w1})∩f−1
2 ({w2}) diX (v)

=
∑
v∈f−1

1 ({w1})∩(
⋃

w2
f−1
2 ({w2})) diX (v)

=
∑
v∈f−1

1 ({w1}) diX (v) ,

,

(16)
because the union of the sets f−12 ({w2}) across all values
of w2 ∈ f2 (VX) is the entire set VX . Analogous reasoning
applies to Y2.

This shows that Y1 and Y2 defined as functions of some
X ∈ E are jointly distributed in the sense of Definition
2.1: they are 1-marginals of some Y = (Y1, Y2) ∈ E. It is
easy to show that the converse holds true as well: if Y1
and Y2 in E are jointly distributed, then they are func-
tions of one and the same random variable that belongs
to E. Indeed, in accordance with Definition 2.1, they are
1-marginals of some Y = (Y1, Y2) ∈ E. But then Y1 and
Y2 are functions of this Y . Specifically, denoting the sets
of possible values for Y1, Y2 by W1,W2, respectively, we
have Y1 = f1 (Y ), where

f1 : W1 ×W2 →W1 (17)

is defined by f1 (w1, w2) = w1 (a projection function).
The computations of the distribution of Y1 in accordance
with (9) coincides with that in accordance with (12),

diY1 (w1) =
∑

w2∈W2

diY (w1, w2) =
∑

v∈f−1
1 ({w1})

diY (v) ,

(18)
for any w1 ∈W1. Analogous reasoning applies to Y2.
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This result is trivially generalized to an arbitrary finite
set of random variables.3

Theorem 2.2. Random variables X1, . . . , Xn ∈ E are
jointly distributed if and only if they are representable as
functions of one and the same random variable X ∈ E.

Note that this X may very well equal one of the
X1, . . . , Xn. More generally, one can add X to its
functions X1, . . . , Xn to create a jointly distributed set
X,X1, . . . , Xn in which all elements are, obviously, func-
tions of one of its elements. Note also that if Xi = fi (X),
i = 1, . . . , n, then f = (f1, . . . , fn) is a function, and we
can equivalently reformulate Theorem 2.2 as saying that
a vector of random variables (X1, . . . , Xn) is a random
variable (by definition, with jointly distributed compo-
nents) if and only if it is a function of some random vari-
able X.

In spite of its simplicity, Theorem 2.2 was discovered,
in various special forms, only in the 1980s (Suppes &
Zanotti, 1981; Fine, 1982). It has a direct bearing on
the problem of “hidden variables” in quantum mechan-
ics: given a set of random variables, is there a random
entity of which these random variables are functions? To
formulate this problem rigorously and to enable the use
of Theorem 2.2 for solving it we will need the notion of
a coupling, introduced below (Section 3.1).

2.3. Two meanings of equality of random variables

The following remark may prevent possible confusions.
Given a random variable Z and a measurable set E, the
expression Z ∈ E clearly does not mean that Z as a
random variables (with its identity idZ and distribution
diZ) is an element of E. Rather this expression is a way
of saying that we are considering an event E in the mea-
sure space diZ = (SZ ,ΣZ , µZ) associated with a ran-
dom variable Z. Thus, Pr [Z ∈ E] is µZ (E). As a spe-
cial case, given jointly distributed X,Y , the expression
X = Y is merely a shortcut for (X,Y ) ∈ W , where
W = {(v1, v2) ∈ SX × SY : v1 = v2}. This meaning of
equality should not be confused with another meaning:
X = Y can also mean that these two symbols refer to one
and the same random variable, so that idX = idY and
(consequently) diX = diY . We think that the meaning
of X = Y in this paper is always clear from the context
(now using this word without capital X).

2.4. Base sets of random variables

How does one construct the class E? For instance,
with X1, . . . , Xn all in E, how do we know whether

3 In fact it holds for any set of any random entities (Dzhafarov
& Kujala, 2010), but our focus in this paper is on finite sets of
categorical random variables.

they are jointly distributed, i.e., whether E contains a
Z = (X1, . . . , Xn)? Can we simply declare that any ran-
dom variables X1, . . . , Xn are jointly distributed? The
answer to the last question is negative: to be able to
model empirical phenomena one needs to keep the mean-
ing of joint distribution tied to the empirical meaning of
“co-occurrence” — which means that joint distribution
cannot be imposed arbitrarily.

To make all of this clear, let us construct the class E
of “existing” random variables systematically. The con-
struction is simple: we introduce a nonempty base set R
of (categorical) random variables (in this paper we as-
sume this set to be finite, but this need not be so gener-
ally), and we posit that

(P1): a random variable belongs to E if and only if it is
a function of any one of the elements of R;

(P2): no random variable in E is a function of two dis-
tinct elements of R.

The constraints (P1-P2) ensure that no two random
variables existing in the sense of belonging to E may
have a joint distribution unless they are functions of one
and the same element of R. Indeed, let some transfor-
mations α (A) and β (B) have a joint distribution, for
A,B ∈ R. Then a random variable (α (A) , β (B)) ex-
ists, which means that this pair is a function of some
C ∈ R. But then α (A) is a function of A and C, whence
A = C, and β (B) is a function of both B and C, whence
B = C = A. (In reference to Section 2.3, the equalities
here are used in the sense of “one and the same random
variable.”)

Instead of “X belongs to E” we can also say “X exists
with respect to R.” This is preferable if one deals with
different base sets R inducing different classes E, as we
do in the subsequent sections.

Consider an example: let R consist of the four random
variables

X = (X1, X2, X3) , Y = (Y1, Y2) , Z, U = (U1, U2) .

These random variables are declared to exist, and then so
are functions of these random variables. Thus, X2 exists
because X exists and X2 is its function (second projec-
tion). Analogously, if the values of Y1, Y2 are numerical,
the variable Y1 + Y2 exists. However, no component of
one of the four random variables, say, X2, is jointly dis-
tributed with any component of another, say, U1, and no
function f (U1, X2) is a random variable (its distribution
is undefined). By the same logic, no two different vectors
in R can share a component: if they did, this component
would be a function of both of them, contravening (P2).

2.5. Systems of random variables

The example of R at the end of the previous section
is in fact how we introduce our main object: conteXt-
conteNt systems of random variables.
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Definition 2.3. Let R be a base set of (categorical) ran-
dom variables each element of which, called a bunch, is
a vector of random variables. Let UR be the union of
all components of these bunches. A conteXt-conteNt (c-
c) system R of random variables based on R is created
by endowing R with a partition of UR into subsets called
connections and satisfying the following two properties:
(intersection property) a bunch and a connection do

not have more than one component of UR in common;
and
(comparability property) elements of a connection have

the same set of possible values.4

Recall that partitioning of a set means creating a set
of pairwise disjoint subsets whose union is the entire set.
Note that due to the intersection property in Definition
2.3, any two elements of a connection are stochastically
unrelated (they are 1-marginals of different bunches).
Note also that due to the comparability property the el-
ements of a connection may (but generally do not) have
the same distribution.

Let the bunches of the c-c system be enumerated
1, . . . , n, and the connections be enumerated 1, . . . ,m.
Due to the intersection property in Definition 2.3, any
random variable in the set UR of a c-c system R can be
uniquely identified by the labels of the bunch and of the
connection it belongs to. These labels (or some symbols
in a one-to-one correspondence with them) are referred
to as conteXts (labels for bunches) and conteNts (labels
for connections). As we see, in the formal theory bunches
and connection define rather than are defined by the con-
teXts and conteNts, respectively. It is the other way
around in empirical applications (see the introductory
section), where our understanding of what constitutes a
given conteNt under different conteXts guides the cre-
ation of the bunches and connections.

The unique labeling of the random variables by the
conteXts and conteNts means that any c-c system can
be presented in the form already familiar to us from the
introduction: a conteXt-conteNt (c-c) matrix. An exam-
ple of a c-c system presented in the form of a c-c matrix
is given in Fig. 2. The initial base set of random variables
is

R =


R1 =

(
R1

1, R
1
2

)
R2 =

(
R2

1, R
2
2, R

2
3

)
R3 =

(
R3

1, R
3
3

)
 , (19)

the union set is

UR =
{
R1

1, R
1
2, R

2
1, R

2
2, R

2
3, R

3
1, R

3
3

}
(20)

4 In a more general treatment this translates into the same set and
the same sigma algebra of events.

with the lower indexes already chosen in view of the par-
titioning into connections,

(
R1

1, R
2
1, R

3
1

)
(
R1

2, R
2
2

)
(
R2

3, R
3
3

)
 . (21)

The intersection property in Definition 2.3 is critical:
if a conteXt and a connection could have more than one
random variable in common, both the double-indexing of
the random variables by conteXts and conteNts and the
subsequent contextuality analysis of the system would be
impossible.

2.6. Kolmogorovian Probability Theory and
Contextuality-by-Default

In this section we briefly discuss the relationship be-
tween KPT and CbD. This discussion is not needed for
understanding the subsequent sections. We will assume
the reader’s familiarity with the basics of measure theory.

The definition of (categorical) random variables in
KPT is as follows. Let (S,Σ, µ) be a domain probabil-
ity space, and let (VX ,ΣX) be a codomain measurable
space, with VX a finite set and ΣX usually (and here)
defined as its power set. A random variable X is a func-
tion S → VX such that X−1 ({v}) ∈ Σ, for any v ∈ VX .
The probability mass pX (v) is defined as µ

(
X−1 ({v})

)
,

and for any subset V ⊂ VX , the probability of X falling
in V is computed as

Pr [X ∈ V ] = µ
(
X−1 (V )

)
=
∑
v∈V

pX (v) . (22)

We call (S,Σ, µ) the sample space5 for X.
The great conceptual convenience of KPT is that the

joint distribution of two random variables taken as two
functions defined on the same sample space is uniquely
determined by these two functions: if X is as above and
Y is another random variable, then its joint distribution
with X above is defined by

pXY (v, w) = µ
(
X−1 ({v}) ∩ Y −1 ({w})

)
, (23)

for any (v, w) ∈ VX × VY .
In CbD, random variables are considered only with re-

spect to a specified base set. A random variable exists
if it is a function of one and only one of the elements

5 It seems common to use this term for the set S alone; but the
term “space” in mathematics means a set with some structure
imposed on it, and the structure here is the sigma algebra and
the measure. We prefer therefore to use the term “sample space”
for the entire domain probability space. S alone can be referred
to as the sample set for X.
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of this base set; and functions of different base random
variables are considered stochastically unrelated. Is this
picture compatible with KPT? We think it is, provided
KPT is not naively thought of as positing the existence
of a single sample space for all imaginable random vari-
ables. Such a view can be shown to be mathematically
flawed (Dzhafarov & Kujala, 2014a-b).

Every sample space (S,Σ, µ) corresponds to a random
variable Z defined as the identity mapping S → S from
(S,Σ, µ) to (S,Σ), and then every random variable de-
fined on (S,Σ, µ) is representable as a transformation of
Z. If we consider a set of sample spaces unrelated to each
other, then the corresponding identity functions form a
base set of random variables, and what we get is essen-
tially the same picture as in CbD.

We need one qualification though: even if all the func-
tions considered are categorial random variables, the base
set itself need not be a finite set of categorical random
variables, as it is in Section 2.5. This is not, however, a
restriction inherent in CbD but the choice we have made
in this paper. A finite number of categorical base vari-
ables are sufficient if one only considers a finite set of
functions thereof, which is the case we deal with.

3. CONTEXTUALITY ANALYSIS

In this section we give the definitions and introduce the
conceptual apparatus involved in determining whether a
c-c system is contextual or noncontextual.

3.1. Probabilistic couplings

Imagining joint distributions for things that are not
jointly distributed, as it was presented in Section 1.7, is
not rigorous mathematics. The latter requires that we
use the mathematical tool of (probabilistic) couplings.

Definition 3.1. A coupling of a set of random vari-
ables X1, . . . , Xn is a random variable (Y1, . . . , Yn) (with
jointly distributed components) such that Yi has the
same distribution as Xi, for all i = 1, . . . , n.

As an illustration, let X1 and X2 be distributed as

X1 = 1 X1 = 2 X1 = 3
pr. mass 0.3 0.3 0.4

and

X2 = 1 X2 = 2 .pr. mass 0.7 0.3

Then (Y1, Y2) with the distribution

Y1 = 1 Y1 = 2 Y1 = 3
Y2 = 1 0.3 0.2 0.2 0.7
Y2 = 2 0 0.1 0.2 0.3

0.3 0.3 0.4

is a coupling for X1 and X2. And so is (Y ′1 , Y
′
2) with the

distribution

Y ′1 = 1 Y ′1 = 2 Y ′1 = 3
Y ′2 = 1 0.3 0 0.4 0.7
Y ′2 = 2 0 0.3 0 0.3

0.3 0.3 0.4

.

Generally, the number of couplings of a given set of ran-
dom variables is infinite.

In our paper couplings are constructed in two ways
only: either for connections in a c-c system, taken sepa-
rately, or for the entire set of bunches in the system. In
relation to the system B in Fig. 2 and (19), a coupling for
the connection

(
R1

1, R
2
1, R

3
1

)
is a triple

(
T 1
1 , T

2
1 , T

3
1

)
such

that T j1 and Rj1 have the same distribution, for j = 1, 2, 3;
and analogously for the other two connections.

The set of the three bunches
(
R1, R2, R3

)
in (19) is

coupled by S =
(
S1, S2, S3

)
where

S1 =
(
S1
1 , S

1
2

)
S2 =

(
S2
1 , S

2
2 , S

2
3

)
S3 =

(
S3
1 , S

3
3

)
 (24)

such that Sj and Rj have the same distribution, for j =
1, 2, 3.

In the following we will freely use phrases indicating
that a coupling for some random variables “exists,” or
“can be constructed,” or that these random variables “can
be coupled.” Note, however, that the couplings do not
“exist” with respect to the base set of random variables
formed by the bunches of a c-c system, as no coupling of
the bunches can be presented as a function of just one
of these bunches. If the bunches are assumed to have
links to empirical observations, then the couplings can
be said to have no empirical meaning. A coupling forms
a base set of its own, consisting of itself. Its marginals
(or subcouplings) corresponding to the bunches of the
c-c system do “exist” with respect to this new base set,
as they are functions of its only element. However, the
bunches of the c-c system themselves do not “exist” with
respect to the base set formed by this coupling. One can
add the coupling S =

(
S1, S2, S3

)
to the set

(
R1, R2, R3

)
of the three bunches of our system B as a fourth element
of a new base set, stochastically unrelated to the bunches.

3.2. “Flattening” convention

Let us adopt the following simplifying convention in re-
gard to couplings (and more generally, vectors of jointly
distributed variables): a vector of jointly distributed ran-
dom variables

(
A1, . . . , An

)
in which Ai =

(
Ai1, . . . , A

i
ki

)
,

for each i = 1, . . . , n, is considered equivalent (replace-
able by) the vector(

A1
1, . . . , A

1
k1 , . . . , A

n
1 , . . . , A

n
kn

)
. (25)
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As each of the random variables is assumed to be
uniquely indexed (in our analysis, double-indexed), the
order in which they are shown in any given vector is
usually arbitrary. As an example, a coupling S =(
S1, S2, S3

)
of the three bunches R =

(
R1, R2, R3

)
in

(19), written in extenso, is

S =
((
S1
1 , S

1
2

)
,
(
S2
1 , S

2
2 , S

2
3

)
,
(
S3
1 , S

3
3

))
(26)

with
(
S1
1 , S

1
2

)
distributed as the bunch

(
R1

1, R
1
2

)
, etc.

In accordance with our agreement, this coupling can be
equivalently written as

S =
(
S1
1 , S

1
2 , S

2
1 , S

2
2 , S

2
3 , S

3
1 , S

3
3

)
, (27)

in which
(
S1
1 , S

1
2

)
distributed as the bunch

(
R1

1, R
1
2

)
, etc.

The “flattening” convention makes it easier to compare
couplings of a connection taken in isolation with the
subcoupling of the coupling (27) corresponding to the
same connection. Thus, for the connection

(
R1

1, R
2
1, R

3
1

)
taken separately we can consider all possible couplings(
T 1
1 , T

2
1 , T

3
1

)
and then compare them with the subcou-

plings
(
S1
1 , S

2
1 , S

3
1

)
extracted as 3-marginals from all pos-

sible couplings (27). We will need such comparisons for
determining whether the system in question is contex-
tual.

3.3. Maximal couplings for connections

Definition 3.2. Let R1
j , . . . , R

k
j be a connection (for a

conteNt qj) in a c-c system. A coupling
(
T 1
j , . . . , T

k
j

)
of

R1
j , . . . , R

k
j is a maximal coupling if the value of

Pr
[
T 1
j = . . . = T kj

]
is the largest possible among all couplings of R1

j , . . . , R
k
j .

(In relation to Section 2.3, the equality here clearly is
not the identity of the random variables but a descrip-
tion of an event associated with jointly distributed vari-
ables.) Theorem 3.3 below ensures that the maximum
mentioned in the definition always exist. The notion of
a maximal coupling is well-defined for arbitrary sets of
arbitrary random variables (see Thorisson, 2000), but we
will only need it for connections formed by categorical
variables.6

6 It is a common mistake to think that this notion may be use-
less outside the class of categorical variables: thus, one might
erroneously assume that if the distributions of T 1

j , . . . , T
k
j are

absolutely continuous with respect to the Lebesgue measure on
the set of reals, then Pr

[
T 1
j = . . . = Tk

j

]
must be zero. In fact,

this probability can be any number between 0 and 1, because
the joint distribution of T 1

j , . . . , T
k
j within the intersection of

their supports may very well be concentrated on the diagonal
T 1
j = . . . = Tk

j . In particular, if R1
j , . . . , R

k
j are identically

distributed, then, irrespective of this distribution, they have a
maximal coupling

(
T 1
j , . . . , T

k
j

)
with Pr

[
T 1
j = . . . = Tk

j

]
= 1.

For any coupling
(
T 1
j , . . . , T

k
j

)
of
(
R1
j , . . . , R

k
j

)
,

Pr
[
T 1
j = . . . = T kj

]
=
∑
v∈V

Pr
[
T 1
j = v, . . . , T kj = v

]
,

(28)
where V is the set of possible values shared by the ele-
ments of the connection. This sum is maximized across
all possible couplings if each of the summands on the
right-hand side is maximized separately. The maximal
possible value for Pr

[
T 1
j = v, . . . T kj = v

]
(with the indi-

vidual distributions of Yi being fixed) is

max pv = min
(
Pr
[
T 1
j = v

]
, . . . ,Pr

[
T kj = v

])
. (29)

Indeed, the probability of a joint event can never exceed
any of the probabilities of the component events. To
prove that a maximal coupling exists for any connection,
we need to show that every value of

(
T 1
j , . . . , T

k
j

)
can be

assigned a probability so that, for all v ∈ V ,

Pr
[
T 1
j = v, . . . T kj = v

]
= max pv, (30)

and∑
v1,...,vi−1,
vi=v,

vi+1,...,vk

Pr
[
T 1
j = v1, . . . , T

k
j = vk

]
= Pr [Yi = v] , (31)

for any i = 1, . . . , k. A simple proof that this is always
possible can be found in Thorisson (2000, pp. 7-8 and
104-107).

Theorem 3.3. A maximal coupling
(
T 1
j , . . . , T

k
j

)
can be

constructed for any connection
(
R1
j , . . . , R

k
j

)
in a c-c sys-

tem, with

Pr
[
T 1
j = . . . = T kj = v

]
= min

(
Pr
[
T 1
j = v

]
, . . . ,Pr

[
T kj = v

])
,

(32)

for any v in the set V of possible values of (each of)
R1
j , . . . , R

k
j .

As an example, let the variables R1
1, R

2
1, R

3
1 in the first

connection of the system B of Fig. 2 be binary, with the
possible values 1 and 2. Let

R1
1 = 1 R1

1 = 2 ,pr. mass 0.3 0.7

R2
1 = 1 R2

1 = 2 ,pr. mass 0.4 0.6

R3
1 = 1 R3

1 = 2 .pr. mass 0.7 0.3
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R1
1 R1

2 · c1

· R2
2 R2

3 c2

R3
1 · R3

3 c3

q1 q2 q3 SZLG

Figure 9. The c-c matrix for a Suppes-Zanotti-Leggett-Garg-
type system. This is a cyclic system of rank 3, in the ter-
minology of Section 5. Each conteXt includes two conteNts,
and each conteNt is included in two conteXts. All random
variables are binary.

Then, in the maximal coupling
(
T 1
1 , T

2
1 , T

3
1

)
,

max p1 = Pr
[
T 1
1 = T 2

1 = T 3
1 = 1

]
= min (0.3, 0.4, 0.7) = 0.3,

max p2 = Pr
[
T 1
1 = T 2

1 = T 3
1 = 2

]
= min (0.7, 0.6, 0.3) = 0.3.

,

We can now assign probabilities to the rest of the values
of
(
T 1
1 , T

2
1 , T

3
1

)
in an infinity of possible ways, e.g., as

shown below,

value: 111 112 121 211 221 212 122 222 ,pr. mass 0.3 0 0 0.1 0.3 0 0 0.3

so that these joint probabilities yield the right values of
Pr
[
T j1 = 1

]
= Pr

[
Rj1 = 1

]
, for j = 1, 2, 3.

Consider another example, using the second connec-
tion in the system B,

(
R1

2, R
2
2

)
. Suppose that both these

variables have the same distribution:

value 1 2 3 ,pr. mass 0.3 0.2 0.5

in which case we can say that this connection is consis-
tent (and, to remind, if this is the case for all connections,
then the system is consistently connected). The maximal
coupling

(
T 1
2 , T

2
2

)
here has a uniquely determined distri-

bution

T 1
2 = 1 T 1

2 = 2 T 1
2 = 3

T 2
2 = 1 0.3 0 0 0.3
T 2
2 = 2 0 0.2 0 0.2
T 2
2 = 3 0 0 0.5 0.5

0.3 0.2 0.5

,

with Pr
[
T 1
2 = T 2

2

]
= 1.

3.4. Contextuality

Definition 3.4. A coupling for (the bunches of) a c-c
system is maximally connected if its subcouplings corre-
sponding to the connections of the system are maximal

couplings of these connections. If a system has a maxi-
mally connected coupling, it is noncontextual. Otherwise
it is contextual. 7

For motivation of this definition, see Section 1.7. Let
us illustrate this definition using the system of binary
random variables first considered, in abstract, by Suppes
and Zanotti (1981) and then, as a paradigm in quantum
mechanics, by Leggett and Garg (1985). The c-c matrix
for this system is presented in Fig. 9. There are three
conteNts here, any two of which are represented (mea-
sured, responded to) in one of three possible conteXts.
Figure 10 (top panel) shows this system schematically:
a set of three bunches stochastically unrelated to each
other, and three connections “bridging” them. Since any
of the six random variables in the system has two possible
values, any coupling

S =
(
S1
1 , S

1
2 , S

2
2 , S

2
3 , S

3
3 , S

3
1

)
(33)

of this system has 26 possible values, and its distribution
is defined by assigning 26 probability masses to them.

It is difficult to see how one could show graphically
that six random variables are jointly distributed. In the
bottom panel of Fig. 10 this problem is solved by invoking
Theorem 2.2, according to which the random variables in
a coupling are all functions of one and the same, “hidden”
random variable. We do not need to specify this random
variable and the functions producing the components of
a coupling explicitly. It is always possible, however, to
choose this random variable to be the coupling S itself,
and treat the random variables in the coupling as projec-
tion functions: S1

1 is the first projection of S, S1
2 is the

second projection of S, etc.
The distribution of the six random variables in the

coupling should, by definition, agree with the bunches of
the system B, each of which is uniquely characterized by
three probabilities:

Pr
[
R1

1 = 1
]

= p11 = Pr
[
S1
1 = 1

]
,

Pr
[
R1

2 = 1
]

= p12 = Pr
[
S1
2 = 1

]
,

Pr
[
R1

1 = 1, R1
2 = 1

]
= p12 = Pr

[
S1
1 = 1, S1

2 = 1
] (34)

for the bunch
(
R1

1, R
1
2

)
, and analogously for the other

two. There are generally an infinity of couplings that
satisfy these equations.

Consider now the three connections of the system
as three separate pairs of random variables (Fig. 11,
top panel), and for each of them consider its coupling

7 In reference to footnote 10 below, in a newer version of CbD
(Dzhafarov & Kujala, 2016a,b) (non)contextuality is defined in
terms of multimaximal couplings, rather than merely maximal
ones. This does not, however, affects the logic of CbD in any
nontrivial way.
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Figure 10. A schematic representation of a SZLG c-c system (top) and of its coupling (bottom). The coupling is shown as a set
of random variables that are functions of some random variable S. The symbols pji attached to Rj

i show the probability with
which this variable equals 1; the symbols pkl attached to double-lines show the joint probability with which the flanking variables
equal 1. All these probabilities are preserved in the coupling because, by definition, the bunches of the system (the pairs of
random variables connected by double-lines) have the same distribution as the corresponding subcouplings of the coupling.
The elements of the connections of the system (the pairs of random variables connected by dotted lines) are stochastically
unrelated, but the corresponding subcouplings of the coupling are jointly distributed, as 2-marginals of the coupling.

(Fig. 11, middle panel). The distributions of the ele-
ments of a connection are fixed, and its coupling should,
by definition, preserve them. Thus, for the connection(
R1

1, R
3
1

)
,

Pr
[
R1

1 = 1
]

= p11 = Pr
[
T 1
1 = 1

]
,

Pr
[
R3

1 = 1
]

= p31 = Pr
[
T 3
1 = 1

]
.

(35)

With p11 and p31 given, the distribution of the coupling(
T 1
1 , T

3
1

)
of
(
R1

1, R
3
1

)
is determined by

Pr
[
T 1
1 = 1, T 3

1 = 1
]

= p1. (36)

By Theorem 3.3, p1 can be chosen so that Pr
[
T 1
1 = T 3

1

]
attains its maximal possible value, and this choice is

p1 = min
(
p11, p

3
1

)
. (37)

We know that such a coupling is a maximal coupling of(
R1

1, R
3
1

)
, in this simple case, uniquely determined. We

choose values p2 and p3 for the maximal couplings of the
remaining two connections analogously.

In accordance with Definition 3.4, the question now
is whether these three values of the joint probabilities,
p1, p2, p3, are compatible with the bunches of the system.
Put differently, can one construct a maximally connected
coupling shown in Fig. 11, bottom panel, a coupling in
which all the probabilities shown are achieved together?
The system is noncontextual if and only if the answer to
this question is affirmative.

To see that it does not have to be affirmative, consider
the example presented in Fig. 12. The maximally con-
nected coupling does not exist because, in the bottom-
panel diagram,

(i) going clockwise from S1
1 and using the transi-

tivity of the relation “always equals,” we con-
clude that Pr

[
S1
1 = S3

3

]
= 1;

(ii) going counterclockwise from S1
1 we see that

Pr
[
S1
1 = S3

1

]
= 1;
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(iii) but then Pr
[
S3
1 = S3

3

]
must also be 1, which

it is not.

4. CONTEXTUALITY AS A LINEAR
PROGRAMMING PROBLEM

Is there a general method for establishing contextual-
ity or lack thereof in a given c-c system? It turns out
that such a method exists, and insofar as finite sets of
categorical random variables are involved, it is a sim-
ple linear programming method. A maximally connected
coupling of a c-c system is uniquely associated with a
certain underdetermined system of linear equations, and
the c-c system is contextual if and only if this system of
linear equations has no nonnegative solutions. The the-
ory of these equations generalizes the Linear Feasibility
Test described in Dzhafarov and Kujala (2012).

4.1. Notation and conventions

We need to introduce or recall some notation and con-
ventions. Let a system R involve conteXts c1, . . . , cn
(n > 1) and conteNts q1, . . . , qm (m > 1).

1. Notation related to a c-c system R:

R =



. . .
... . .

.

· · · Rij · · ·
(
bunch Ri

)
. .
. ...

. . .(
connection
Rj

)

 . (38)

2. Corresponding notation for a (maximally con-
nected) coupling S of R:

S =



. . .
... . .

.

· · · Sij · · ·
(

subcoupling
Si

)
. .
. ...

. . .(
subcoupling

Sj

)


.

(39)

3. Notation for any (maximal) coupling Tj of a con-
nection Rj taken separately:

Tj =


...
T ij
...

 . (40)

4. A value of a random variable Rij (hence also of Sij
or T ij ) is denoted vij or wij . A value of a bunch Ri

(hence also of the subcoupling Si of S) is denoted

vi or wi. We use vj or wj to denote values of cou-
plings Tj and the corresponding subcouplings Sj of
S (assumed to be maximally connected). The value
v of S has the structure

v =



. . .
... . .

.

· · · vij · · ·
(

bunch
value vi

)
. .
. ...

. . .(
connection
value vj

)


. (41)

As is customary, we use v, vi, vj , vij sometimes as
variables and sometimes as specific values of these
variables.

5. Recall that in these matrices and vectors some en-
tries are not defined: not every conteNt is paired
with every conteXt. If qj is measured (responded
to) in conteXt ci, the random variable Rij exists,
and the elements of the set Vj of its possible values
can be enumerated 1, . . . , kj . Denoting

k = max
j=1,...,m

kj , (42)

without loss of generality, we can assume that

Vj = {1, . . . , k} , (43)

for every j = 1, . . . ,m. Indeed, one can always
add values to Vj that occur with probability zero.
The set of all values v of a coupling S is therefore
{1, . . . , k}N , where N is the number of all random
variables in S.

6. We will refer to the values v of S as hidden out-
comes. The term derives from quantum mechan-
ics, where the problem of contextuality was initially
presented as that of hidden variables (see the last
paragraph of Section 2.2).

4.2. Linear equations associated with a c-c system

To specify a distribution of S, each of the hidden out-
comes v should be assigned a probability mass γ (v). Let
us form a column vector Q by arranging these γ (v)-
values in some, say, lexicographic order of v. Let us also
form a column vector P with the following structure:

P =

 bunch
probabilities
for c1, . . . , cn

, . . . ,
connection
probabilities
for q1, . . . , qm

 . (44)

Here,

bunch
probabilities

for ci
=
(
Pr
[
Ri = vi

]
: vi ∈ {1, . . . , k}ni

)
,

(45)



16'

&

$

%

R1
1

p11

R1
2

p12

R3
1p31 R2

2 p22

R3
3

p33

R2
3

p23'

&

$

%

T 1
1

p11

T 1
2

p12

p2=min(p12,p
2
2)

T 3
1p31

p1=min(p11,p
3
1)

T1

OO

oo T3

''ww

T2
//

OO

T 2
2 p22

T 3
3

p33

T 2
3

p23

p3=min(p23,p
3
3)

'

&

$

%

S1
1

p11

p12
S1
2

p12

p2=min(p12,p
2
2)

S3
1p31

p1=min(p11,p
3
1)

S

88ff

oo //

xx &&

S2
2 p22

p23

S3
3

p33

p31

S2
3

p23

p3=min(p23,p
3
3)

Figure 11. Each of the three connections of the SZLG system of Fig. 10, taken separately (top), can be coupled by a maximal
coupling (middle). A hypothetical maximally connected coupling of the SZLG system (bottom) is one in which the subcouplings
corresponding to the connections of the system are their maximal couplings. If such a coupling can be constructed (equivalently,
if the maximal couplings in the middle panel are compatible with the system’s bunches), then the system is noncontextual. It
is possible that such a coupling does not exist, in which case the system is contextual.

where ni is the number of elements in vi. That is, the
bunch probabilities for ci are the joint probabilities that
determine the distribution of the bunch Ri. The con-
nection probabilities for qj are the probabilities imposed
by the maximal coupling Tj of the connection Rj taken

separately:

connection
probabilities

for qj
= (Pr [Tj = (l, . . . , l)] : l ∈ {1, . . . , k}) .

(46)

Since S is a coupling of R, we should have, for every
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Figure 12. An example of a contextual SZLG system. The bunches are shown in the top panel. The middle panel shows the
computed maximal couplings for the connections. The bottom panel shows that a maximally connected coupling does not exist
because it is internally contradictory. To each edge of the diagram in this panel we append the probability with which the
flanking random variables are equal to each other, and we show from where this probability is derived. Thus, Pr

[
S1
1 = S1

2

]
= 1

is derived from the distribution of the first bunch, while Pr
[
S3
1 = S1

1

]
= 1 is derived from the distribution of the maximal

coupling of the first connection.

value wi of every bunch Ri,∑
v

λi
(
v, wi

)
γ (v) = Pr

[
Ri = wi

]
, (47)

where λi
(
v, wi

)
= 1 if vi = wi (i.e., if the ith row of

v, in reference to (41), equals wi), and λi
(
v, wi

)
= 0

otherwise. Since S is a maximally connected coupling
of R, we should have, for every value wj = (l, . . . , l) of
every maximal coupling Tj ,

∑
v

λj (v, wj) γ (v) = Pr [Tj = wj = (l, . . . , l)] (48)

where λj (v, wj) = 1 if the jth column vj of v in (41)
equals wj , and λj (v, wj) = 0 otherwise.

In we list the hidden outcomes v in the same order as in
the vector Q, the 1/0 values of λi

(
v, wi

)
and 1/0 values

of λj (v, wj) in (47) and (48) form rows of a Boolean
matrix M, one row per each

(
i, wi

)
and each (j, wj),

such that (47) and (48) can be written together as

MQ = P. (49)

We will refer to this matrix equation as the system of
equations associated with the c-c system R. In Section 6
below we will show that a vector of real numbers Q sat-
isfying this equation always exist. To form a distribution
for a maximally connected coupling S, however, Q also
has to satisfy the following two constrains:

(a): all components of Q are nonnegative, and

(b): they sum to 1.

The latter requirement is satisfied “automatically.” In-
deed, by construction, the rows of M corresponding to
all possible values of any given bunch have pairwise dis-
joint cells containing 1’s: a hidden outcome v in (41)
contains in its ith row one and only one value of the ith
bunch. This means that if one adds all the rows of M
corresponding to the ith bunch one will get a row with
1’s in all cells. The scalar product of this row and Q
equals both the sum of the elements in Q and the sum
of all bunch probabilities in the ith bunch, which is 1.

The nonnegativity constraint, however, does not have
to be satisfied: it is possible that every one of the infinite
set of solutions forQ contains some negative components.
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hidden outcome,
(

v11 v12
v21 v22

)
+ +
+ +

+ +
+ −

+ +
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[
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[
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]
= Pr

[
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]
1 1 1 1 Pr [S1 = (+,+)]

= Pr [T1 = (+,+)]

1 1 1 1 Pr [S1 = (−,−)]
= Pr [T1 = (−,−)]

1 1 1 1 Pr [S2 = (+,+)]
= Pr [T2 = (+,+)]

1 1 1 1 Pr [S2 = (−,−)]
= Pr [T2 = (−,−)]

Figure 13. The Boolean matrix M (left) and vector P (right) for the c-c system A in Fig. 1. The values of the variables are
encoded by ±1, with +1 shown by plus sign and −1 shown by minus sign. The first 8 elements of P are bunch probabilities,
the last 4 elements are connection probabilities.'
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Figure 14. An example of a contextual c-c system of the A-type (Fig. 1). The bunch probabilities are shown in the top panel.
The middle panel shows the computed maximal connection probabilities. The bottom panel shows (using the same format and
logic as in Fig. 12) that a maximally connected coupling S would be internally contradictory.
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This is the case when the c-c system for which we have
constructed the equations is contextual.

We can formulate now the main statement of this sec-
tion.

Theorem 4.1. A c-c system is noncontextual (i.e., it
has a maximally connected coupling) if and only if the
associated system of equations MQ = P has a solution
for Q with nonnegative components. Any such a solu-
tion defines a distribution of the hidden outcomes of the
coupling.

The task of finding solutions for (49) subject to the
nonnegativity constraint is a linear programming task. It
is always well-defined and leads to an answer (an example
of a solution or the determination that it does not exist)
in polynomial time with respect to the number of the
elements inQ (Karmarkar, 1984). This is all that matters
to us theoretically. In practice, some algorithms are more
efficient than Karmarkar’s in most cases (e.g., the simplex
algorithm).

The linear programming problem in Theorem 4.1 is
especially transparent when all variables in a c-c system
are binary with the same possible values, say, 1 and -1.
The reader may find it useful to check, using Fig. 13, all
the steps of the derivation of the linear equations (49)
using the c-c system A of our opening example (Fig. 1).
Whether this system is contextual depends on P, specif-
ically, on the bunch probabilities in P. Recall that the
connection probabilities, the last four elements of P in
Fig. 13, are computed from the bunch probabilities us-
ing Theorem 3.3. Thus, if the bunch probabilities in P
are as shown in the upper panel of Fig. 14, then the con-
nection probabilities should be as in the middle panel,
and it can be shown by applying a linear programming
algorithm that the matrix equation MQ = P does not
have a solution with nonnegative elements. In this sim-
ple case we can confirm this result by a direct observation
of the internal contradiction in the maximally connected
coupling shown in the bottom panel.

5. CYCLIC C-C SYSTEMS

The question we pose now is: is there a shortcut to
find out if a c-c system is contextual, without resorting
to linear programming? As it turns out, for an impor-
tant class of so-called cyclic systems with binary variables
(Dzhafarov, Zhang, & Kujala, 2015; Dzhafarov, Kujala,
& Cervantes, 2016; Kujala, Dzhafarov, & Larsson, 2015;
Kujala & Dzhafarov, 2016) the answer to this question is
affirmative.

5.1. Contextuality criterion for cyclic c-c systems

A cyclic system is defined as a c-c system in which

(CYC1): each conteXt includes precisely two conteNts,

Figure 15. The conteNts (small circles) in a system satisfying
the conditions CYC1-CYC2 can be arranged in a cycle (up-
per left panel) or several disjoint cycles (upper right panel),
such that any two adjacent conteNts define one conteXt. The
proof is in the lower panels: for the conteNts not to form
cycles, some conteNt should be placed in a position like the
ones of the open circles in the two lower panels. This is, how-
ever, impossible: in the left one it belongs to more than two
conteXts (identified with a pair of conteNts), in the right one
it belongs to a single conteXt.

(CYC2): each conteNt is included in precisely two con-
teXts.

We will also assume that

(CYC3): all random variables are binary with the same
two possible values (traditionally, 1 and −1).

Fig. 15 makes it clear why such a system is called cyclic:
to satisfy the properties above, the conteNts should be
arrangeable in one or more cycles in which a conteXt cor-
responds to any two adjacent conteNts. If the conteNts
are arranged into several cycles, from the point of view
of contextuality analysis each cycle forms a separate sys-
tem, with no information regarding one of them being
relevant for another’s analysis. We will therefore, with
no loss of generality, assume that a cyclic system involves
a single cycle.

The number of conteNts (or connections) in a cyclic
system equals the number of conteXts (or bunches) in
it, and it is referred to as the rank of the system. The
c-c matrix for the cyclic system has the form shown in
Fig. 16, generalizing the matrices in Fig. 1 (cyclic system
of rank 2) and Fig. 9 (cyclic system of rank 3).

In the presentation below we use 〈X〉 to denote the ex-
pected value of a random variable X with possible values
+1 and −1:

〈X〉 = Pr [X = 1]− Pr [X = −1] . (50)

Given k > 0 real numbers x1, . . . , xk, we define the
function

sodd (x1, . . . , xk) = max
(ι1,...,ιk)∈{−1,1}k:

∏k
i=1 ιi=−1

 k∑
i = 1

ιixi

 .

(51)
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Figure 16. The c-c matrix for a cyclic system of an ar-
bitrary rank n (shown here for a sufficiently large n, but
n can be as small as 2 or 3, shown in Figs. 1 and 9,
respectively). Each conteXt includes two conteNts, and
each conteNt is included in two conteXts. Bunches of
the system are formed by the pairs of random variables(
R1

1, R
1
2

)
,
(
R2

2, R
2
3

)
, . . . ,

(
Rn−1

n−1, R
n−1
n

)
, (Rn

n, R
n
1 ), whereas

the connections of the system are formed by the pairs(
R1

1, R
n
1

)
,
(
R2

2, R
1
2

)
, . . . ,

(
Rn−1

n−1, R
n−2
n−1

)
,
(
Rn

n, R
n−1
n

)
. All

random variables are binary, with possible values denoted
+1 and −1.

This means that one takes each argument xi in the sum
with either + sign or − sign, tries all combinations in
which the number of minuses is odd, and chooses the
largest sum. For example,

sodd (5, 6) = −5 + 6,

sodd (5,−6) = 5− (−6) ,

sodd (1, 2,−3,−10, 100) = −1 + 2− (−3)− (−10) + 100.

Finally, we have to introduce the cyclic addition and sub-
traction operations, ⊕1 and 	1: if the numbers 1, . . . , n
are arranged circularly like on a clock dial, then ⊕1 and
	1 mean, respectively, clockwise and counterclockwise
shift to the next position. The only difference of these
operations from the usual +1 and −1 is that n ⊕ 1 = 1
and 1	 1 = n.

Now we can formulate a criterion of (i.e., a necessary
and sufficient condition for) contextuality of a cyclic sys-
tem.

Theorem 5.1 (Kujala and Dzhafarov, 2016). A cyclic
system of rank n is noncontextual if and only if

sodd
(〈
RiiR

i
i⊕1
〉

: i = 1, . . . , n
)
≤ n−2+

n∑
i=1

∣∣〈Rii〉− 〈Ri	1i

〉∣∣ .
(52)

In the left-hand side expression, the arguments of
the function sodd are the expected products for the n
bunches of the system:

〈
R1

1R
1
2

〉
,
〈
R2

2R
2
3

〉
, etc., the last

one, due to the cyclicality, being 〈RnnRn1 〉. In the right-
hand side of the inequality, the summation sign operates

over the n connections of the system: for each connec-
tion,

(
R1

1, R
n
1

)
,
(
R2

2, R
1
2

)
, . . . ,

(
Rnn, R

n−1
n

)
, we take the

distance between the expectations of its elements. If the
system is consistently connected, all these distances are
zero, and the criterion acquires the form

sodd
(〈
RiiR

i
i⊕1
〉

: i = 1, . . . , n
)
≤ n− 2. (53)

5.2. Examples of cyclic systems

It has been mentioned in the introduction that cyclic
systems of rank 2 have been prominently studied in a be-
havioral setting, in the paradigm where the conteNts are
two Yes/No questions and conteXts are defined by two
orders in which these questions are asked. The noncon-
textuality criterion (52) for n = 2 acquires the form∣∣〈R1

1R
1
2

〉
−
〈
R2

2R
2
1

〉∣∣ ≤ ∣∣〈R1
1

〉
−
〈
R2

1

〉∣∣+
∣∣〈R1

2

〉
−
〈
R2

2

〉∣∣ .
(54)

It is known (Moore, 2002) that the distributions of re-
sponses to the same question depend on whether the
question is asked first or second. In our terminology,
this means that the system is inconsistently connected,
and the right-hand side of the inequality above is greater
than zero. At the same time, as Wang and Busemeyer
(2013) have discovered in their analysis of a large body
of question pairs, the probability with which the answer
to the two questions is one and the same does not de-
pend on the order in which they are asked. To the extent
this generalization holds, it means that the left-hand side
of the inequality (54) is zero. In turn, this means that
the system describing responses to two questions asked in
two orders cannot be contextual (see Dzhafarov, Zhang,
Kujala, 2015, for a detailed discussion).

Perhaps the best known cyclic system is one of rank 4,
whose quantum-mechanical version is shown in Fig. 17.
According to the laws of quantum mechanics, the product
expectation

〈
RiiR

i
i⊕1
〉
for Alice’s choice of axis qi and

Bob’s choice of axis qi⊕1 equals − cos θi,i⊕1, where θi,i⊕1
denotes the angle between the two axes. Assume, e.g.,
that the four axes are coplanar, and form the following
angles with respect to some fixed direction

q1 q2 q3 q4
0 π/4 π/2 −π/4 . (55)

The calculation yields in this case

sodd
(〈
RiiR

i
i⊕1
〉

: i = 1, 2, 3, 4
)

= 2
√

2. (56)

If any possibility of direct interaction between Alice and
Bob is excluded, i.e., Alice’s measurements are not influ-
enced by Bob’s choices of his axes and Bob’s measure-
ments are not influenced by Alice’s choices of her axes,
and if we exclude any possibility of misrecording, then

4∑
i=1

∣∣〈Rii〉− 〈Ri	1i

〉∣∣ = 0, (57)
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4 c4
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Figure 17. Einstein-Podolsky-Rosen-Bohm-system (Bohm &
Aharonov, 1957), for which the celebrated Bell-CHSH in-
equalities were derived (Bell, 1964, 1966; Clauser et al., 1969;
Clauser & Horne, 1974). This is a cyclic system of rank 4.
Two spin-1/2 particles (e.g., electrons) are created in what is
called a “singlet state” and move away from each other while
remaining entangled. Alice chooses one of the two axes de-
noted 1 and 3 and measures the spin of the left particle, “up”
(+1) or “down” (−1). Bob chooses one of the two axes de-
noted 2 and 4 and measures the spin of the right particle,
+1 or −1. The conteNts here are the (choices of the) four
axes, q1, q2, q3, q4, the conteXts are defined by the pairs of the
axes chosen, one by Alice and another by Bob. The system is
contextual for some combinations of the four axes.

and the inequality (52) acquires the form of the inequal-
ity (53), for n = 4. The value 2

√
2 for the left-hand

side expression violates this inequality, indicating that
the system is contextual.

There were several studies of systems having the cyclic
rank 4 structure in behavioral settings. Thus, Fig. 18 de-
scribes one of the psychophysical matching experiments
analyzed in Dzhafarov, Ru, and Kujala (2015). The di-
chotomization of the response variables was done as fol-
lows: we choose radial length values rad1, rad3 (they may
be the same) and polar angle values ang2 and ang4 (they
also may be the same), and we define

Rii =

 +1 if Radi,i⊕1 > radi

−1 if Radi,i⊕1 ≤ radi
,

Rii⊕1 =

 +1 if Angi,i⊕1 > angi⊕1

−1 if Angi,i⊕1 ≤ angi⊕1

(58)

Figure 18. A matching experiment: a participant rotated
a trackball that controlled the position of the dot within a
lower-right circle until she judged it to match the fixed posi-
tion of the target dot in the upper-left circle. The positions
were described in polar coordinates, and the target position
could have one of two radius values q1 or q3 combined with one
of two polar angles, q2 or q4. In each of the four conteXts,
(qi, qi⊕1), i = 1, 2, 3, 4, the adjusted dot’s position was de-
scribed by two polar coordinates (random variables) Radi,i⊕1

and Angi,i⊕1, that were then dichotomized to create a cyclic
system of rank 4.

for i = 1, 3, and

Rii =

 +1 if Angi,i⊕1 > angi

−1 if Angi,i⊕1 ≤ angi
,

Rii⊕1 =

 +1 if Radi,i⊕1 > radi⊕1

−1 if Radi,i⊕1 ≤ radi⊕1

(59)

for i = 2, 4. The parameters rad1, rad3 and ang2, ang4
can be chosen in multiple ways, paralleling various sets
of four axes in the Alice-Bob quantum-mechanical exper-
iment.

See Dzhafarov, Ru, and Kujala (2015) for other exam-
ples of behavioral rank 4 cyclic systems. That paper also
reviews a behavioral experiment with a cyclic system of
rank 3. Cyclic systems of rank 5 play an important role
in quantum theory (Klyachko et al., 2008). For the con-
textuality analysis of an experiment designed to test (a
special form of) the inequality (52) for n = 5 (Lapkiewitz
et al., 2011), see Kujala, Dzhafarov, and Larsson (2015).

6. HOW TO MEASURE DEGREE OF
CONTEXTUALITY

Intuitively, some contextual systems are more contex-
tual than others. For instance, a cyclic system of rank n
can violate the inequality (52) “grossly” or “slightly,” and
in the latter case it may be considered less contextual.
The question we pose now is: if a c-c system is con-
textual, is there a principled way to measure the degree
of contextuality in it? The emphasis is on the qualifier
“principled,” as one can easily come up with various ad
hoc measures for special types of c-c systems.
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In this section we describe one way of constructing
such a measure. It uses the notion of quasi-probability
distributions that differ from the proper ones in that the
probability masses in them are replaced with arbitrary,
possibly negative, real numbers summing to unity. This
conceptual tool has been previously used to deal with
contextuality in consistently connected systems (Abram-
sky & Brandenburger, 2011; Al-Safi & Short, 2013). A
measure of contextuality based on the notion of quasi-
probability distributions, also for consistently connected
systems, was proposed by de Barros and Oas (2014) and
investigated in de Barros, Oas, and Suppes (2015) and
de Barros et al. (2015). Our measure is a generaliza-
tion of the de Barros-Oas measure to arbitrary c-c sys-
tems. Another generalization and a different way of using
quasi-probability distributions to measure contextuality
in arbitrary c-c systems was recently proposed by Kujala
(2016). This measure requires a modification of CbD and
will not be discussed here.

6.1. Dropping the nonnegativity constraint

We have seen that a c-c system is contextual if and only
if the associated system of linear equationsMQ = P does
not have a solution for Q with nonnegative components.
In this section we show that if we drop the nonnegativity
constraint the system of linear equations always has a
solution (and generally an infinity of them). Any such a
solution assigns real numbers to all hidden outcomes of
the hypothetical maximally connected coupling. Some of
these numbers can be negative and some may exceed 1,
but they sum to 1.

The existence of Q solving the linear equations MQ =
P follows from the existence of Q solving another system
of linear equations,

M∗Q = P∗. (60)

We will refer to it as a modified-and-expanded system of
linear equations associated with a c-c system. The term
reflects the fact that in P∗ as compared to P the bunch
probabilities are presented in a modified form, and the
connection probabilities are expanded to specify entire
distributions of the (maximal) couplings of all connec-
tions. The rows of the Boolean matrix M∗ as compared
to M change accordingly, although its columns remain
corresponding to the hidden outcomes v ordered in the
same way as γ (v) are ordered in Q.

The construction of P∗ and M∗ consists of three parts.
Part 1: first row. The first element of P∗ is 1, and

the first row of M∗ is filled with 1’s. This choice ensures∑
v

γ (v) = 1. (61)

Part 2: bunch probabilities. Next we include in P∗

the 1-marginal probabilities Pr
[
Rij = l

]
for all random

variables Rij and all l = 1, . . . , k − 1. The value l = k is

excluded because Pr
[
Rij = k

]
is uniquely determined as a

linear combination of the probabilities already included.
The row of M∗ corresponding to Pr

[
Rij = l

]
(i.e., the

row whose scalar product by Q yields this probability)
has 1’s in the cells for v with vij = l, and it has zeros in
other cells.

The next set of elements of P∗ are 2-marginal proba-
bilities Pr

[
Rij = l, Rij′ = l′

]
for all pairs of random vari-

ables Rij , Rij′ (j < j′) and (l, l′) ∈ {1, . . . , k − 1}2. The
2-marginal probabilities for Rij = k or Rij′ = k are ex-
cluded because they are uniquely determinable as linear
combinations of the probabilities already included. The
row of M∗ corresponding to Pr

[
Rij = l, Rij′ = l′

]
has 1’s

in the cells for v with vij = l, vij′ = l′, and it has zeros in
other cells.

Proceeding in this manner, we include in P∗ the r-
marginal probabilities Pr

[
Rij1 = l1, . . . , R

i
jr

= lr
]
(j1 <

. . . < jr) for all bunches Ri with at least r distinct ran-
dom variables, and for all (l1, . . . , lr) ∈ {1, . . . , k − 1}r.
We exclude all probabilities involving the value k for at
least one of the random variables in the r-marginal. The
row in M∗ corresponding to Pr

[
Rij1 = l1, . . . , R

i
jr

= lr
]

has 1’s in the cells for v with vij1 = l1, . . . , v
i
jr

= lr, and
it has zeros in other cells. The procedure stops at the
smallest r such that no bunches in the system contain r
distinct random variables.
Part 3: connection probabilities. This part of

the construction deals with the maximal couplings for
connections. By Theorem 3.3, a maximal coupling Tj for
a connection Rj always exists, i.e., one can always find
the joint probabilities Pr [Tj = vj ] for all vj , so that

Pr
[
T ij = vij

]
= Pr

[
Rij = vij

]
(62)

for all Rij in Rj , and

Pr [Tj = (l, . . . , l)] = min
components T i

j of Tj

Pr
[
T ij = l

]
(63)

for l = 1, . . . , k. We choose any maximal coupling Tj
for each connection Rj , and we treat it as if it were an
observed bunch. This allows us to repeat on Tj the pro-
cedure of Part 2, except that the 1-marginal probabilities
Pr
[
T ij = vij

]
= Pr

[
Rij = l

]
, which are the same for both

bunches and connections, have already been included
in P∗ (and the corresponding rows in M∗ have been
formed). We add, however, all higher-order marginals
Pr
[
T i1j = l1, . . . , T

ir
j = lr

]
(i1 < . . . < ir) for all connec-

tions Rj with at least r distinct random variables, for all
(l1, . . . , lr) ∈ {1, . . . , k − 1}r. The row inM∗ correspond-
ing to Pr

[
T i1j = l1, . . . , T

ir
j = lr

]
has 1’s in the cells for v

with vi1j = l1, . . . , v
ir
j = lr, and it has zeros in other cells.

We apply this procedure to r = 2, 3, . . . until we reach the
smallest r such that no connection in the system contains
r distinct random variables.

This completes the construction of P∗ and M∗. As
an example, Fig. 19 shows P∗ and M∗ for the system
A of Fig. 1, whose associated P and M are shown in
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− +
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1 1 1 1 1 1 1 1 Pr
[
S1
1 = +

]
= Pr

[
R1

1 = +
]

1 1 1 1 1 1 1 1 Pr
[
S1
2 = +

]
= Pr

[
R1

2 = +
]

1 1 1 1 1 1 1 1 Pr
[
S2
1 = +

]
= Pr

[
R2

1 = +
]

1 1 1 1 1 1 1 1 Pr
[
S2
2 = +

]
= Pr

[
R2

2 = +
]

1 1 1 1 Pr
[
S1
1 = +, S1

2 = +
]

= Pr
[
R1

1 = +, R1
2 = +

]
1 1 1 1 Pr

[
S2
1 = +, S2

2 = +
]

= Pr
[
R2

1 = +, R2
2 = +

]
1 1 1 1 Pr

[
S1
1 = +, S2

1 = +
]

= Pr
[
T 1
1 = +, T 2

1 = +
]

1 1 1 1 Pr
[
S1
2 = +, S2

2 = +
]

= Pr
[
T 1
2 = +, T 2

2 = +
]

Figure 19. The Boolean matrix M∗ and vector P∗ for the c-c system A in Fig. 1 (cyclic system of rank 2). The first row of
M∗, formally, corresponds to the “0-marginal” probability in P, and its role is to ensure that the elements of Q in M∗Q = P∗

sum to 1. The next 6 rows are modified bunch probabilities and the last 2 rows are connection probabilities (“expanded,” but
in this case nominally only).
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1 1 1 1
1 1 1 1

Q

0
0
0
1/2
0
1/2
0
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0
0
1/2
−1/2
0
0
0
1/2

P∗

1
1/2
1/2
1/2
1/2
1/2
0
1/2
1/2

Figure 20. The same as Fig. 19, but with the numerical values of the bunch and connection probabilities of the contextual
system shown in Fig. 14. The inserted column Q of quasi-probabilities is a solution for M∗Q = P∗ .

Fig. 13. Since all connections in this system contain just
two binary variables (as in any cyclic system), the ex-
panded connection probabilities in this case are uniquely
determined by the 1-marginal (bunch) probabilities and
the joint probabilities with which the coupled variables
attain the value 1. In more complex systems the ex-
panded connection probabilities for maximal couplings
can be specified in an infinity of ways.

It can now be shown that the rows in M∗ are linearly
independent. Indeed, consider a linear combination of
these rows that equals the null vector.

α1 (row1) + α2 (row2) + . . .+ αNrows
(rowNrows

) = 0.
(64)

The first row of M∗ consists of 1’s only, and this in-
cludes the entry 1 in the column of M∗ corresponding to

the hidden outcome v with all elements in it equal to k.
Any other row in M∗ contains zero in this column. In-
deed, entry 1 would have meant that the corresponding
probability in P∗ was computed for at least one random
variable attaining a value belonging to v: Sij = vij = k.
But this is impossible because the value k is not used in
any of the probabilities in P∗. It follows that α1 = 0.
Without loss of generality therefore, we can eliminate
this row from consideration.

The row corresponding to a 1-marginal Pr
[
Sij = l

]
(l < k) contains 1 in the column corresponding to the
hidden outcome v with vij = l and other entries equal to
k. All other rows of M∗, now that we have eliminated
the first row, contain zero in the column corresponding
to this v. Indeed, to have 1 for this v in another row
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would have meant that the corresponding probability in
P∗ was computed for the conjunction of Sij = l with at
least one other random variable attaining a value belong-
ing to v: Sij′ = vij′ or S

i′

j = vi
′

j . But all other elements of
v equal k, and the value k is not used in any of the prob-
abilities in P∗. It follows that the α-coefficients in (64)
are zero for all rows corresponding to 1-marginal prob-
abilities. Consequently we can consider all these rows
eliminated.

The row corresponding to a 2-marginal
Pr
[
Sij = l, Si

′

j′ = l′
]

(where i = i′ if this is a bunch
probability, or j = j′ if it is a connection probability,
l, l′ < k) contains 1 in the column corresponding to the
hidden outcome v with vij = l, vi

′

j′ = l′ and all other
values equal to k. All other rows in this column, now
that we have eliminated the first row and all 1-marginal
rows, contain zero in the column corresponding to this
v. Indeed, to have 1 for this v in another row would
have meant that the corresponding probability in P∗

was computed for the conjunction of Sij = l, Si
′

j′ = l′

with at least one other random variable attaining a
value belonging to v: Si

′′

j′′ = vi
′′

j′′ (where i
′′ = i′ = i or

j′′ = j′ = j), which is impossible as all other elements of
v equal k. It follows that the α-coefficients in (64) are
zero for all rows corresponding to 2-marginal (bunch and
connection) probabilities. Consequently we can consider
all these rows eliminated.

Proceeding in this manner to higher-order marginals
until all of them are exhausted, we prove that the rows
in M∗ are linearly independent. It follows that the sys-
tem of equations M∗Q = P∗ always has solutions for Q
with real-number components (summing to 1). Since M
and P in the original system of linear equations MQ = P
associated with a given c-c system are obtained as one
and the same linear combination of the rows of, respec-
tively, M∗ and P∗, any solution of M∗Q = P∗ is also a
solution of MQ = P.

Theorem 6.1. Any modified-and-expanded system of
equations M∗Q = P∗ associated with a c-c system has a
solution for Q whose components are real numbers sum-
ming to 1. Any such solution is also a solution for the
original system of equations MQ = P associated with the
same c-c system.

In relation to the possible generalization of CbD dis-
cussed in the concluding section of this paper, note that
nowhere in the proof of this theorem did we use the fact
that a quasi-coupling S for the system R is maximally
connected. In other words, the proof and the construc-
tion of M∗ and P∗ make no use of the maximality con-
straint (63). The only fact that matters is that every
connection taken separately is coupled in some way, so
that all connection probabilities in P∗ are well-defined.

6.2. Quasi-probabilities and quasi-couplings

Let us call the components γ (v) of Q in Theorem 6.1
(signed) quasi-probability masses, and let us call the func-
tion γ (signed) quasi-probability distribution. Using this
terminology, the system of linear equations M∗Q = P∗

(hence also MQ = P) always produces (generally an in-
finity of) quasi-probability distributions of hidden out-
comes as solutions for Q.

If the quasi-probability distribution of the hidden out-
comes is not a proper probability distribution, then it
does not define a coupling for the c-c system we are deal-
ing with. However, we can introduce the notion of a
(maximally connected) quasi-coupling, by replicating the
definition of a (maximally connected) coupling, but with
all references to probabilities being replaced with quasi-
probabilities.

A quasi-random variable X in general is defined as a
pair

X = (idX, qdiX) , (65)

where idX is as before and qdiX is a quasi-probability
distribution function mapping a (finite) set VX of possible
values of X into the set of reals,

qdiX : VX → R. (66)

The only constraint is that∑
v∈VX

qdiX (v) = 1. (67)

For any subset V of VX we define quasi-probabilities8

qPr [X ∈ V ] =
∑
v∈V

qdiX (v) .

The rest of the conceptual set-up (the class E generated
from a base set R, the notion of jointly distributed quasi-
random variables, their marginals, functions, etc.) pre-
cisely parallels one for the ordinary, or proper probability
distributions and random variables. We can safely omit
details.

Definition 6.2. A quasi-coupling SR of a c-c system
R is defined as a set of jointly distributed quasi-random
variables in a one-to-one correspondence with the union
of the components of the bunches of R, such that the
quasi-probability distribution of every marginal of SR
that corresponds to a bunch of the system coincides with
the (proper) distribution of this bunch. A quasi-coupling
SR of R is maximally connected if every marginal of SR
that corresponds to a connection of the system is a max-
imal coupling for this connection.

8 This is a specialization of the measure-theoretic notion of signed
measure (or charge) to probability spaces with finite sets.
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Let us illustrate this definition on the contextual rank
2 cyclic system shown in Fig. 14. The set of hidden out-
comes here consists of the 16 four-component combina-
tions of 1’s and -1’s shown in Fig. 19. The contextuality
of this system means that these hidden outcomes cannot
be assigned proper probabilities. We can, however, assign
real numbers to these outcomes as shown in Fig. 20.

1. Taking the scalar product of this vector of numbers
with the first row (i.e., summing these numbers),
we get 1. This shows that our assignment of the
numbers is a quasi-probability distribution, so we
can consider a quasi-random variable S with this
distribution.

2. Taking the scalar product of the quasi-probability
masses with the subsequent six rows, we get nu-
merical values that are equal to the corresponding
(proper) probabilities characterizing the bunches of
the system in Fig. 14. This shows that S is a quasi-
coupling of this system.

3. Finally, the scalar products of the quasi-probability
masses with the last two rows yield the values of
the probabilities characterizing the maximal cou-
plings for the connections of the system in Fig. 14.
This shows that S is a maximally connected quasi-
coupling of this system.

6.3. Contextuality measure based on
quasi-couplings

Proper probability distributions are quasi-probability
distributions with no negative quasi-probability masses.
If X is a quasi-random variable, the value

‖X‖ =
∑
v∈VX

|qdiX (v)| (68)

is known in the theory of signed measures as the total
variation of qdiX (or simply of X). Its value is 1 if X is
a proper random variable. Otherwise ‖X‖ > 1, and the
excess of ‖X‖ over 1 can be thought of as a measure of
“improperness” of X.

Consider the set of all maximally connected quasi-
couplings SR of a c-c system. We are now interested
in the total variations ‖SR‖ of (the distributions of) the
quasi-couplings. The set of these values is bounded from
below by 1, therefore it has an infimum,

t = inf ‖SR‖ . (69)

It can be readily seen that this infimum is in fact a min-
imum of all ‖SR‖, i.e., that the set of all SR contains a
quasi-coupling S∗R with

‖S∗R‖ = t. (70)

Indeed, if the set of all SR is finite, the statement is
trivially true; otherwise we choose an infinite sequence of

‖SR‖ converging to t. Without loss of generality, we can
assume for all members of this sequence

‖SR‖ − t < ε. (71)

It follows that the quasi-probability masses qdiSR (v) for
all hidden outcomes v in all these quasi-couplings are con-
fined within a closed interval [−t− ε, t+ ε]. So the quasi-
probability distributions qdiSR (viewed as vectors of real
numbers)9 are confined within a cube [−t− ε, t+ ε]

N ,
where N is the number of the hidden outcomes. Since
the cube is compact, from the sequence of SR one can
choose a converging subsequence, with the limit S∗R, and
it is easy to see that ‖S∗R‖ cannot exceed t (otherwise the
original sequence of ‖SR‖ would have converged to two
distinct limits).

So, the set of quasi-couplings SR for any c-c system R
contains a quasi-coupling S∗R with the smallest possible
value of the total variation ‖SR‖. If ‖S∗R‖ equals 1, then
the system is noncontextual, because then S∗R is a proper
maximally connected coupling. If ‖S∗R‖ > 1, then no
proper maximally connected coupling for R exists, and
the quantity ‖S∗R‖ − 1 can be taken as a measure (of
degree) of contextuality. Note that while the minimum
total variation ‖S∗R‖ is unique, the quasi-coupling S∗R
generally is not.

Consider again Fig. 20. The value of ‖SR‖ in it is
6 · 1

2 = 3. Is this the smallest possible value? It is
not. A direct minimization of ‖SR‖ subject to the lin-
ear equations MQ = P shows the minimum value in
the case of the system depicted in Fig. 14 to be 2. It is
reached, e.g., in the quasi-probability distribution shown
in Fig. 21. This distribution therefore defines an S∗R.
There are other quasi-probability distributions (in fact
an infinity of them) with this minimum value of ‖SR‖.

It is instructive to see how this total variation
measure changes as we change the value of p =
Pr
[
S2
1 = 1, S2

2 = 1
]
from zero to the maximal possible

value 1
2 while keeping all other probabilities fixed (see

Fig. 22). The relationship turns out to be linear:

‖S∗R‖ = 2 (1− p) . (72)

The system is maximally contextual at p = 0, the case
we focused on in our examples. When p reaches 1

2 , the
system is noncontextual: trivially so, because then its
two bunches are identical.

A direct minimization of ‖SR‖ subject to the linear
equations MQ = P is a nonlinear problem, but it can
be reduced to a linear programming one, in the following
way:

9 Note that qdiSR can be viewed as the same entity as the vector
Q in the matrix equation MQ = P, because Q is a vector of
real numbers indexed by the hidden outcomes. There is a sub-
tlety here (and throughout this paper) related to distinguishing
indexed values and the pairs consisting of indexes and values,
but we will ignore it.
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Figure 21. The same as Fig. 20, but with the quasi-probabilities that ensure the smallest possible value of the quasi-coupling’s
total variation. '
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Figure 22. A cyclic system of rank 2 with the value of p between 0 and 1
2
. The degree of contextuality in this system decreases

as p increases, and the system becomes (trivially) noncontextual at p = 1
2
.

1. Create a matrix Mwide by horizontally concatenat-
ing M and M′ = (−1) ·M,

Mwide = (M |M′) (73)

Each hidden outcome v labels two columns of
Mwide (one in the M half and one in the M′ half).

2. Create a column vector Qlong whose length is twice
that of Q,

Qlong =

 Q1

−−
Q2

 (74)

Its elements are labelled in the same way as the
columns of Mwide.

3. Solve the linear programming problem

MwideQlong = P

subject to three constraints: (a) nonnegativity of
the components of Qlong, and (b) minimality of
the sum of the components of Q2.

To every hidden outcome v there correspond two ele-
ments ofQlong, denoted γ+ (v) and γ− (v), and the quasi-
probability mass assigned to v is γ+ (v)−γ− (v). The sum
of these quasi-probabilities across all v equals 1, and the
sum of their absolute values is the minimal total variation
‖S∗R‖. The reasoning above (the proof that S∗R always
exists) guarantees that this linear programming problem
always has a solution, generally non-unique.

7. CONCLUSION

In this paper we have described the basic elements of
a theory aimed at analyzing systems of random vari-
ables classified in two ways: by their conteXts and by
their conteNts. Irrespective of one’s terminological pref-
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erences, the classification of such systems into contextual
and noncontextual ones, as well as into consistently con-
nected and inconsistently connected ones, is meaningful
and, at least in some applications of the theory, funda-
mentally important. We would like to conclude this pa-
per by recapitulating a few points made in this paper and
by offering a general observation.
(1) Inconsistency of connectedness should be distin-

guished from contextuality. One may call inconsistency
“a kind of contextuality,” but it is contextuality of a dif-
ferent kind. Inconsistency of connectedness is about di-
rect influences of certain elements of conteXts upon ran-
dom variables. Such influences are revealed on the level
of stochastically unrelated random variables sharing the
same conteNt (i.e., within connections). Direct influences
cannot act, e.g., from the future to the past or from one
event to a spatially separated but simultaneous one. Con-
textuality, by contrast, is revealed in joint distributions
of random variables, and it is not constrained by consid-
erations of causality. As an example, consider a physi-
cal realization of the Suppes-Zanotti-Legett-Garg system
(Leggett and Garg, 1985) that consists in three measure-
ments made at three moments in time with respect to
some zero point, as shown below:

•
t1

•
t2

•
t3

The measurements are always made in pairs: at moments
t1 and t2 or at moments t1 and t3 or at moments t2 and
t3. Each pair of times moments defines a conteXt, and
each moment defines a conteNt (because the measure-
ment in this analysis are distinguished only by the time
moments at which they are made). Now, it is perfectly
possible that the distribution of R(t1,t2)

t2 differs from the
distribution of R(t2,t3)

t2 , because in the former case the
measurement at moment t2 can be directly influenced by
the fact that a measurement was made at some moment
in the past, t1 (if the system is a quantum one, its quan-
tum state, prepared at moment zero, can be changed by
a previous measurement); but a measurement cannot be
influenced by another measurement yet to be made at a
future moment, t3. By contrast, in any joint distributions
of the variables, such as

(
R

(t1,t2)
t1 , R

(t1,t2)
t2

)
, the future

random variable stochastically depends on the past one
exactly whenever the past one stochastically depends on
the future one. Contextuality is only revealed by looking
at such joint distributions within bunches and comparing
them across bunches.
(2) A distinguishing feature of Contextuality-by-

Default, and the main reason for the “by-default” in its
name, is that it treats random variables in different con-
teXts as different random variables, even if they have con-
teNts in common. As a result, the bunches of a system
never overlap, and the problem of contextuality there-
fore is not posed as a problem of compatibility of dif-
ferent overlapping groups of random variables. Rather
it is posed as a problem of compatibility between the

bunches on the one hand and maximal couplings for the
connections on the other. In this respect Contextuality-
by-Default is distinct from other approaches to contex-
tuality, e.g., the prominent line of contextuality research
by Abramsky and his colleagues (Abramsky & Branden-
burger, 2011; Abramsky et al, 2015).
(3) Treating random variables in different conteXts

as different, however, in no way means that conteXts
are fused (or confused) with conteNts. On the contrary,
Contextuality-by-Default is based on a strict differentia-
tion of these entities, although, being an abstract mathe-
matical theory, it cannot determine what constitutes con-
teNts and conteXts in a given empirical situation. This
determination is made before the theory applies. If one
changes one’s double-classification of the random vari-
ables (by the conteNts and by the conteXts), the contex-
tuality of the system changes too.
(4) Contextuality-by-Default is not a model for em-

pirical phenomena. As any abstract mathematical the-
ory, it has no predictive power as a result of having no
predictive intent. It is a theoretical language, on a par
with, say, real analysis or probability theory. In fact,
if presented in full generality to include arbitrary sys-
tems of arbitrary random variables (the presentation in
this paper was confined to finite sets of categorical vari-
ables only), Contextuality-by-Default is essentially co-
extensive with Kolmogorovian theory of random vari-
ables. The main difference from Kolmogorovian prob-
ability theory is that the Contextuality-by-Default the-
ory may (but does not have to) be constructed with-
out sample spaces, that it prominently uses the no-
tion of stochastic unrelatedness (implicit or underem-
phasized in Kolmogorovian probability theory), and that
the theory of couplings (rather peripheral to the main-
stream Kolmogorovian theory) is at the very heart of the
Contextuality-by-Default theory.
(5) In dealing with contextuality, the Contextuality-

by-Default theory is about compatibility (or lack thereof)
of the observed bunches of a system with maximal cou-
plings of the separately taken connections. Maximality
is not, however, the only possible constraint imposable
on the couplings of the connections. Contextuality-by-
Default can be expanded or modified in various ways by
replacing it with other constraints, and any new con-
straint replacing maximality would tackle a new meaning
of contextuality. Using the same logic as in Section 1.7
and in Definition 3.4, if separately taken connections can
be coupled subject to some constraint C, then the sys-
tem is “C-noncontextual” if it can be coupled so that all
subcouplings corresponding to its connections satisfy C;
otherwise the system is “C-contextual.”" It is remarkable
that the representation of the contextuality problem as
a linear programming task (Section 4) and the construc-
tion of the measure of contextuality based on the quasi-
couplings (Section 6) apply with no modifications to any
choice of C such that a coupling satisfying C exists for any
connection taken separately. Indeed, the only property
of connection probabilities required for the construction
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of the matrix-vector pair M∗-P∗ (hence also M-P) is
that these probabilities exist, not the way they are com-
puted. (The choices of C for which a coupling satisfying
C may not exist for some connections taken separately
requires a modification in the definition of contextuality,
but can be handled too: any system possessing these con-
nections can be treated as “automatically” contextual.)
In choosing a constraint C to replace maximality, one
can be guided by certain reasonable desiderata, one of
them being that C should be reduced to the identity con-
straint when a system is consistently connected. Another
reasonable desideratum could be that the “C-theory” re-
duces to the one described in Section 5 when specialized
to cyclic systems with binary random variables. We will
elaborate elsewhere.10

Acknowledgments.

This research has been supported by NSF grant SES-
1155956, AFOSR grant FA9550-14-1-0318, and A. von
Humboldt Foundation. We are grateful to Victor H. Cer-
vantes of Purdue University for his insights on maximal
couplings that helped us in the linear programming treat-
ment of contextuality and the construction of a measure
of contextuality. The latter was also inspired by the use of
quasi-probability distributions (“negative probabilities”)
in dealing with contextuality by Samson Abramsky of
Oxford University and J. Acacio de Barros of San Fran-
cisco State University. We greatly benefited from nu-
merous discussions with them and their colleagues. We
are grateful to Matt Jones of the University of Colorado
whose critical analysis of our treatment of contextuality
helped us to improve the motivation and argumentation
for our approach to contextuality. Victor H. Cervantes
and Farzin Shamloo of Purdue University were most help-
ful in discussing and finding imprecisions and typos in
earlier versions of the paper.

[1] Abramsky, S., Brandenburger, A. (2011). The
sheaf−theoretic structure of non−locality and con-
textuality. New Journal of Physics 13, 113036−113075.

[2] Abramsky, S., Barbosa, R.S., Kishida, K., Lal, R., Mans-
field, S. (2015). Contextuality, cohomology and paradox.
24th EACSL Annual Conference on Computer Science
Logic (S. Kreuzer, ed.), pp. 211–228.

[3] [6] Al-Safi, S.W., Short, A.J. (2013). Simulating all
nonsignaling correlations via classical or quantum the-
ory with negative probabilities. Physical Review Letters,
111:170403.

[4] Bell, J. (1964). On the Einstein-Podolsky-Rosen paradox.
Physics 1, 195-200.

[5] Bell, J. (1966). On the problem of hidden variables in
quantum mechanics. Review of Modern Physics 38, 447-
453.

10 As the reviewing of this paper was nearing completing and no
substantive changes could be made, we proposed a new version
of CbD, with C-couplings being “multimaximal” ones (Dzhafarov
and Kujala, 2016a,b): in such a coupling of a connection any
of its subcouplings is a maximal coupling of the corresponding
subset of the connection. If random variables in a connection
are binary, their multimaximal coupling always exists and is
unique. For connections with more-than-binary categorical vari-
ables, one possible approach is to replace them with all their
possible dichotomizations; in each conteXt, these dichotomiza-
tions are jointly distributed and form a sub-bunch of the bunch
corresponding to the context. The replacement of maximality
with multimaximality affects classification of the systems into
contextual and noncontextual, but it does not affect the validity
of our theorems related to the measure of contextuality, as the
maximality constraint was not used in their proofs. The special-
izations of CbD to consistently connected systems and to cyclic
systems with binary random variables remain unchanged.

[6] Bohm, D, Aharonov, Y. (1957). Discussion of experimen-
tal proof for the paradox of Einstein, Rosen and Podolski.
Physical Review 108, 1070-1076.

[7] Cereceda, J. (2000). Quantum mechanical probabil-
ities and general probabilistic constraints for Ein-
stein–Podolsky–Rosen–Bohm experiments. Foundations
of Physics Letters 13, 427–442.

[8] Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.
(1969). Proposed experiment to test local hidden-variable
theories. Physical Review Letters 23, 880-884.

[9] Clauser, J.F., Horne, M.A. (1974). Experimental conse-
quences of objective local theories. Physical Review D 10,
526-535.

[10] de Barros, J.A., Oas, G. (2014). Negative probabili-
ties and counter-factual reasoning in quantum cognition.
Physica Scripta T163:014008.

[11] de Barros, J.A., Oas, G., Suppes, P. (2015). Negative
probabilities and counterfactual reasoning on the double-
slit experiment. In J.-Y. Beziau, D. Krause, J. B. Aren-
hart (Eds.), Conceptual Clarification: Tributes to Patrick
Suppes (1992-2014). London: College Publications.

[12] de Barros, J.A., Dzhafarov, E.N., Kujala, J.V., Oas, G.
(2015). Measuring Observable Quantum Contextuality.
Lecture Notes in Computer Science 9535, 36-47.

[13] Dzhafarov, E. N. (2003). Selective influence through con-
ditional independence. Psychometrika, 68, 7–26.

[14] Dzhafarov, E.N., Kujala, J.V. (2010). The Joint Dis-
tribution Criterion and the Distance Tests for selective
probabilistic causality. Frontiers in Psychology 1:151 doi:
10.3389/fpsyg.2010.00151.

[15] Dzhafarov, E.N., Kujala, J.V. (2012). Selectivity in prob-
abilistic causality: Where psychology runs into quantum
physics. Journal of Mathematical Psychology 56, 54-63.

[16] Dzhafarov, E.N., Kujala, J.V. (2014a). A qualified Kol-
mogorovian account of probabilistic contextuality. Lec-
ture Notes in Computer Science 8369, 201-212. 8.



29

[17] Dzhafarov, E.N., Kujala, J.V. (2014b). Embed-
ding quantum into classical: contextualization
vs conditionalization. PLoS One 9(3): e92818.
doi:10.1371/journal.pone.0092818.

[18] Dzhafarov, E.N., Kujala, J.V. (2014c). Contextuality
is about identity of random variables. Physica Scripta
T163, 014009.

[19] Dzhafarov, E.N., Kujala, J.V. (2016a). Contextuality-
by-Default 2.0: Systems with binary random variables.
arXiv:1604.04799.

[20] Dzhafarov, E.N., Kujala, J.V. (2016a). Probabilistic
foundations of contextuality. arXiv:1604.08412.

[21] Dzhafarov, E.N., Kujala, J.V., Cervantes, V.H. (2016).
Contextuality-by-Default: A brief overview of ideas, con-
cepts, and terminology. Lecture Notes in Computer Sci-
ence 9535, 12-23.

[22] Dzhafarov, E.N., Zhang, R., Kujala, J.V. (2015). Is
there contextuality in behavioral and social systems?
Philosophical Transactions of the Royal Society A 374:
20150099.

[23] Fine, A. (1982). Hidden variables, joint probability, and
the Bell inequalities. Physical Review Letters 48, 291–
295.

[24] Karmarkar, N. (1984). A new polynomial-time algorithm
for linear programming. Combinatorica, 4, 373–395.

[25] Klyachko, A.A., Can, M.A., Binicioglu, S., Shumovsky,
A.S. (2008). A simple test for hidden variables in spin-1
system. Physical Review Letters 101:020403.

[26] Kujala, J.V. (2016). Minimal distance to approximat-
ing noncontextual system as a measure of contextuality.
arXiv:1512.02340.

[27] Kujala, J.V., Dzhafarov, E.N. (2016). Proof of a conjec-
ture on contextuality in cyclic systems with binary vari-
ables. Foundations of Physics, 46, 282-299.

[28] Kujala, J.V., Dzhafarov, E.N., Larsson, J.-Å. (2015).
Necessary and sufficient conditions for maximal noncon-
textuality in a broad class of quantum mechanical sys-
tems. Physical Review Letters 115:150401.

[29] Kurzynski, P., Ramanathan, R., Kaszlikowski, D. (2012).
Entropic test of quantum contextuality. Physical Review
Letters 109:020404.

[30] Kurzynski, P., Cabello, A., Kaszlikowski, D. (2014). Fun-
damental monogamy relation between contextuality and
nonlocality. Physical Review Letters 112:100401.

[31] Lapkiewicz, R., Li, P., Schaeff, C., Langford, N.K.,
Ramelow, S., Wieśniak, M., Zeilinger, A. (2011). Experi-
mental non-classicality of an indivisible quantum system.
Nature 474, 490–493.

[32] Leggett, A., Garg, A. (1985). Quantum mechanics ver-
sus macroscopic realism: Is the flux there when nobody
looks? Physical Review Letters 54:857.

[33] Masanes, Ll. , Acin, A. , Gisin, N. (2006). General prop-
erties of nonsignaling theories. Physical Review A 73:
012112.

[34] Moore, D.W. (2002). Measuring new types of question-
order effects. Public Opinion Quarterly 66, 80-91.

[35] Popescu, S., Rohrlich, D. (1994). Quantum nonlocality
as an axiom. Foundations of Physics 24, 379–385.

[36] Suppes, P., Zanotti, M. (1981). When are probabilistic
explanations possible? Synthese 48, 191-199.

[37] Thorisson, H. (2000). Coupling, Stationarity, and Regen-
eration. New York: Springer.

[38] Townsend, J.T., Schweickert, R. (1989). Toward the tri-
chotomy method of reaction times: Laying the founda-
tion of stochastic mental networks. Journal of Mathemat-
ical Psychology, 33, 309–327.

[39] Wang, Z., Busemeyer, J.R. (2013). A quantum question
order model supported by empirical tests of an a priori
and precise prediction. Topics in Cognitive Science 5,
689–710.

[40] Wang, Z., Solloway T., Shiffrin, R.M., Busemeyer, J.R.
(2014). Context effects produced by question orders re-
veal quantum nature of human judgments. Proceedings
of the National Academy of Sciences 111, 9431-9436.


