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ABSTRACT. Response times (in a very general meaning of the term, including
physiological latencies and durations of theoretically assumed mental actions)
can be subjected to two basic forms of analysis: (a) the representation of re-
sponse times by durations of unobservable processes identified by their final
outcomes and developing until they meet certain termination conditions; and
(b) the decomposition of response times into component durations identified
by observable external factors that influence them selectively. This chapter
overviews and elaborates theoretical concepts and mathematical results re-
lated to these two analyses. It begins with a general theory of process rep-
resentations for arbitrary response arrangements (i.e., the rules determining
which responses may co-occur within a trial). This theory extends the Grice-
representability and McGill-representability analysis proposed previously for
mutually exclusive responses. Then the notion of selectively influenced but
(generally) interacting processes is introduced and related to that of selec-
tively influenced but (generally) stochastically interdependent component du-
rations: the two notions turn out to be related in an indirect and complex
way. Finally, an overview is given of the available mathematical facts related
to (a) the recovery of the algebraic operation connecting the response time
components that are identified by the factors selectively influencing them and
by the form of stochastic relationship among them (independence or perfect
positive interdependence); and (b) the choice between the independence and
perfect positive interdependence of signal-dependent and signal-independent
components identified by the algebraic operation connecting them.

1. INTRODUCTION

This chapter is about two basic forms of the theoretical analysis of response
times: the representation of response times by abstract processes with certain ter-
mination rules, and the decomposition of response times into component durations
selectively influenced by different external factors. The chapter is not meant to
serve as a survey of the extensive and diverse literature that bears upon these is-
sues. Rather it relates to and somewhat extends one particular line of research, in
whose development I have participated myself. The primary focus is on the logic
of theoretical constructs rather than empirical facts and generalizations. In par-
ticular, the analysis is not predicated on specific assumptions concerning the form

Key words and phrases. Response time, selective influence, decomposition into components,
decomposition rule, stochastic relationship.

Address for correspondence. E. N. Dzhafarov, Beckman Institute, University of Illinois, 405
North Mathews Urbana, IL 61801. Email: edzhafar@s.psych.uiuc.edu



256 EHTIBAR N. DZHAFAROV

A |— Response ==

Response | e OR

B I_€ R s (exclusive)
Response 3 ===
Response | ==

€ Response 2 s AND
Response 3 g

ReSPONSe | m—
D Response 2 s OR AND
Response 3 s (exclusive)

FIGURE 1. Examples of response arrangements.

of the response time distributions, except for occasionally needed constraints of a
technical nature.

The term “response” refers primarily to an observable physical event, such as a
key press or a certain activity level in a neuronal structure. However, to incorporate
some of the traditional “information processing” issues, it is convenient to allow the
term to also refer to hypothetical mental events, such as a visual representation of
an object’s shape or a retrieval of an item from a memory storage. In all cases the
use of the term implies that responses occur within well-defined trials, that they
belong to well-defined finite sets of possible responses, and that the moments when
responses occur within a trial (even if theoretically derived or assumed) are viewed
as (if they were) observable empirical data, subject to further analysis. In a typical
experiment only one of possible responses may occur within a trial. Mutually
non-exclusive responses, however, are also conceivable, such as activity bursts in
several distinct neuronal structures or mental representations of different aspects of
a stimulus. Figure 1 shows some of the variety of response arrangements to which
the present discussion applies (i.e., the rules determining which responses may or
may not co-occur within a trial; note that arrangements A and B correspond to the
conventional simple and choice response time paradigms). Arrangements in which
all responses may be withheld within a trial are also possible (e.g., a conventional
disjunctive response time paradigm).

Response times, measured from some zero moment within a trial, are generally
random variables. For a response arrangement like C in Figure 1, denoting the times
of all possible responses by Ty, ..., T,, (boldface letters indicate random variables),
all empirical information about these response times is contained in their joint
distribution function,

Tltrsctn

= Prob{T1(Z) < t1, ..., Tu(E) < tu}. )
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Here, = stands for a description of those aspects of the external situation (such as
target stimulus intensity, speed-accuracy emphasis, etc.) that may vary from trial
to trial, deterministically or randomly, inducing changes in the joint distribution
of T1(2),..., Tn(Z). Strictly speaking, therefore, one deals here with a family of
random vectors (and the corresponding family of distribution functions), one vector
(and distribution) for every possible value of =.

The joint distribution function in (1) can be made applicable to response ar-
rangements other than C in Figure 1, with the following proviso: If a response i does
not occur within a trial, then the value of T; is considered indefinite (or infinitely
large): in other words, T;(Z) < t is then false for any . Thus understood (1) is
the universal object of response time analysis. Since response times are observable
(or treated as if they were such), the joint probability distributions are (assumed
to be) known, at least on a sample level.

To construct a process representation for a vector of response times T (Z),
..., Tn(E) means to theoretically derive certain n processes (neutrally referred to
as response processes, i.e., processes preparing a response) and postulate certain
critical conditions, so that the response i occurs if and as soon as the i-th process
meets these conditions. Obviously, either the processes or the critical conditions
(or both) should have stochasticity built in them to account for the randomness
of response times. Figures 2 and 3 show two different process representations for
a single-response arrangement (as in the simple response time paradigm). In both
cases the parameters of the process change with changing values of the situation
Z, and in both cases the critical condition is that the level of the process exceed a
preset criterion. In Figure 2, the “McGill modeling scheme” (after McGill, 1963),
the criterion is fixed whereas the process is stochastic. In Figure 3, the “Grice
modeling scheme” (after Grice, 1968, 1972), the process is deterministic whereas
the criterion is randomly chosen on every trial from a distribution. (Figure 3
consists of two concatenated graphs, the “response level” serving as the ordinate
for the process graph and the abscissa for the criterion distribution function graph.
Note that the external situation =, as indicated in Figures 2 and 3, is generally a
function of time within a trial.)

Contrary to tradition, decompositions of response times can be introduced as
an issue logically unrelated to their process representations or even to response
arrangements. The object of analysis here is not the joint distribution of T;(Z), ...,
T,,(Z) but rather the distribution of a single random duration T(Z) derived from
this joint distribution. T(Z) may be the response time for a particular response
i conditioned upon its occurrence, or the time when some response occurs in a
choice paradigm, or one of many similar constructs. Decompositions of T(Z) are
contingent on the decompositions of the external situation = into a list of factors,
a, (8, v, ..., with crossable levels. Once these factors are listed, one can define
time components of T(Z) as “a component A(a), influenced exclusively by a,” “a
component B(), influenced exclusively by 8,” etc. To decompose T(Z) means to

present it as d
T(a,8,7,.--) = H{A(), B(8),C(7), - }, @)

where H is some function (the decomposition rule), and the symbol £ stands for
“is distributed as.”
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Note an important logical difference between process representations and de-
compositions of response times. Response processes are identified by their potential
effects, the responses to which they lead if certain critical conditions are met. Any
change in the external situation = generally influences the course of all these pro-
cesses. By contrast, time components A(a), B(8), C(v), etc., are identified by the
changes in the external situation that influence them selectively: Thus A is defined
as a component influenced by a, and only by a — irrespective of whether such a
component exists or whether it is uniquely determinable. The time components
may be interpreted as corresponding to specific (unobservable) effects, but such
an interpretation is inconsequential for recovering the decomposition rule H or the
distributions of the time components. The precise meaning of selective influence
in its relationship with possible joint distributions of time components is a rather
subtle issue, discussed later.

Another significant difference between the two issues is that on a principal level
the problem of process representations lends itself to a complete solution: unless
one imposes additional constraints, such as selective influence, process representa-
tions can be constructed by a universal algorithm, for any response arrangement
and any family of response time vectors. By contrast, only rudimentary knowledge
is available on response time decompositions; this knowledge only applies to limited
choices of the decomposition rule H in Equation 2 and the simplest forms of the
stochastic relationships among the time components.

2. PROCESS REPRESENTATIONS

The problem of constructing process representations for single-response ar-
rangements is quite simple, and the logical and operational meaning of the con-
cepts involved is especially transparent in this case. Consider first the Grice-
representation scheme (Figure 3), according to which the =-dependent process
R(t; Z) representing a response time T(Z) is deterministic, and T(Z) is the time
when R(¢ exceeds for the first time a =-independent randomly preset criterion
C. It is easy to show (Dzhafarov, 1993) that whatever the distribution function
T (t;Z) for T(E), the latter can be Grice-represented by choosing some distribution
function C(c) for the criterion C and putting

R(t;2) =C"H{T(3)}. ®3)

The choice of the criterion distribution function C(c) is arbitrary, except for
minor technicalities.! Indeed, by a monotonic transformation of the “response
level” axis in Figure 3 one can change C(c) into any other distribution function.
Such a transformation, however, simultaneously changes the representing process
R(t;Z), so that its times of crossing the criterion, the only observables in the
scheme, do not change. The sole role of the criterion distribution, therefore, is to
calibrate the otherwise “rubber-band” axis on which both the criterion and the
process assume their values. The “assumptions” that the criterion distribution has
a particular form and that it is Z-independent are totally void of empirical content.

1The criterion distribution should be continuous. For technical convenience, it is preferable
also to make it strictly increasing and non-negative (as in Figure 3).
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The same conclusion applies to the “assumption” that the response time T(Z)
can be represented by a deterministic Z-dependent process. It is clear from (3)
that the deterministic process R(t;Z) is just one of many possible descriptions for
the distribution of T(Z), on a par with its distribution function T(t;Z), whose
monotonic transformation R(t; Z) is. In fact, with a specific choice of the criterion
(namely, choosing it uniformly distributed between 0 and 1), R(t;E) and T (t;Z)
can be made to formally coincide. At the same time, the use of the term “process”
is not a misnomer here, because for any choice of the criterion the process R(t;Z)
is physically realizable, in the sense of causal consistency: If the external situation
E develops within a trial, the value of R(t;Z) at any time ¢ (given its initial value)
only depends on the values of = previous to the moment #:

R(t:2) = R[E(u) uce]

Although quite elementary mathematically, the analysis above may appear sur-
prising. It turns out that the principal idea of modeling response times by deter-
ministic =-dependent processes developing until they reach randomly present =-
independent criteria is not an empirically falsifiable model, but rather a theoretical
language that applies to all conceivable response time distribution families. The
term used in Dzhafarov (1993) is the “modeling scheme,” a conceptual system that
is not a model itself but that allows one to formulate all falsifiable models within its
framework. Grice’s (1968, 1972) original formulation of this modeling scheme was
even weaker, as it allowed (unnecessarily) the criterion to depend on the external
situation = — and even in this weakened form the idea was widely considered too
simplistic to be empirically applicable.

Any falsifiable model for response times (having been translated into the Grice
scheme’s language) can be of one of two kinds. It may state that the processes
R(t;E), for one or more values of Z, have a particular shape when the “rubber-
band” axis for their values is calibrated by the distribution of a particular form. For
instance, the falsifiable part of Grice’s original proposal is that the process R(t;2)
is linear (Grice, 1968) or negative-exponential (Grice, 1972; Grice, Nullmeyer, &
Spiker, 1982) when the response level axis is calibrated by a normal distribution.?
A falsifiable model of another kind states that the processes R(t;Z) for different
values of = have a particular mathematical relationship among them — without spec-
ifying the criterion distribution. For instance, in a visual motion detection model
proposed in Dzhafarov and Allik (1984) and Dzhafarov, Sekuler, and Allik (1993)
a moving stimulus initiates a “kinematic energy” process uniquely determined by

2Note that Z(u) |u<¢ is a function, that is, its values are taken with the moments at which
they occur. In particular, the truncation point ¢ is part of the function’s identity, because of which
t need not be included as a separate argument. A different though equivalent way of presenting
the deterministic process R(t; E) is by a differential equation R(t; ) = r[=(u) lugts R(w ) |usi],
where the time derivative R ) may have to be expressed through Dirac’s delta function. This
representation is more readily generalizable to a vector of deterministic processes, as discussed
later.

3An attempt to substantiate the choice of a normal distribution by such arguments as the
central limit theorem is meaningless. This choice is arbitrary. At the same time, as shown in
Dzhafarov (1993), the choice of a negative-exponential process on a normally calibrated axis is
logically flawed.
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the position-versus-time function. In such a model the question is whether one can
find a single criterion distribution for all different processes.

The analysis of the McGill-representability (Figure 2) yields analogous results.
According to this scheme, T(Z) is the time when a Z-dependent stochastic process
R(t;Z) exceeds for the first time a fixed level (say, unity). Even the simplest and
most restrictive versions of this scheme turn out to be mathematically equivalent
to the Grice modeling scheme. They too, therefore, are merely descriptive theo-
retical languages. One can always McGill-represent T(Z) by computing R(t; Z)
as a mathematical composition of a deterministic =-dependent part R(t;Z) and a
E-independent stationary noise C(¢):

R(%2) = G{R(%5),C(1)}. 4)
Except for technicalities, one is free to choose any composition function G and any
stationary process C(t) independent). These two facts may appear even more
surprising than the arbitrariness of the criterion distribution in the Grice modeling
scheme. Nevertheless they are straightforward consequences of the equivalence be-
tween the two modeling schemes.* Using different composition functions (additive,
multiplicative, etc.) one can construct a variety of generalizations for the stochastic
processes commonly used in response time modeling (such as the diffusion processes
with drift). The role of C(t) in (4) is precisely the same as that of the criterion in
the Grice scheme: in fact, if the momentary distribution function of G='{1,C(t)}
is matched with that of the criterion C, then R(t;Z) is the same in the two mod-
eling schemes, in both cases computed by (3). Note that stochastic relationships
among the distributions of C(t) at different moments of time are inconsequential:
any two stochastic processes R(t; Z) with the same deterministic part R(t;Z) and
the same momentary distribution of C(t) represent the same response time T(Z).
This shows that the McGill modeling scheme is conceptually more redundant than
the Grice one.

The mathematical theory of the Grice-representability is considerably more so-
phisticated for multiple-response arrangements (Dzhafarov, 1993). The family of
response time vectors T (Z), ..., T,,(Z) is said to be Grice-represented by determin-
istic processes Ry (t; os B if there is a Z-independent vector of randomly
preset criteria Cy, ..., Cp, (not necessarily stochastically independent) such that
Ti(Z), ..., Tn(E) are the times when the respective processes exceed, each for the
first time, their respective criteria.

The key issue here is how one understands the concept of a vector of determin-
istic processes. A single process R(t;Z) is deterministic if its initial value is fixed
and its value at time ¢ > 0 only depends on the external situation = (up to the
moment ¢, if it develops in time). In the case of a vector Ry (t; Z), ..., R, (t; ), how-
ever, one cannot just use the same definition componentwise, because the external
situation = here may not be the sole determinant of the processes. In addition, the

4G should be chosen increasing in the first argument and continuous in the second. The
critical condition in the McGill scheme, G{R(t; £), C(t)} > 1, is then equivalent to R(t;E) >
G-1 {1,C(t)}, which is the critical condition in the Grice scheme, provided the criterion distri-
bution is matched with that of G=1{1,C(t)}. (G~ denotes the inverse of G with respect to the
first argument.)
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processes themselves form an “internal environment” for each other, or “interact”
with each other, using the term descriptively. The definition, therefore, should be
modified: processes Ry (t;Z), ..., Ry(t; Z) are deterministic if their initial values are
fixed and if

Ri(t:2) = 15[2(w) lugt, Ri(4 E) Jugts oor Bn(5 ) Juce],

where the meaning of the time derivative R; is the same as in Footnote 2.

Superficially the definition just given may seem unnecessarily complicated, be-
cause there may seem to be no way of changing one of the processes, say R; (t; ),
in order to observe the effect of this change on, say, Ra(t; =), while keeping the
external situation = unchanged. One cannot, for example, evaluate the impact of
R (t;Z) on other processes by either including or not including the first response
in the response arrangement, because this would mean a manipulation of the ex-
ternal situation whose part the response arrangement is (provided it varies, as in
this example, from trial to trial). This general argument, however, overlooks the
mechanism of process termination built in the Grice modeling scheme. According
to this scheme, the i-th response is generated if and when R;(t; ) crosses its re-
spective criterion, C;, at which moment the process is terminated. The terminated
process can be thought of as not being defined or being set equal to infinity after
the termination moment — whatever the formalization, we have here a change in the
course of the process that is not determined by changes in the external situation.
By the definition of deterministic processes, as soon as this happens (i.e., the i-th
response occurs) the remaining processes generally change their course as compared
to how they would have proceeded if the response did not occur.

A simple contemplation reveals that this is the only mechanism by which de-
terministic processes may develop differently in different trials with one and the
same external situation. Because of this, the definition of deterministic processes
can be made more specific: the value of R;(¢;Z) at time t > 0 only depends on
i,Z(u) |u<t and the list of response times (identified by responses) previous to the
moment ¢. The way the occurrence of a response affects the remaining processes
is different for different response arrangements. In the case when all responses are
mutually exclusive (like in arrangement B in Figure 1) the occurrence of a response
should “freeze” the upward development in all other processes — they must not in-
crease beyond their achieved values till the end of the trial, in order to be prevented
from crossing their criteria, however close these criteria might be to the achieved
positions.

For an arrangement like C in Figure 1 the pattern of interactions among the
processes may be more complex. Figure 4 provides an illustration involving three
processes, R (t;E), Ro(t;Z), and Rs(t;Z), whose development is shown for a par-
ticular Z and a particular triad of preset criteria. The graphs in this figure have
the same structure as Figure 3 (the axes are not labeled to avoid clutter). Small
circles, vertically aligned, indicate moments when one of the processes terminates.
The solid lines stemming from the origins show the development of the three pro-
cesses until R (t; Z) crosses its criterion; if this did not occur, the processes would
have continued as shown by the dashed lines. The process R (t; E) does terminate,
however, and this causes Ry(t;Z), and Ry(t;Z) to change their course (solid lines
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stemming from the first circle). The continuation after Ry(t;Z) crosses its criterion
is considered analogously.

Having established the meaning of the Grice-representability for multiple-res-
ponse arrangements, it turns out that the main result here is essentially a straight-
forward multivariate analogue of that for single-response arrangements. Whatever
the family of response time vectors T , it can be Grice-represented by
a vector of deterministic processes R (¢;Z), .
dent vector of criteria Cy, ..., C,. Moreover, the joint distribution function for the
criteria can be chosen arbltrarlly, except for some weak technical constraints that
I will not discuss here. Analogous to the single-response case, the sole role of
the criteria is to establish an n-dimensional system of coordinates for the vector
Ry(t;Z), ..., Ra(t; E). For instance, choosing the criteria Cy, ..., C,, stochastically
independent (which is always an option) corresponds to making these coordinates
orthogonal.

In Dzhafarov (1993), the Grice-representability is only proved for mutually
exclusive responses (like in arrangement B in Figure 1), that is, it is established
there for the situation where the only observable response time is associated with
the process that reaches its criterion first. The way to generalize this result to
arbitrary response arrangements is simple: it consists in successively applying
the Grice-representability analysis to intervals between responses (the intercom-
pletion times, in Townsend’s terminology; Townsend, 1974) while considering the
list of previously given responses and response times as part of the external situ-
ation. Let [I 1)(") a ] be the identity and time of the response given first,
[I2)(E), T(2)(E)); - [I(n ); T(n) ()] being defined analogously. Consider the fol-
lowing sequence:

I3, Tw(E)
{I2)(E), T)(3) | Ly (E), T(1y ()] = (i1, t1)}

=(int1)s -5 Ln-1)(E), T(n-y(B)] =
(in—1,tn-1)}-

The bivariate distribution of these “label and time” variables is uniquely com-
putable from the joint distribution of Ty(Z), ..., T,,(Z). Let a Z-independent vector
of criteria Cy, ..., C,, be chosen. The theory presented in Dzhafarov (1993) allows
one to compute processes Ry (t;Z), ..., R (t; Z) such that [I1)(E), Tpy(Z)] = (4,¢)
if and only if the process R;(¢;Z) crosses its criterion at time ¢ whlle the other
processes are still below their criteria.’ In other words, knowing [I(1)(Z), T(1)(Z)]
one can reconstruct the processes up to the first circle in Figure 4.

[l]

{I) (E), Ty G | L1y (Z), Tay(

5The actual computation of the processes involves differential equations that may or may not
be solvable analytically. If the criteria are chosen stochastically independent, however, a closed
form solution exists. The potential crossing times for these processes (i.e., the crossing times
for each of the processes conditioned upon its finishing first) are then stochastically independent
random variables whose distributions, save for technical details, are derived by different means in
Townsend (1976) and Marley and Colonius (1992).
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FIGURE 4. A Grice model for three non-exclusive responses
(explanations in text).

Assuming now that [I1)(Z), T(1)(E)] = (i1, 1), redefine the criteria as the
(n — 1)-component vector

Ci = Ra(81;8), ..., Ciy—1 = Riy—1(4158), Ciy 1 — Riy31(t15), ..., Cn — Ru(ty;

and take as a new multidimensional origin the moment ¢; and the positions

Bi1(t1;8), - Riy—1(t1;E), Riy 11 (815 E), .., Ru(t1; 5).
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Now applying Dzhafarov’s (1993) theory to the conditional “label and time” vari-
able {I15)(Z), T(2)(Z) | [11)(E), T(1)(E)] = (41,1)}, one reconstructs the continua-
tions for the n — 1 processes remaining after the first response, until one of them
crosses its criterion (as between the first and second circles in Figure 4). The follow-
ing steps are made analogously, leading from one process termination to another,
until one exhausts all the processes. Obviously, a complete Grice-representation
of the family of response time vectors Ty(Z), ..., T»(Z) requires that the entire
procedure is replicated across all possible sequences (i1,t1), ..., (in—1,t,—1) and for
all possible values of =.

Note that the stochastic relationship among the criteria does not determine the
stochastic relationship among observable response times — in addition one has to
know the pattern of interactions among the deterministic processes. For instance,
if the criteria are chosen stochastically independent, the times of different responses
are stochastically independent if and only if the processes representing them do not
interact (i.e., if the solid and dashed lines in Figure 4 coincide).®

The equivalence between the Grice and McGill modeling schemes for multiple-
response arrangements is established in the same way as it is for single-response
arrangements. Having chosen (essentially arbitrarily) some composition functions
G, ..., Gy, one can always McGill-represent response times T;(Z), ..., T,(Z) by
stochastic processes Ry computed as

Ri(t;5) = G{Ri(t;E), Ci(t)},  i=1,..,m,

so that the é-th response occurs when R;(¢; Z) crosses a unity level. Here, Cy(t), ...,
C,(t) is a stationary Z-independent vector of noise processes that, save for tech-
nicalities, can be chosen arbitrarily. The deterministic parts Ry (t; Z),..., Ry (t;E)
can be made to coincide with the deterministic processes in the Grice modeling
scheme if the joint distribution of Cy, ..., C,, in that scheme is chosen to be identi-
cal with the momentary joint distribution of Gy {1, Cy ()}, ..., G5, {1, Cy(t)} (see
Footnote 4).

Once again we come to the conclusion, this time with no restrictions on re-
sponse arrangements, that the most principal ideas underlying the construction of
process representations for response times (such ideas as “deterministic processes
cross random criteria,” “stochastic processes cross a fixed criterion,” “criteria are
stimulus-independent,” “processes horse-race for their individual criteria,” etc.) are
not empirically testable. In a sense one could say that they are testable in conjunc-
tion with other assumptions, but even this would not be satisfactory: Indeed, one
would not say, for example, that the non-falsifiable idea of representing a random
variable by its distribution function is testable in conjunction with the assump-
tion that the distribution is normal. The Grice and McGill representations, as
defined in this section, form universally applicable theoretical languages allowing
one to formulate within their frameworks all conceivable testable propositions. One

SIf the criteria are chosen stochastically independent but the processes do interact, then
the potential crossing times for the processes are stochastically independent random variables if
counted from the moment of the last response. Townsend and Ashby (1983) call this “within-stage
independence,” and Vorberg (1990) derives the distribution of the potential crossing times using
a combination of the step-by-step reconstruction just presented with the technique mentioned in
Footnote 5.
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may decide, of course, to formulate one’s models in other, equally non-falsifiable
languages (involving, e.g., processes interacting with criteria, criteria that are non-
stationary stochastic processes, criteria coupled with deadlines, etc.) but such a
decision cannot be construed as aimed at overcoming limitations of the Grice mod-
eling scheme or the simplest versions of the McGill modeling scheme — because no
such limitations exist.

3. SELECTIVE INFLUENCE

Although most of the concepts discussed in this section are quite general, the
primary focus is on a special case of (2), involving just two time components selec-
tively influenced by two factors:

T(a,8) £ Afa) o B(3). ®)
The decomposition rule here is, for convenience, presented as an algebraic operation
©. The decomposed duration T(a,3) is the only observable in this formulation;
for this reason I will refer to T(a,3) as the “response time,” even though it is
generally computed from a joint distribution of response times as explained in the
introduction. A precise definition of selectively influenced time components is given
below. The meaning, however, is obvious when A () and B(8) are stochastically
independent (for any given values of a, 3).

The traditional approach consists in treating the time components A(a) and
B(f) as durations of separate processes whose developments are selectively influ-
enced by the factors o and 3. It is often assumed, based on this interpretation,
that the decomposition rule in (5) can only be one of three operations: plus (the
two processes are serially concatenated), mazimum, or minimum (the two processes
develop in parallel until the termination of both of them, in the case of mazimum,
or either one of them, in the case of minimum).” To understand the merits of this
approach, one has to begin with clarifying the notion of processes selectively influ-
enced by different factors. Using, for simplicity, the language of the Grice modeling
scheme, the most general definition involving two such processes would be

Bu(t;,8) = 71 [0, R (u;0.8) luse, Ra(u; 0,8) Jusi,
Ry(t;0,8) = r2[B, Ri(u; ,8) lust, Ro(w; 0,8) Ju<i),

where I write & and /3 instead of more rigorous a(u) u<; and B(u) |u<t. For the
present purposes it is sufficient to only consider two special cases of this definition.
In the most restrictive case,

Ri(t0,8) = Rty o, I(1)],

Ro(t;a,3) = Ro[t; B, I ()],
where /;(t) is an indicator variable whose value is, say, 0 or 1 depending on whether
or not the i-th process has terminated by the moment ¢. A pair of such processes
is shown in Figure 5, whose structure is essentially the same as that of Figure 4.

Suppose that the two processes are linear on axes calibrated by some choice of the
criteria Cy, Cs (for now they may be thought to be stochastically independent). R;

(6)

“In the case of minimum the longer of the two durations is, of course, only “potential,” the
duration the process would have had had it finished first.
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FIGURE 5. Deterministic selectively influenced parallel processes
(explanations in text).
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develops with the rate v, (that only depends on «) if Ry is still in progress, but as
soon as Ry terminates (right panel) R; increments its rate to hv,; if Ry terminates
first (left panel), then R, whose rate before that was vg (only depending on )
increments it to hvg. The observable response time T(a,f) is the time when all
processing ends, that is, T(a,3) is the maximum of two durations: of the process
Ry and of the process Ry (a “parallel-AND” connection, in traditional terms).

The second special case of the definition of selectively influenced interacting
processes, (6), is slightly less restrictive:

Ri(t;,8) = Ralt; o, Jo(t)],
Ro(t; ) = Rolt; B, Ji ()],

where J;(t) equals the termination time for the i-th process if it has terminated by
the moment ¢, and J;(¢) is undefined (or equal to infinity) otherwise. A pair of such
processes is shown in Figure 6 (a “fixed-order serial” connection). Here, the process
Ry, while in progress, completely “inhibits” the process Ry (i.e., keeps it below the
minimum level of its criterion); after Ry has terminated, R begins developing and
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FIGURE 6. Deterministic selectively influenced fixed-order serial
processes (explanations in text).

i

the moment at which it reaches its criterion coincides with the observable response
time T(«,). Suppose that with some choice of the criteria C;, C» (again, for now
they may be considered stochastically independent), R; develops linearly with the
rate v, (that only depends on «); after it terminates, R, develops as

Rolt; B, (1)) = vg [t* — 1 (8)P)/" ,p > 1.
It is easy to derive that for the parallel-AND connection in Figure 5,
T(a,8) £ min{C1 /va, C2/vs}(1 — h™1) + max{Cy /va, Cs fug}h ",
whereas for the serial connection in Figure 6,

T(e8) £ [(C1/va)? + (Cafus)P]/7 .

Varying the values of h or p, one can relate the results to decomposition formula
(5) by renaming the terms depending only on v, and C; into A(a) and the terms
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depending only on vg and Cs into B(3). One can observe then that the parallel-
AND and fixed-order serial connections shown in Figures 5 and 6 yield a wide
variety of different decomposition rules o, including the familiar

T(a,8) £ maz{Ci/va, C2/vg} = maz{A(a),B(B)}, whenh=1,

T(a,8) £ {C1 /204 + Ca/205} = A(a) + B(B), when h =2,

T(a,8) £ min{Ci /va, C2/vg} = min{A(a),B(B)}, when h = 0,
for the parallel-AND connection, and

T(a,8) L {C1/va + C2/vg} = A(a) + B(B), when p=1,

T(a,8) L maz{C1/va, Ca/vg} = maz{A(a),B(B)}, when p = oo,
for the serial connection.

These simple examples demonstrate several things. First, they show that the
operations plus, minimum, and mazimum in the domain of time components need
not correspond to, respectively, serial, parallel-OR, and parallel-AND arrangements
in the domain of hypothetical processes, even if the selective influence by the fac-
tors a and [ holds both for the time components and for the processes. Second, by
setting h and p equal to values different from those above, one can see that the plus,
minimum, and mazimum do not have a privileged status among a variety of possi-
ble decomposition rules. Such decomposition rules as, say, the “Minkowski-norm”
operations [A (a)?+A(B)P]'/? are as realizable physically at the unconventional val-
ues of p = 2 or 3 as they are for the conventional p =1 or co. Third, the examples
show that the time components in (5) can characterize certain processes without
being their durations: for instance, neither of the two additive time components
in the case h = 2 of the parallel-AND connection is the duration of either of the
two processes. Finally, the examples show that selectively influenced (interacting)
processes need not have selectively influenced durations. It is easy to check that
the durations Ty(a,() and Ta(a,3) of (the non-zero portions of) R, and Ry are
not selectively influenced by « and 3, because of which it is not surprising that,
say, for h =2 in the paralle]l-AND connection

max{T1(a.5), Ta(e,8)} £ A(e) + B(B),
or that for p = oo in the serial connection
T1(,9) + Ta(a,8) £ max{A(e), B(8)}.

Having established that the relationship between selectively influenced pro-
cesses and selectively influenced time components is both indirect and complex, it
seems reasonable to dissociate these two issues. The approach suggested in Dzha-
farov and Schweickert (1995) consists in treating decomposition (5) as a structural
property of the observable response time, T(«,(3), rather than evidence for a partic-
ular processing architecture. A time component, say A(a), of T(a,3) can be viewed
as a “would-be” version of T(a,8): The response time that would be observed if
it were only affected by one factor (in this case, ). The problem of decomposing
T(a,3) according to (5) becomes, therefore, the one of determining the algebraic
operation by which the factual response time T(«,3) can be computed from its two
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“would-be” forms. The first step in dealing with this problem is to define the very
notion of the time components being selectively influenced by different factors; so
far, T only used this notion for the case of stochastically independent components.
The account below is a systematic version of those given in Dzhafarov (1992) and
Dzhafarov and Schweickert (1995).

Any two random variables (A, B) whose joint distribution depends on some set
of variables = can be presented as

(A;B) = {A(E, Py, Py), B, Py, P»)},
where Py, P5 are stochastically independent random variables uniformly distributed
between 0 and 1, and A, B are some functions.® (This simple mathematical fact has
interesting philosophical implications: all stochasticity in the dependence of some
random variables on external factors can be relegated to random variables that do
not depend on these factors.)

When = is (a, ), it is natural to adopt the following definition: A and B are
selectively influenced by factors a and 3, respectively, if (and only if) they can be
presented as

(A,B) = {A(a,P1,P»), B(8,P1,Py)}. ()
A special case of this representation is obtained when the function 4 depends on
Py, P, only through some transformation C; = C,(Py,P5), and the function B
only through some transformation Cy = Cy(P1,Ps):

(A;B) = {4%(a, C1), B*(8,C)}, ®)

where the joint distribution of C1,Cy does not depend on either a or 4. Thus
in all examples discussed earlier in connection with Figures 5 and 6 one can drop
the requirement that C; and C, (the criteria) be stochastically independent: The
components Cy /v, and Cy/vg, for instance, are selectively influenced by a and 8
irrespective of the joint distribution of C; and C,. The essence of this definition
is that the selectivity in the time components’ dependence on external factors and
the components’ stochastic interdependence are logically orthogonal.

It is useful to relate this definition to two other concepts proposed in the lit-
erature with the intent of capturing the same relationship. The first is the mar-
ginal selectivity (Townsend & Schweickert, 1989), a weak requirement that the
marginal distributions of the components A and B in (5) only depend on a and
3, respectively. This is obviously implied by the above definition of selective influ-
ence. The second notion is that of indirect nonselective influence (Townsend, 1984;
Townsend & Ashby, 1983; Townsend & Thomas, 1994) which takes place when A
and B are stochastically interdependent but either the conditional distribution of
A|B only depends on « or the conditional distribution of BJ|A only depends on £.
The example associated with Figure 6 provides an illustration: If the criteria C;

8This proposition is a multivariate version of Smirnov’s fundamental representation used
in Monte-Carlo simulations (e.g., Yermalov, 1971). Let, for example, B be the inverse of the
marginal distribution function for B (depending on Z). Then B = B(Z, P3). Let Q be the inverse
of the conditional distribution function for A given a value of B (also depending on Z). Then
A= Q[=,Py | B(Z,P»)], which can be written as A(Z,P1,P5). In the text I use a symmetrical
version of this representation. Observe that by this construction A and B can always be made
increasing in, respectively, P1 and P». The generalization to more than two components is trivial.
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and C, are stochastically independent, then the duration of the second process,
[(C1/va)? + (C2/vg)?]*/?, does not depend on « other than through the duration
of the first process, Ci/v,. (This is not true, however, for interdependent C; and
C,.) It is easy to see that the indirect nonselective influence and the selective in-
fluence in the sense of (7) or (8) are mutually exclusive concepts. The components
Ci /v, and Cy/vg, to use this example again, are selectively influenced by o and
A3 but for interdependent C; and C, the conditional distribution of C; /v, given
Cs,/vg = const will depend on both a and 3. The indirect nonselective influence,
therefore, must not be treated as a generalization or even analogue of selective
influence.

4. DECOMPOSITIONS

For any given decomposition rule ¢, decomposition (5) is not well-defined unless
one specifies the stochastic relationship between the selectively influenced response
time components A(a) = A(a,P1,P») and B(3) = B(3,P1,P2), as defined in (7).
This stochastic relationship is determined by the functions A and B since the joint
distribution of Py, Py is fixed. A general formulation of the decomposition prob-
lem, therefore, is as follows: given (a family of) observable response times T(a,3),
determine all (A4, B, o) such that decomposition (5) holds. There is no known way
of solving this problem without either severely restricting the class of possible re-
sponse time distributions (which is not an option as the present work only deals
with distribution-free considerations), or severely restricting the class of possible
triads (A, B,¢). The following is an account of results established for two special
versions of the decomposition problem. In one of them, the decomposition rule ¢ is
being sought within a wide class of operations under the assumption that the func-
tions A and B induce a known (and very simple) stochastic relationship between
A(a) and B(3). In another, the choice is being made between two such simple
forms of stochastic relationship under the assumption® that the decomposition rule
is known.

The two simple forms of stochastic relationship just mentioned are (stochastic)
independence and perfect positive (stochastic) interdependence, formally obtained
as special cases of representation (8). If C; and C,, that can be referred to as
the “sources of random variability,” are stochastically independent (in symbols,
C;LCy,), then so are the time components, A(a)LB(8). If C; =C, (i.e., the time
components have a common source of random variability) and if the functions A*
and B* are increasing transformations of each other (for any given «, 3), then
we have the case of perfect positive interdependence, in symbols, A(a)||B(8). In
this case the time components vary randomly but always “increase and decrease
together.”

The theory presented in Dzhafarov and Schweickert (1995) is aimed at the
recovery of the decomposition rules for which

T(e,8) £ A(e) o B(8), A() - B(B), (9)

9Here and in the previous sentence, the “assumptions” should be understood as part of the
definition of the components for which one wishes to determine the unknown connecting operation
or unknown stochastic relationship.
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where > stands either for L (decomposition into independent components) or for
|| (decomposition into perfectly positively interdependent components). The the-
ory requires that the distribution of T(«,3) be known at the four treatments of a
2x2 factorial design, (a1,a2)x(B1,082), and that both factor manipulations be ef-
fective. Denoting Ty; =T(a;,3;), i = 1,2,j = 1,2, the effectiveness means that the
unordered pair of the random variables (T1;,T2,) differs from the pair (T12,T21).10
The following proposition is referred to as the (¢)-test under the stochastic

relationship
Ti1 0T £ Tiz 0Ty (T11 2 Ty, Tr2 = Tan). (10)

If this proposition holds, then the (o)-test is called successful under the stochastic
relationship £

It is convenient to explain the meaning of (10) on a sample level, as this si-
multaneously provides a lead to a statistical realization of the decomposition tests
(Cortese & Dzhafarov, 1996; Dzhafarov & Cortese, 1996). Let {Tzlj, s T35} be a
random sample from Tj; (i = 1,2,j = 1,2). Pairing the sampled values for T1;
with those for Tay (in no particular order) and doing the same with Ty, and Ty,
one forms two sequences,

{Ti; © T3, .., Thy 0 T3} and {Ts 0 Th-, TS, o T3 }. (11)

The (o)-test is successful under independence, if and only if the empirical dis-
tribution functions based on these two sequences converge to one and the same
population distribution function as n — co. The limit distribution is, obviously,
that of T110T3s (T11LTos) and T190Ty; (T12LT;). For perfect positive interde-
pendence the sample-level account is essentially the same, except that the samples
have to be ordered first, {Tg}) L < TE?)L and the paired values should have
identical quantile ranks. The (o)-test is successful under perfect positive interde-
pendence if and only if the empirical distribution functions based on thus formed
sequences

(T o TH) < . < TR o THY and (T o T <. < TH 0T} (12)
converge to one and the same population distribution function as n — oco. The
limit distribution here is that of T1;0Tss (T1y [[T92) and T120Ts; (Tial|Tay).

Assume now that a o b is an associative and commutative operation, such as
min{a, b}, maz{a,b},a+ b,a x b, (a* + b*)1/* etc. It is easy to establish that if
T(,f3) is (¢)-decomposable under a stochastic relationship —-, then for any 2x2
design the (o)-test is successful under the same . For the case when o is addition
and -~ is L (additive decomposition into independent components) this statement
has been long since known (Ashby & Townsend, 1980; Roberts & Sternberg, 1992),
but even for mazimum and minimum, the “classical” alternatives to addition, the
precise analogy has been overlooked.

OIn fact the requirement is stronger: one of the identities maz{Fia(t), Fa1(t)} =
maz{F11(t), Fo2(t)} and min{Fia(t), F21(t)} = min{F11(t), F2(t)} must not be satisfied (Fj;
being the distribution function for Ty;). For all practical purposes, however, all one has to be
concerned with is the effectiveness of the factor manipulations.
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The just formulated necessary condition for (¢)-decomposability can, in fact,
be generalized beyond the associative and commutative operations. Let us call
an operation * renderable by an operation o if for some functions f and g, both
increasing or both decreasing,

axb= f(a)og(b).

For example, the non-associative and non-commutative operations pa + ¢b and
aP + b?, where p and ¢ are constants of the same sign, are both renderable by ad-
dition. It is easy to verify now that the following generalization holds: If T(«,3)
is (*)-decomposable under a stochastic relationship —, and if * is renderable by an
associative and commutative operation o, then for any 2x2 design the (o)-test is
successful under the same . The verification is based on observing that f[A(a)]
and g[B(f3)]) are selectively influenced by o and 8 under the same stochastic rela-
tionship (L or ||) as A(e) and B(3) themselves.

Since a single associative and commutative operation can render many different
operations, it is clear that in this trivial sense decomposability (9) is not unique.
It is more interesting, however, to find out whether a response time T(a,3) can
be simultaneously (o)-decomposed and ({)-decomposed (under one and the same
stochastic relationship i) when ¢ and ¢ are associative, commutative, and mutu-
ally nonrenderable. The answer to this question turns out to be negative, provided
that the two operations are “well-behaved.” Dzhafarov and Schweickert (1995) give
the following sufficient (but not necessary) conditions for the “well-behavedness.”
First, o and ¢ belong to the class of simple operations, that consists of all addition-
like operations a®b (i.e., those continuous in both arguments, strictly increasing in
both arguments, and mapping onto their domains) and appended to them min{a, b}
and maz{a,b}.'! Second, the operations o and < are algebraically distinct, which
means that for any u and v, there is at most one unordered pair (z,y) such that
zoy = u and £y = v. These conditions are not very stringent: theoretically inter-
esting competing decomposition rules are likely to be algebraically distinct simple
operations. Under these conditions the decomposition rule uniqueness holds: the
(o)-decomposability excludes the (¢)-decomposability, under the same . In fact,
this result follows from a yet stronger one according to which the (¢)-test and
({)-test for any two operations with postulated properties cannot be successful
simultaneously under the same =

The decomposition rule uniqueness does not imply any form of uniqueness for
the time components. Generally, if a response time T(a,3) is (¢)-decomposable un-
der -, then one can find an infinity of the component times A(a), B(f), into which
this decomposition can be made. Nor does the decomposition rule uniqueness imply
a form of uniqueness for the stochastic relationship. The latter should be treated
as part of the time components’ definition, and one can construct examples when
T(a,3) is both (¢)-decomposable under independence and (<)-decomposable under
perfect positive interdependence (including the possibility that ¢ and < coincide).

M Minimum and mazimum can be construed as limiting cases of addition-like operations.
The results of Dzhafarov and Schweickert (1995) can be generalized to other limiting operations,
but the extent of such a generalization is not quite clear.
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An obvious but important consequence of the decomposition rule uniqueness
is that decomposition (9) is an empirically falsifiable proposition rather than a de-
scriptive characterization. If the four distributions of T(w,() in a 2x2 design are
known precisely, and if the factor manipulations are found to be effective, then the
decomposability can be verified or falsified for any decomposition rule and under
cither of the two forms of stochastic relationship. Moreover, in a list of simple
operations that are pairwise algebraically distinct, all but at most one of them have
to be rejected as true decomposition rules under a given form of stochastic rela-
tionship. When the distributions of T(«,3) in a 2x2 design are only known on a
sample level, one should expect that the difference between the two sequences in
(11) or (12), depending on the form of -, will be small if ¢ is the true decompo-
sition rule and large if it is not. A sampling distribution theory for this difference
(specifically, the Smirnov maximum distance between the empirical distribution
functions) developed in Dzhafarov and Cortese (1996) allows one to formally test
the hypothesis that a given operation is the true decomposition rule. In a Monte-
Carlo simulation study Cortese and Dzhafarov (1996) evaluate the minimum size
of the samples {Tij, T3} (i =1,2,5 = 1,2) at which the true decomposition rule
chosen from the “classical” list {+,min,maz} yields a reliably smaller difference
between the two sequences in (11) or (12) than the remaining two operations. The
results indicate that this minimum sample size is realistically achievable provided
the effectiveness of the factor manipulations is sufficiently high'?: the minimum
sample size required is on the order of 10> under independence and on the order of
10% under perfect positive interdependence.

Returning to population-level considerations, a successful (¢)-test being a nec-
essary condition for (¢)-decomposability (under the same form of --), a natural
question arises as to whether this condition is also sufficient. Dzhafarov and Schwe-
ickert (1995) show that the answer to this question is affirmative for all simple op-
erations under perfect positive interdependence: Under this stochastic relationship,
if a (o)-test is successful, then T(«a,3) is (¢)-decomposable (under the same rela-
tionship). With some technical qualifications, the same is true under independence
for the operations minimum and mazimum: If o is one of these two operations,
then a successful (¢)-test under independence implies (¢)-decomposability under
independence. For addition-like operations, however, this result does not hold.
For instance, it is possible that the (+)-test under independence (i.e., the Ashby-
Townsend-Roberts-Sternberg “summation test”) is successful but that the response
time cannot be additively decomposed into stochastically independent time compo-
nents. Observe that due to the decomposition rule uniqueness, when this happens,
the response time cannot be decomposed under independence by any other (alge-
braically distinct) operation either — in a sense, this response time is absolutely
indecomposable into selectively influenced components.

12The construction of an effectiveness measure, that is, a measure of difference between
{F12(t), Fa1(t)} and {F11(t), Fa2(t)} taken as unordered pairs (see Footnote 10), is a difficult
and rather subtle issue that I will not discuss here. Obviously, if the factor manipulations are not
effective at all, then the true decomposition rule cannot be distinguished from any other operation.



PROCESS REPRESENTATIONS AND DECOMPOSITIONS 275

This concludes the discussion of the main results related to the problem of
determining the decomposition rule under a known form of stochastic relationship.
The reverse of this problem, determining the form of stochastic relationship under
a known decomposition rule, appears substantially less tractable, even with as lim-
ited a choice as that between independence and perfect positive interdependence.
Dzhafarov (1992) and Dzhafarov and Rouder (1996) propose a solution for a special
case of this problem, based on an experimental design and theoretical assumptions
very different from those discussed above. Suppose that « is the only factor in an
experiment, and that it forms a “unidimensional strength continuum” with respect
to some response time T(a); that is, « is or can be transformed into a real-valued
variable whose increase causes T(«) to decrease in all quantiles. Consider an ad-
ditive decomposition of T(a) into an a-dependent and a-independent components
(a unifactorial version of selective influence):

T(a) £ Aa) +B.
The results described below also apply to other addition-like operations because
they can be transformed into addition by a monotonic transformation of the com-
ponents (which would preserve both selectivity and stochastic relationship).

Using the asymmetric representation mentioned in Footnote 8, which here is
more convenient than (7),

{A(@),B} = {A(a, Py, P2), B(P2)},
one can see that independence and perfect positive interdependence correspond to
A(a)lB & A(a, P, P;) = A*(a,Py),
A(@)||B & A(a, Py, Py) = A*(a,P,)
(in the latter case A* is assumed to be increasing in the second argument).

It turns out that one can distinguish between these two possibilities if the
following requirements are satisfied: as a increases, A(a, pi,p2) decreases and van-
ishes for any pair of values pi,ps of Py,Ps, and it vanishes with asymptotically
proportional rates for any two such pairs (py,p2) and (pf,p3). It can be proved
then that

Tp(a) = By + T(p)s(a) + ofs(a)}, (13)
where T),(a) and B, are the rank-p quantiles (0 < p < 1) of T(a) and B, respec-
tively, s(a) is a strictly decreasing and vanishing positive function, and T'(p) is a
coefficient such that

A(a)LB < I'(p) = const
A(a)||B & I'(p) increases in p.

The transformation s(a) can be evaluated in several ways (Dzhafarov, 1992),
but one can circumvent this problem altogether by observing that s(a) in (13) can
be replaced with any asymptotically linear transformation thereof, and that Tp(a)
for a fixed rank p or some average T,(a) of T),(c) across a certain interval of ranks
present observable examples of such linear transformations. Thus plotting Tp(a)
against T, () one gets T

Ty(a) = [Bp = %B.] + @T.(a) +o{s(a)},
. .
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where the subscript dots indicate averaging across some interval of quantile ranks.
The result is that the tangent lines drawn to several Tj(a)-versus-T,(cr) curves
at progressively smaller values of s(a) (i.e., progressively higher values of «) tend
to a parallel pattern of unit-slope lines under independence and to a diverging
fan pattern, with slopes changing from below unity to above unity, under perfect
positive interdependence. Dzhafarov and Rouder (1996) show how this prediction
can be converted to a practical test, when T(«a) are only known on a sample level
and only for several distinct values of .

5. POSSIBLE DEVELOPMENTS

Here, I mention a few directions of research that seem to stem naturally from
the discussion above.

(A) A physicalist account of selectively influenced interacting processes. Repre-
sentation (6) is obviously too flexible, and it is desirable to have a systematic way of
subjecting it to restrictions that could lead to general but falsifiable theories. One
possible approach consists in treating all interactions between processes as local in
time, so that changes in the levels of the processes at a given moment only depend
on the characteristics of these processes (levels, velocities, accelerations, etc.) at
the same moment. This approach leads to differential equations of the form

Ri(t) = 1o, Ra(t), Ra(t), Ra(t), Ra(2), Ra(t),...]
Ro(t) = r[B, Ro(t), Ru(t), Ru(2), Ba(t), Ri (2), ]

subject to certain initial conditions. The levels of the processes in such a represen-
tation may be defined in terms of their quantile ranks in relation to their respective
criteria, or on scales calibrated by a specific choice of the criteria.

(B) Decompositions into more than two components. Even with only two fac-
tors involved, the general form of the response time decomposition into selectively
influenced components is not (5) but rather

T(a,8) £ A(a) e B(8)OC = A(a,Py, Py, P3) o B(B,Py, Py, P3)OC(P1, Ps, Py),

with some order of the operations implied. The Dzhafarov-Schweickert decompo-
sition tests allow one to recover some such decompositions under perfect positive
interdependence of all three components. For instance, in the decomposition

T(a,8) £ maz{A(a).B(8)} +C,

if A[|B||C, then the operation maz can be recovered by the (maz)-test under per-
fect positive interdependence, because the right-hand expression is maz{A(a)+C,
B(8)+C} and A(a)+C|B(8)+C. Such a recovery is not possible, however, if
A1B1C, because then A(a)+Cand B(8)+C are interdependent in a complex
way. Although partial results in dealing with this and similar problems are avail-
able (Colonius & Vorberg, 1994; Townsend & Nozawa, 1995), it is yet to be seen
whether some generalizations of the Dzhafarov-Schweickert tests can be developed
for at least three-component decompositions A(a)oB(8)$C or A(a)oB(3)OC(y)
under stochastic independence.
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(C) Decompositions under other forms of stochastic relationship. Dealing with
stochastic relationships other than independence and perfect positive interdepen-
dence is arguably the most challenging problem in the context of time decomposi-
tions. Existence and uniqueness properties of decompositions such as

T(a,0) £ A(P1,Py) o B(3, Py, Py)

remain unknown if one imposes no or only mild constraints on the form of the func-
tions A and B and on the decomposition rule o. It is possible that not very much
can be achieved in this direction, and the abstract algebraic approach of Dzhafarov
and Schweickert (1995) will have to be eventually abandoned in favor of recover-
ing architectures of selectively influenced interacting processes, perhaps along the
“physicalist” lines suggested earlier in this section. It is also possible that the two
simplest forms of stochastic relationship considered in this chapter will prove to be
sufficient for describing a good deal of empirical data, perhaps in conjunction with
strict limitations imposed on the shape of response time distributions. It would be
highly beneficial, therefore, to develop powerful techniques for determining, at least
in very simple situations, whether independence or perfect positive interdependence
is truly present, as opposed to choosing between them under the assumption that
one of them holds.
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