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The results of behavioral experiments typically exhibit inconsistent connectedness, i.e., they vio-
late the condition known as “no-signaling,” “no-disturbance,” or “marginal selectivity.” This prevents
one from evaluating these experiments in terms of quantum contextuality if the latter understood
traditionally (as, e.g., in the Kochen-Specker theorem or Bell-type inequalities). The Contextuality-
by-Default (CbD) theory separates contextuality from inconsistent connectedness. When applied to
quantum physical experiments that exhibit inconsistent connectedness (due to context-dependent er-
rors and/or signaling), the CbD computations reveal quantum contextuality in spite of this. When
applied to a large body of published behavioral experiments, the CbD computations reveal no
quantum contextuality: all context-dependence in these experiments is described by inconsistent
connectedness alone. Until recently, however, experimental analysis of contextuality was confined to
so-called cyclic systems of binary random variables. Here, we present the results of a psychophysical
double-detection experiment that do not form a cyclic system: their analysis requires that we use
a recent modification of CbD, one that makes the class of noncontextual systems more restricted.
Nevertheless our results once again indicate that when inconsistent connectedness is taken into
account, the system exhibits no contextuality.
KEYWORDS: contextuality, cyclic systems, double-detection, inconsistent connectedness, psy-

chophysics.

In recent years there were many reports of behav-
ioral experiments (Accardi, Khrennikov, Ohya, Tanaka,
& Yamato, 2016; Aerts & Sozzo, 2014, 2015; Aerts, Sozzo,
& Veloz, 2015; Asano, Hashimoto, Khrennikov, Ohya,
& Tanaka, 2014; Bruza, Kitto, Ramm, & Sitbon, 2015;
Cervantes & Dzhafarov, 2017; Dzhafarov, Zhang, & Ku-
jala, 2015; Khrennikov, 2015; Sozzo, 2015; Wang, Sol-
loway, Shiffrin, & Busemeyer, 2014; Zhang & Dzhafarov,
2017) aimed at (or interpretable as aimed at) revealing
contextuality of the kind predicted by and experimen-
tally confirmed in quantum physics (Bell, 1964; Clauser,
Horne, Shimony, & Holt, 1969; Fine, 1982; Hensen et al.,
2015; Klyachko, Can, Binicioğlu, & Shumovsky, 2008;
Kochen & Specker, 1967; Kurzyński, Ramanathan, &
Kaszlikowski, 2012; Lapkiewicz et al., 2011). All known
to us behavioral data, however, violate a certain condi-
tion that makes a direct application of the traditional
quantum contextuality analysis impossible. This condi-
tion is variously called “no-signaling” or “no-disturbance”
in quantum physics (Bacciagaluppi, 2015, 2016; Cere-
ceda, 2000; Kofler & Brukner, 2013; Kurzyński, Cabello,
& Kaszlikowski, 2014; Popescu & Rohrlich, 1994; Ra-
manathan, Soeda, Kurzyński, & Kaszlikowski, 2012) and
“marginal selectivity” in psychology (Dzhafarov, 2003;
Townsend & Schweickert, 1989; Zhang & Dzhafarov,
2015). It is a required condition for the traditional quan-
tum contextuality analysis, even though it is often vio-
lated in quantum mechanical experiments as well (this
issue was first systematically discussed in Adenier &
Khrennikov, 2007; see also Adenier & Khrennikov, 2016;
Lapkiewicz et al., 2011, 2013). The Contextuality-by-
Default (CbD) theory (de Barros, Dzhafarov, Kujala, &
Oas, 2015; Dzhafarov, 2016; Dzhafarov & Kujala, 2014a,
2014b, 2015, 2016a, 2016b, 2017a, in press; Dzhafarov,
Kujala, & Cervantes, 2016; Dzhafarov, Kujala, & Lars-
son, 2015) overcomes this difficulty by proposing a prin-
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cipled way of separating contextuality proper from in-
consistent connectedness (the CbD term for violations
of the “no-signaling” or “marginal selectivity” condition).
This theory was used to reanalyze the behavioral ex-
periments aimed at contextuality, with the conclusion
that they provide no evidence for contextuality (Cer-
vantes & Dzhafarov, 2017; Dzhafarov, Kujala, Cervantes,
Zhang, & Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015;
Zhang & Dzhafarov, 2017): inconsistent connectedness
is the only form of context-dependence that we have in
them. By contrast, when CbD is used to reanalyze a
quantum-mechanical experiment that exhibits inconsis-
tent connectedness (Lapkiewicz et al., 2011), contextual-
ity proper (on top of inconsistent connectedness) is es-
tablished beyond doubt (Kujala, Dzhafarov, & Larsson,
2015).

Virtually all experiments aimed at revealing contextu-
ality, both in quantum physics and in behavioral sciences,
deal with a special kind of systems of random variables,
called cyclic systems in CbD (Kujala et al., 2015). In
these systems each property is measured in precisely two
different contexts, and each context contains two prop-
erties being measured together. If, in addition, all ran-
dom variables in the system are binary (each indicating
presence or absence of a certain property), then the sys-
tem is amenable to complete and exhaustive contextual-
ity analysis (Dzhafarov & Kujala, 2016a; Dzhafarov, Ku-
jala, & Cervantes, 2016; Dzhafarov, Kujala, & Larsson,
2015; Kujala et al., 2015). In spite of their prominence in
quantum theory, however, it is highly desirable to extend
contextuality analysis beyond the class of cyclic systems.
Many researchers (although not the present authors) find
the lack of contextuality in behavioral data to be a dis-
appointing negative result. What if this result is due to
the fact that cyclic systems in human behavior are too
simple? What if it is “too easy” for a cyclic system to
be noncontextual? These are valid questions, and they
will have no definite answers until we have a predictive
theory of (at least certain types of) human behavior on
a par with quantum mechanics.
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In the absence of a predictive theory, the only, ad-
mittedly imperfect way of dealing with these considera-
tions is to expand the experimentation and contextuality
analysis to progressively broader classes of systems. In
this paper we make a first step in this direction by an-
alyzing a psychophysical experiment whose results form
a non-cyclic system of random variables. This experi-
ment was reported previously (Cervantes & Dzhafarov,
2017), but its analysis was confined to extracting from it
a large number of cyclic subsystems and showing all of
them to be noncontextual. It is mathematically possible,
however, that a system is contextual with all its cyclic
subsystems being noncontextual.

A satisfactory way to expand the contextuality analy-
sis beyond cyclic systems was proposed in a recent mod-
ification of CbD, dubbed “CbD 2.0” (Dzhafarov & Ku-
jala, 2017a, in press): it is essentially the original CbD in
which the measurements of the same property (say, re-
sponses to the same stimulus) are analyzed in pairs only.
This modification has compelling reasons behind it, The
main one is that in the modified theory a subsystem of
a noncontextual system is always noncontextual. An-
other reason is that contextuality analysis is reduced to
the problem of compatibility of two uniquely defined sets
of distributions: the empirically known distributions of
context-sharing random variables and the distributions
of the “multimaximal couplings” of the random variables
measuring the same property in different contexts. All
of this is clarified below (Section 2). The modification in
question does not affect the theory of cyclic systems, so
the results mentioned earlier remain unchanged. How-
ever, when it comes to non-cyclic systems, the modifica-
tion makes the requirements that a system should satisfy
to be noncontextual more stringent.

The plan of the paper is as follows. In the next two
sections we present the basics of the CbD theory, in the
“CbD 2.0” version. The discussion is primarily confined
to systems of binary random variables (dichotomic mea-
surements), both for simplicity and because the double-
detection experiment to be analyzed involves only di-
chotomic judgments. In Section 3 we apply this theory to
the results of our double-detection experiment. Our con-
clusion is that in spite of the notion of noncontextuality
we use being more restrictive than in the original version
of the CbD theory, the double detection experiment does
not exhibit any contextuality.

1. INTRODUCTION TO CONTEXTUALITY

Every experiment results in a system of random vari-
ables. In most physics experiments these random vari-
ables are interpreted as measurements of properties, in
most behavioral experiments they are interpreted as re-
sponses to stimuli, such as questions. For brevity we will
use the term “measurement” in both meanings (because
responding to a stimulus can always be viewed as a form
of measurement). What is being measured therefore is
part of the identity of a random variable representing a
measurement. It is referred to as the content of the ran-
dom variable. The content, however, does not specify a
random variable uniquely, because one and the same con-
tent can be measured under different conditions, referred

to as contexts. For instance, if a content q is measured
simultaneously with measurements of other contents, in
some cases q′ and in other cases q′′, then in the former
cases the context is c = (q, q′) and in the latter ones it is
c′ = (q, q′′). As in Dzhafarov and Kujala (2016a, 2017a),
we will write “conteXt” and “conteNt” to prevent their
confusion in reading. The conteXt and conteNt of a ran-
dom variable uniquely identify it within a given system of
random variables. So each random variable in a system
is double-indexed, Rc

q.
According to the CbD theory’s main principle (Dzha-

farov, 2016; Dzhafarov & Kujala, 2014a, 2016a, 2016b, in
press; Dzhafarov, Kujala, & Cervantes, 2016), two ran-
dom variables Rc

q and Rc′

q′ are jointly distributed if and
only if c = c′, i.e., if and only if they are recorded in the
same conteXt. Otherwise they are stochastically unre-
lated, i.e., joint probabilities for them are undefined. This
means, in particular, that any two Rc

q and Rc′

q with the
same conteNt in different conteXts are stochastically un-
related (which implies, among other things, that they can
never be considered to be one and the same random vari-
able). Their individual distributions may be the same but
they need not be. If these distributions are different, the
system exhibits a form of context-dependence. However,
in CbD, this context-dependence by itself does not say
that the system is contextual in the sense related to how
this term is used in quantum mechanics. Rather the dif-
ference in the distributions is treated as manifestation of
information/energy flowing to the measurements of con-
teNt q from elements of the contexts c, c′ other than q.
We will refer to this transfer of information/energy as di-
rect cross-influences. Thus, if c = (q, q′) and c′ = (q, q′′),
the conteNt q does, of course, directly influence its mea-
surement, but, with q fixed, the second conteNt in the
pair can also affect this measurement. This can some-
times be attributed to some physical action of q′ or q′′

upon the process measuring q, or (as another form of in-
formation transfer) it can be a form of contextual bias, a
change in the procedure by which q is measured depend-
ing on what else is being measured.

q

(fixed) direct
influence

��

q′, q′′

(variable) direct
cross-influence}}

measurement of q

The difference between the distributions of Rc
q and Rc′

q

(equivalently, the strength of the direct cross-influences
responsible for this difference) is measured in CbD by
the probability with which Rc

q and Rc′

q could be made
to coincide if they were jointly distributed. This means
that we consider all couplings of Rc

q, R
c′

q , i.e., the jointly
distributed pairs of random variables T c

q , T
c′

q whose re-
spective individual distributions are the same as those of
Rc

q, R
c′

q , and among these pairs we find the one(s) with
the maximal possible probability of T c

q = T c′

q . The larger
this maximal probability, the closer the two distributions
to each other, and the weaker the direct cross-influences
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by conteXts c, c′ upon the measurement of q. This max-
imal probability is 1 if and only if the two distributions
are identical, and it is 0 if an only if the two distributions
have disjoint supports.

Consider now an experiment represented by a system
of random variables Rc

q with varying c and q, and sup-
pose that we have computed the maximal probability just
described for each pair of random variables that share
a conteNt. And we know (or can empirically estimate)
the joint distributions of all random variables that share
a conteXt. Intuitively, quantum contextuality is about
whether these computed maximal probabilities and these
empirically defined joint distributions are mutually com-
patible. If they are not, then one can say that conteXts
force the random variables sharing conteNts to be more
dissimilar than they are made by direct cross-influences
alone. The system then can be considered contextual.

To understand this without conceptual and technical
complications, consider first a cyclic system of binary
random variables (Dzhafarov, Kujala, & Larsson, 2015;
Kujala & Dzhafarov, 2015; Kujala et al., 2015). It is
depicted in Fig. 1. The conteXts and conteNts are
such that, with appropriate enumeration, in conteXt ci
one measures precisely two cyclically-successive conteNts
qi, qi⊕1 (where i = 1, . . . , n; i ⊕ 1 = i + 1 for i < n; and
n⊕ 1 = 1):

q1
c1 // q2

c2 // · · ·
cn−2 // qn−1

cn−1 // qn,

cn

kk

Each pair Ri
i, R

i
i⊕1 (i = 1, . . . , n) of random variables

sharing a conteXt (within a row in Fig. 1) are jointly
distributed. Since all the measurements in the system
are binary (±1), the joint distribution of Ri

j is uniquely
determined by three probabilities,

pii = Pr
[
Ri

i = 1
]
, pii⊕1 = Pr

[
Ri

i⊕1 = 1
]
,

pi = Pr
[
Ri

i = Ri
i⊕1 = 1

]
.

(1)

Random variables Ri	1
i , Ri

i within a column share a con-
teNt, and we compute for each such a pair the magnitude
of direct cross-influences, maxPr

[
T i
i = T i	1

i

]
, across all

couplings
(
T i	1
i , T i

i

)
of Ri	1

i , Ri
i: in this case the cou-

plings are the pairs
(
T i	1
i , T i

i

)
with all possible values of

Pr
[
T i
i = T i	1

i = 1
]
and with

Pr
[
T i
i = 1

]
= pii, Pr

[
T i	1
i = 1

]
= pi	1i . (2)

Here, i = 1, . . . , n; i 	 1 = i − 1 for i > 1; and 1 	 1 =
n. The coupling

(
T i	1
i , T i

i

)
with this property is called

maximal coupling. It is easy to show (Thorisson, 2000)
that this maximal coupling always exists and is defined
by complementing (2) with

pi = Pr
[
T i
i = T i	1

i = 1
]
= min

{
pii, p

i	1
i

}
. (3)

The probabilities (1) and (3) are shown in Fig. 2. Note
that (2) and (3) uniquely define the joint distribution of
the two random variables T i	1

i , T i
i within each column

of the matrix, in the same way as (1) uniquely define
the joint distribution of Ri

i, R
i
i⊕1 within each row of the

matrix. The only difference is that the row-wise joint dis-
tributions are empirical reality, whereas the column-wise

? ? · · · c1
? ? · · · c2

? ? · · · c3
...

...
...

...
. . .

...
...

...
· · · ? ? cn−1

? · · · ? cn

q1 q2 q3 q4 · · · qn−1 qn CYC

FIG. 1: A cyclic system (shown here for a sufficiently large
n, although n can be as small as 2 or 3). The system in-
volves n conteNts q1, . . . , qn and n conteXts c1, . . . , cn. The
star symbol in the (ci, qj)-cell indicates that conteNt qj was
measured in conteXt ci, and the result of the measurement is
random variable Ri

j ; otherwise qj was not measured in ci and
the cell is left empty. All Ri

j are binary random variables,
with possible values denoted +1 and −1.

joint distributions are constructed artificially to depict
the direct cross-influences. Contextuality in CbD is all
about the compatibility of these column-wise and row-
wise joint distributions: the system is considered noncon-
textual if all these probabilities can be achieved within a
jointly distributed set of 2n random variables. In other
word, we seek a set of jointly distributed random vari-
ables Si

j replacing the star symbols in Fig. 1, such that

(i) Pr
[
Si
i = 1

]
= pii, Pr

[
Si
i⊕1 = 1

]
= pii⊕1,

(ii) Pr
[
Si
i = Si

i⊕1 = 1
]
= pi,

(iii) Pr
[
Si
i = Si	1

i = 1
]
= pi = min

{
pii, p

i	1
i

} (4)

The equations (i) and (ii) in (4) tell us that the set of the
Si
j-variables we seek is a coupling of the original random

variables Ri
j arranged row-wise in Fig. 1: in each row the

variables Ri
j have a well-defined joint distribution, but

different rows are stochastically unrelated, so the cou-
pling “saws them together” in a single joint distribution.
The equations (i) and (iii) in (4) tell us that the set of
the Si

j-variables is a coupling for the column-wise max-
imal couplings T i

j : in each of the columns the variables
T i
j have a well-defined joint distribution, but different

columns are stochastically unrelated because the maxi-
mal couplings were computed for each column separately;
so the coupling “saws the columns together” in a single
joint distribution. It is easy to see that each of these two
couplings (of the rows and of the columns) exists, because
the random variables in the different rows do not overlap,
and the same is true for different columns. In a typical
case, each of the two couplings can be constructed in an
infinity of ways, and the question is whether a jointly
distributed set of 2n random variables can be simultane-
ously a coupling for the rows and for the columns. If the
answer to this question is negative, the conteXts inter-
vene beyond the effect of the direct cross-influences.

2. CONTEXTUALITY IN ARBITRARY
SYSTEMS OF BINARY MEASUREMENTS

Let us discuss now how the analysis just presented ex-
tends beyond cyclic systems. We will continue to assume
that all the random variables in play are binary.
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p11 p12 · · · p1

p22 p23 · · · p2

p33 p34 · · · p3

...
...

...
...

. . .
...

...
...

· · · pn−1
n−1 pn−1

n pn−1

pn−1
1 · · · pnn pn

p1 p2 p3 p · · · pn−1 pn CYC

FIG. 2: The probability values that characterize the cyclic
system in Fig. 1 in accordance with (1) and (3). The sys-
tem is noncontextual if there is a set of 2n jointly distributed
random variables

(
Si
j : i = 1, . . . , n; j = i or j = i⊕ 1

)
with

Pr
[
Si
j = 1

]
= pij , Pr

[
Si
i = Si

i⊕1 = 1
]

= pi, and
Pr

[
Si
i = Si	1

i = 1
]
= pi = min

{
pii, p

i	1
i

}
.

Consider Fig. 3. The system X is not cyclic, as it
has three random variables in the first row (conteXt c1)
and three random variables in the fourth column (con-
teNt q4). The number and arrangement of the random
variables in a row, however, is immaterial for the logic
of the contextuality analysis. The joint distribution of
R1

1, R
1
2, R

1
4 in the first row of X is uniquely defined em-

pirically. It simply requires more probabilities than in
(1) to be described:

p11 = Pr
[
R1

1 = 1
]
, p12 = Pr

[
R1

2 = 1
]
,

p14 = Pr
[
R1

4 = 1
]
,

p112 = Pr
[
R1

1 = R1
2 = 1

]
,

p124 = Pr
[
R1

2 = R1
4 = 1

]
,

p114 = Pr
[
R1

1 = R1
4 = 1

]
,

p1124 = Pr
[
R1

1 = R1
2 = R1

4 = 1
]
.

(5)

Nor does anything change in how one treats the pairs of
the conteNt-sharing random variables in the first three
columns: one computes the maximal coupling for each of
these columns. One faces choices, however, when deal-
ing with the three random variables in the fourth col-
umn. What is the right way of generalizing the max-
imal coupling in this case? There is a compelling rea-
son (Dzhafarov & Kujala, 2017a, in press) to consider
the three conteNt-sharing random variables one pair at
a time, and to compute maximal couplings for them sep-
arately. This means finding a jointly distributed triple(
T 1
4 , T

3
4 , T

4
4

)
whose elements are distributional copies of,

respectively, R1
4, R

3
4, R

4
4, i.e.,

Pr
[
T 1
4 = 1

]
= p14, Pr

[
T 3
4 = 1

]
= p34,

Pr
[
T 4
4 = 1

]
= p44,

(6)

such that
(
T 1
4 , T

3
4

)
is the maximal coupling of R1

4, R
3
4,(

T 3
4 , T

4
4

)
is the maximal coupling of R3

4, R
4
4, and

(
T 1
4 , T

4
4

)
is the maximal coupling ofR1

4, R
4
4. In terms of probability

values,

Pr
[
T 1
4 = T 3

4 = 1
]
= min

{
p14, p

3
4

}
,

Pr
[
T 3
4 = T 4

4 = 1
]
= min

{
p34, p

4
4

}
,

Pr
[
T 1
4 = T 4

4 = 1
]
= min

{
p14, p

4
4

}
.

(7)

As shown in Dzhafarov and Kujala (2017a, in press),
such a coupling (called multimaximal in CbD ) always
exists, and it is unique (as all the random variables

? ? c1
? ? c2

? ? c3
? ? c4

q1 q2 q3 q4 CYC4

? ? ? c1
? ? c2

? ? c3
? ? c4

q1 q2 q3 q4 X

FIG. 3: A cyclic system with n = 4 (CYC4) and a system X
obtained from CYC4 by adding to it the random variable R1

4.

here are binary). The above-mentioned compelling rea-
son for maximizing the couplings pairwise is that then,
if the system is noncontextual, it will remain noncon-
textual after one deletes from it one or more random
variables. In other words, any subsystem of a noncon-
textual system is noncontextual. This would not be
true, for instance, if we only maximized the value of
Pr

[
T 1
1 = T 1

2 = T 1
4 = 1

]
. At the same time, the maxi-

mization of Pr
[
T 1
1 = T 1

2 = T 1
4 = 1

]
is achieved “automat-

ically” if (7) is satisfied. Moreover, one of the equalities in
(7) is redundant as it can be derived from the other two:
if, e.g., p34 ≤ p14 ≤ p44, then the redundant equality in
(7) is the second one.Generalizing, we have the following
theorem.

Theorem 2.1 (Dzhafarov & Kujala, 2017a, in press).
Let R1

q , . . . , R
k
q , k > 1, be binary (±1) random variables

with conteXts enumerated so that

p1q = Pr
[
R1

q = 1
]
≤ . . . ≤ Pr

[
Rk

q = 1
]
= pkq .

Then there is a unique set of jointly distributed(
T 1
q , . . . , T

k
q

)
such that

(
T i
q , T

i+1
q

)
is the maximal cou-

pling of Ri
q, R

i+1
q , for i = 1, . . . , k − 1. The coupling(

T 1
q , . . . , T

k
q

)
has the following properties.

(i) For any subset {i1, . . . , im} ⊆ (1, . . . , k) with
m ≤ k,

(
T i1
q , . . . , T im

q

)
is the maximal coupling of

Ri1
q , . . . , Rim

q , i.e., Pr
[
T i1
q = . . . = T im

q

]
has the maximal

possible value among all couplings of Ri1
q , . . . , Rim

q . In
particular, for any i, j ∈ (1, . . . , k),

(
T i
q , T

j
q

)
is the maxi-

mal coupling of Ri
q, . . . , R

j
q.

(ii) The distribution of
(
T i1
q , . . . , T im

q

)
is defined by

Pr
[
T 1
q = . . . = T k

q = 1
]
= p1,

Pr
[
T 1
q = . . . = T l

q = −1 ; T l+1
q = . . . = T k

q = 1
]
= pl+1 − pl,

(for l = 1, . . . , k − 1)

Pr
[
T 1
q = . . . = T k

q = −1
]
= 1− pk,

(8)
with all other combinations of values having probability
zero.

Now we can formulate the generalization of the defini-
tion of contextuality given in the previous section.

Definition 2.2. A system of binary random variables Rc
q

is noncontextual if there exists a jointly distributed set of
(correspondingly labeled) random variables Sc

q such that
(i) for every conteXt c, the joint distribution of all Sc

q

with this value of c is identical to the joint distribution
of the corresponding Rc

q; and (ii) for every conteNt q,
the joint distribution of all Sc

q with this value of q forms
the (unique) multimaximal coupling of the corresponding
Rc

q.
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The notion of contextuality is, once again, about
compatibility of the uniquely determined row-wise and
column-wise distributions. The row distributions are em-
pirically given, the column distributions are computed as
multimaximal couplings, and the question is whether it
is possible to find a single coupling for both the rows and
the columns. Once again, the logic of the approach is
that if the coupling in question does not exist, it means
that the conteXts force some pairs of the random vari-
ables measuring the same conteNt to be more dissimilar
than they are made by direct cross-influences alone —
and the system is therefore contextual.

If a system of random variables turns out to be contex-
tual, one can compute the degree of its contextuality as
the smallest possible total variation of quasi-couplings of
this system. A quasi-coupling differs from a coupling in
that the probabilities for its values are replaced with ar-
bitrary real numbers (not necessarily nonnegative) that
sum to 1. The existence of quasi-couplings for any sys-
tem and the uniqueness of the minimum total variation
are proved in Dzhafarov and Kujala (2016a). We need
not discuss this otherwise important topic further be-
cause the experimental results reported below reveal no
contextuality.

3. DOUBLE-DETECTION EXPERIMENT

We now apply the theory just described to the results
of a double-detection experiment. We remind the reader
that this experiment was previously described in Cer-
vantes and Dzhafarov (2017), but to keep this paper self-
sufficient we recapitulate the procedural details below.
In Cervantes and Dzhafarov (2017) the system formed
by the data was analyzed by extracting from it a multi-
tude of cyclic subsystems. In this paper we analyze the
system in its entirety.

The double-detection experiment is one of only two
contextuality-aimed experiments known to us that uses
a within-subject design, i.e., with probabilities estimated
from the responses of a single person to multiple repli-
cations of stimuli. (The other such experiment is the
psychophysical matching one described in Dzhafarov,
Zhang, & Kujala, 2015, and Zhang & Dzhafarov, 2017.)
Most experiments use aggregation of responses obtained
from many persons. The double detection paradigm sug-
gested in Dzhafarov and Kujala (2012) and Dzhafarov
and Kujala (2017b) provides a framework where both
(in)consistent connectedness and contextuality can be
studied in a manner very similar to how they are stud-
ied in quantum-mechanical systems (or could be studied,
because consistent connectedness in quantum physics is
often assumed rather than documented).

3.1. Method

3.1.1. Participants

The participants were three volunteers, graduate stu-
dents at Purdue University, two females and one male
(the first author of this paper), aged around 30, with
normal or corrected to normal vision. The experimental

program was regulated by the Purdue University’s IRB
protocol #1202011876. The participants are identified as
P1− P3 in the text below.

3.1.2. Equipment

A personal computer was used with an Intel® Core™
processor running Windows XP, a 24-in. monitor with a
resolution of 1920× 1200 pixels (px), and a standard US
104-key keyboard. The participant’s head was steadied
in a chin-rest with forehead support at 90 cm distance
from the monitor; at this distance a pixel on the screen
subtended 62 sec arc.

3.1.3. Stimuli

The stimuli presented on the computer screen consisted
of two brightly grey colored circles (RGB 100-100-100)
on a black background, with their centers 320 px apart
horizontally, each circle having the radius of 135 px and
circumference 4 px wide. Each circle contained a dot
of 4 px in diameter in its center or 4 px away from it,
in the upward or downward direction. An example of
the stimuli (in reversed contrast and scaled) is shown in
Figure 4.

FIG. 4: An example of the stimulus in the double-detection
experiment. In the left circle the dot is in the center, in the
right one it is shifted 4 px upwards. The participant’s task
was to say, for each of the two circles, whether the dot was
in the center (the answer coded 1) or off-center (the answer
coded -1), irrespective of whether it was shifted up or down.

3.1.4. Procedure

In each trial the participant was asked to indicate, for
each circle, whether the dot was in its center or not in
the center (irrespective of in what direction). The re-
sponses were given by pressing in any order and holding
together two designated keys, one for each circle, and
the stimuli were displayed until both keys were pressed.
Then, the dots in each circle disappeared, and a “Press
the space bar to continue” message appeared above the
circles. Pressing the space bar removed the message, and
the next pair of dots appeared 400 ms later. (Response
times were recorded but not used in the data analysis.)

Each participant completed nine experimental ses-
sions, each lasting 30 minutes and containing about 560
trials recorded and used for the analysis, preceded by
several practice trials. In each practice trial the partici-
pants received feedback as to whether their response for
each of the two circles was correct or not. No feedback
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Right
Center (-c) Up (-u) Down (-d)

L
ef
t Center (c-)

1/4 (cc) 1/8 (cu) 1/8 (cd) 1/2
Up (u-) 1/8 (uc) 1/16 (uu) 1/16 (ud) 1/4

Down (d-) 1/8 (dc) 1/16 (du) 1/16 (dd) 1/4
1/2 1/4 1/4

FIG. 5: Probabilities with which a trial was allocated to one
of the 9 conteXts, with the notation used for the conteXts and
the conteNts: c, u, and d denote that the dot is, respectively,
in the center, shifted up, or shifted down. The 9 conteXts
are denoted cc, cu, du, etc., the left (right) symbol indicating
the location of the dot in the left (respectively, right) circle.
To denote conteNts, the location of a dot is shown on the
left or on the right with a dash filling the other side: thus, c-
denotes the dot in the center of the left circle, -d denotes the
dot shifted down in the right circle, etc.

was given in the non-practice trials. The experimental
sessions were preceded by one to three training sessions,
excluded from the analysis.

3.2. Experimental ConteXts and ConteNts

In each of two circles the dot presented could be located
either at its center, or 4 px above the center, or else 4
px under the center. These pairs of locations produce a
total of nine conteXts. During each session, excepting
the practice trials, the dot was presented at the center
in a half of the trials, above the center in a quarter of
them, and below the center in the remaining quarter, for
each of the circles. Figure 5 presents the proportions of
allocations of trials to each of the 9 conditions.

For each session, each trial was randomly assigned to
one of the conditions in accordance with Table 5. The
number of experimental sessions was chosen so that the
expected number of (non-practice) trials in the conditions
with lowest probabilities was at least 300. This number
of observations was chosen based on Cepeda Cuervo et
al. (2008), whose results show that coverage errors with
respect to nominal values are below 1% for almost all
confidence intervals for proportions with n > 300.

The system of random variables representing the data
is shown in Figure 6.

3.3. Results

The results are shown in Figs. 7, 8, and 9, one for
each of the three participants. Each row, together with
its margins, specifies an empirical estimate of the joint
distribution of the two random variables sharing the cor-
responding conteXt. This distribution is shown in the
format

Pr [X = 1] ,Pr [Y = 1] ,Pr [X = Y = 1] ,

where X and Y are the two variables in the same row.
Each column, together with its margins, shows an em-
pirical estimate of the multimaximal coupling of the

three random variables sharing the corresponding con-
teNt. The distribution of the coupling is shown in the
format

Pr [A = 1]
Pr [B = 1]
Pr [C = 1]

Pr [A = B = 1]
Pr [B = C = 1]
Pr [A = C = 1]

,

where A,B,C are the three random variables in the same
column listed from top down. The analysis of contextu-
ality consists in considering a set of jointly distributed 18
binary random variables (corresponding to the star sym-
bols in Fig. 6), and determining whether the 218 values
of this set can be assigned probabilities that sum to the
probabilities whose empirical estimates are shown in the
data matrices (Figs. 7, 8, and 9). This is a standard
linear programing task,

M
46×218

218×1
Q = P

46×1
, Q > 0 (componentwise).

The number of the rows in M and P (i.e., the number
of linear constraints imposed on Q) is the number of the
probability estimates shown in each of the data matrices
(45) plus the constraint that ensures that all the 218 prob-
abilities in Q sum to 1. (The number of the probability
estimates could be reduced from 45 to 39, because one
of the three marginal probabilities for each column could
be eliminated. We did not, however, make use of this
small reduction in our computations.) The linear pro-
graming was performed by using the GLPK (GNU Lin-
ear Programming Kit) package (version 4.6; Makhorin,
2012) and the R interface to the package (Rglpk, version
0.6-1; Theussl & Hornik, 2015).

c- -c u- -u d- -d
cc ? ?
uc ? ?
uu ? ?
du ? ?
dd ? ?
cu ? ?
ud ? ?
dc ? ?
cd ? ?

FIG. 6: The conteNt-conteXt system of measurements for
the double detection experiment. The cell corresponding to
context xy and content z (with z being x- or -y), if it contains
a star, represents the random variable Rxy

z ; the absence of a
star means that content z was not measured in context xy.
For instance, xy = cc and z = c- define a random variable
Rcc

c- . The random variables within a given row (in the same
conteXt) are jointly distributed. In our design there are two
random variables, Rxy

x- and Rxy
-y in each conteXt xy, and their

joint distribution is uniquely defined by three probabilities:
Pr [Rxy

x- = 1], Pr
[
Rxy

-y = 1
]
, and Pr

[
Rxy

x- = Rxy
-y = 1

]
.
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P1 c- -c u- -u d- -d Pr [X = Y = 1] # of trials
cc .7175 .6365 .5476 1260

uc .5587 .2476 .2095 630

uu .5238 .4857 .3746 315

du .0444 .7810 .0286 315

dd .7556 .6508 .5714 315

cu .8095 .2302 .2175 630

ud .0762 .4571 .0571 315

dc .3032 .7937 .2778 630

cd .4063 .6349 .3730 630

Pr [A = B = 1] .7175 .5587 .2476 .0444 .7556 .4571

Pr [B = C = 1] .4063 .3032 .0762 .0444 .7556 .4571

Pr [A = C = 1] .4063 .3032 .0762 .2302 .7810 .6349

FIG. 7: Empirical data (relative frequencies) for the conteNt-conteXt system in Fig. 6 for participant P1. For every conteXt
xy and every conteNt z measured in xy (either x- or -y), the cell for Rxy

z contains the frequency estimate of Pr [Rxy
z = 1]; the

right margins of the row for xy shows the frequency estimate of Pr
[
Rxy

x- = Rxy
-y = 1

]
and the total number of measurements

in this conteXt. Since xy and z vary, the column for joint probabilities denotes the two random variables by X = Rxy
x-

and Y = Rxy
-y . The bottom margins in the column for conteNt z show the three frequency estimates of the maximal values of

Pr [Rxy
z = Ruv

z = 1], Pr
[
Ruv

z = Rst
z = 1

]
, and Pr

[
Rxy

z = Rst
z = 1

]
(where xy, uv, st are three conteXts in which z was measured).

To make notation compact, the three random variables in each column are labeled A,B,C (from top down), and the three
probabilities are shown as Pr [A = B = 1], Pr [B = C = 1], and Pr [A = C = 1] (one of which is always redundant but shown
for completeness).

P2 c- -c u- -u d- -d Pr [X = Y = 1] # of trials
cc .8659 .7841 .6746 1260

uc .7619 .3968 .1968 630

uu .5556 .5841 .3746 315

du .6317 .1333 .0254 315

dd .2413 .2032 .1175 315

cu .8508 .4587 .3444 630

ud .6127 .1111 .0063 315

dc .8905 .1667 .1476 630

cd .9429 .0683 .0571 630

Pr [A = B = 1] .8508 .7619 .3968 .5556 .1333 .1111

Pr [B = C = 1] .8508 .7619 .5556 .4587 .1667 .0683

Pr [A = C = 1] .8659 .7841 .3968 .4587 .1333 .0683

FIG. 8: Empirical data (frequencies) for the conteNt-conteXt system in Fig. 6 for participant P2. The rest is as in Fig. 7.

P3 c- -c u- -u d- -d Pr [X = Y = 1] # of trials
cc .6791 .5973 .3654 1259

uc .8302 .1349 .0905 630

uu .2548 .1688 .0732 314

du .1460 .3746 .0127 315

dd .3460 .4127 .1397 315

cu .8381 .0746 .0524 630

ud .1178 .3917 .0159 314

dc .6714 .2921 .1127 630

cd .6968 .3238 .1746 630

Pr [A = B = 1] .6791 .5973 .1349 .1460 .3460 .3917

Pr [B = C = 1] .6968 .6714 .1178 .0746 .2921 .3238

Pr [A = C = 1] .6791 .5973 .1178 .0746 .2921 .3238

FIG. 9: Empirical data (frequencies) for the conteNt-conteXt system in Fig. 6 for participant P3. The rest is as in Fig. 7.

The outcome of the analysis is that, for all three par-
ticipants, the system of linear equations has a solution in
nonnegative values —that is, the data matrices in Figs.
7, 8, and 9 describe noncontextual systems of random

variables. Note that in this case the empirical estimates
were fit by the solution precisely, eliminating the need for
statistical analysis.
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4. CONCLUSION

The experiment presented in this paper illustrates the
use of the double factorial paradigm in the search of con-
textuality in behavioral systems, namely in the responses
of human observers in a double-detection task. This
paradigm provides the closest analogue in psychophysi-
cal research to the Alice-Bob EPR/Bohm paradigm (Bell,
1964; Clauser et al., 1969; Fine, 1982). We have found
that for the participants in the study there was no evi-
dence of contextuality in their responses. These results
add to the existing evidence that points towards lack of
contextuality in behavioral data (Cervantes & Dzhafarov,
2017; Dzhafarov, Kujala, Cervantes, Zhang, & Jones,
2016; Dzhafarov, Zhang, & Kujala, 2015; Zhang & Dzha-
farov, 2017). The present result is in fact stronger than
the previous ones, as it uses a more stringent than before
criterion of noncontextuality. This criterion is based on
multimaximality rather than on the simple maximality of
the couplings in cyclic systems. However, we should em-
phasize that in the absence of a predictive theory on a par
with quantum mechanics, no failure to find contextuality
in even a large number of experiments can be safely gen-
eralized: contextuality may very well be found under as
yet unexplored modifications of experimental conditions.
Consider, e.g., the Alice-Bob EPR/Bohm paradigm, and
imagine that we have no theory that could guide us in
choosing the specific axes along which Alice and Bob
are to measure the spins in their respective particles. It
would be rather unlikely to hit at a “right” combination
of the angles by pure chance, and after numerous failures
one could very well conclude, in this case wrongly, that
contextuality is absent in this paradigm. More work is
needed.
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