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Abstract

We present a formal theory of contextuality for a set of random variables grouped into dif-
ferent subsets (contexts) corresponding to different, mutually incompatible conditions. Within
each context the random variables are jointly distributed, but across different contexts they
are stochastically unrelated. The theory of contextuality is based on the analysis of the
extent to which some of these random variables can be viewed as preserving their identity
across different contexts when one considers all possible joint distributions imposed on the
entire set of the random variables. We illustrate the theory on three systems of traditional
interest in quantum physics (and also in non-physical, e.g., behavioral studies). These are
systems of the Klyachko-Can-Binicioglu-Shumovsky-type, Einstein-Podolsky-Rosen-Bell-type,
and Suppes-Zanotti-Leggett-Garg-type. Listed in this order, each of them is formally a special
case of the previous one. For each of them we derive necessary and sufficient conditions for
contextuality while allowing for experimental errors and contextual biases or signaling. Based
on the same principles that underly these derivations we also propose a measure for the degree
of contextuality and compute it for the three systems in question.

Keywords: CHSH inequalities; contextuality; Klyachko inequalities; Leggett-Garg in-
equalities; probabilistic couplings; signaling.

1 Introduction
A deductive mathematical theory is bound to begin with definitions and/or axioms, and one is free
not to accept them. We propose a certain definition of contextuality which may or may not be
judged “good.” Ultimately, its utility will be determined by whether it leads to fruitful mathematical
developments and interesting applications. Our definition applies to situations where contextuality
is traditionally investigated in quantum physics: Klyachko-Can-Binicioglu-Shumovsky-type systems
of measurements [1], Einstein-Podolsky-Rosen-Bell-type systems [2–6], and Suppes-Zanotti-Leggett-
Garg-type systems [7,8]. We will refer to these systems by abbreviations KCBS, EPRB, and SZLG,
respectively. In the absence of what we call “inconsistency,” our contextuality criteria (necessary and
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sufficient conditions) coincide with the traditional inequalities. But our criteria also apply to situa-
tions with measurement errors, contextual biases, and interaction among jointly measured physical
properties (“signaling”). Moreover, the logic of constructing our criteria of contextuality leads to a
natural quantification of the degree of contextuality in the three types of systems considered.

This paper can be viewed as a companion one for Ref. [9], in which we prove a general criterion
for contextuality in “cyclic” systems of which the systems just mentioned (KCBS, EPRB, and SZLG)
are special cases. However, we use here a different criterion for contextuality in these three types of
systems, whose advantage is in that it is directly related to the notion of the degree of contextuality.
At the end of this paper we conjecture (see Remark 40) a generalization of the criterion and the
measure of the degree of contextuality to all “cyclic” systems.

The notion of probabilistic contextuality is usually understood to be about “sewing together”
random variables recorded under different conditions. That is, it is viewed as answering the question:
given certain sets of jointly distributed random variables, can a joint distribution be found for their
union? The key aspect and difficulty in answering this questions is that different sets of random
variables generally pairwise overlap, share some of their elements. In Ernst Specker’s [10] well-
known example with three magic boxes containing (or not containing) gems, which we present here
in probabilistic terms, we have three binary random variables, A,B,C, that can only be recorded
in pairs,

X = (A,B) , Y = (B,C) , Z = (A,C) . (1)

That is, the joint distribution of A and B in X is known, and the same is true for the components
of Y and Z. We ask whether there is a joint distribution of all three of them, (A,B,C), that agrees
with the distributions of X, Y , and Z as its 2-component marginals. In Specker’s example the boxes
are magically rigged so that (assuming A,B,C attain values +1/-1, denoting the presence/absence
of a gem in the respective box)

Pr [A = −B] = 1, Pr [−B = C] = 1, Pr [C = −A] = 1, (2)

which, obviously, precludes the existence of a jointly distributed (A,B,C). We may say then that
the system of random variables (1) exhibits contextuality.

On a deeper level of analysis, however, contextuality is better to be presented as a problem
of determining identities of the random variables recorded under different conditions. That is, it
answers the question: is this random variable (under this condition), say, A in X, “the same as”
that one (under another condition), say, A in Y , or is the former at least “as close” to the latter as
their distributions in the two pairs allow?

This deeper view is based on the principle we dubbed Contextuality-by-Default, developed
through a series of recent publications [11–18]. According to this principle, any two random vari-
ables recorded under different (i.e., mutually exclusive) conditions (treatments) are labeled by these
conditions and considered stochastically unrelated (defined on different sample spaces, possessing
no joint distribution). Thus, in Specker’s example with the magic boxes, we need to denote the
observed three pairs of random variables not as in (1), but as

X = (AX , BX) , Y = (BY , CY ) , Z = (AZ , CZ) . (3)

Of course, any other unique labeling making random variables in one context distinct from random
variables in another context would do as well. The notion of stochastic unrelatedness within the
framework of the Kolmogorovian probability theory has been explored in the quantum-theoretic
literature, notably by A. Khrennikov [22–24].
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The use of this notion within the present conceptual framework is based on the fact that
stochastically unrelated random variables can always be coupled (imposed a joint distribution
upon) [13, 14, 19–21]. This can generally be done in multiple ways, and no couplings are privi-
leged a priori. For Specker’s example, one constructs a random 6-tuple

S = (AX , BX , BY , CY , AZ , CZ) (4)

such that its 2-marginals X,Y, Z in (3) are consistent with the observed probabilities. In particular,
they should satisfy

Pr [AX = −BX ] = 1, Pr [−BY = CY ] = 1, Pr [CZ = −AZ ] = 1. (5)

Such a coupling S can be constructed in an infinity of ways. To match this representation with
Specker’s original meaning, we have to impose additional constraints on the possible couplings.
Namely, we have to require that S in (4) be constructed subject to the following “identity hypoth-
esis”:

Pr [AX = AZ ] = Pr [BX = BY ] = Pr [CY = CZ ] = 1. (6)

Such a coupling S, as we have already determined, does not exist, and we can say that the system
of the random variables (3) exhibits contextuality with respect to the identity hypothesis (6).

One might wonder whether this re-representation of the problem is useful. Aren’t the questions

“Let me see if I can ‘sew together’ (A,B), (B,C), and (A,C) into a single (A,B,C),”

and

“Let me see if I can put together (AX , BX) , (BY , CY ), and (AZ , CZ) into a single S
in (4) under the identity hypothesis (6),”

aren’t they one and the same question in two equivalent forms? Clearly, they are. But there are
two (closely related) advantages of the second formulation:

1. It can be readily generalized by replacing the perfect identities in (6) with less stringent or
altogether different constraints; and

2. for any given constraint, if a coupling satisfying it does not exist, this approach allows one to
gauge how close one can get to satisfying it, i.e., one has a principled way for constructing a
measure for the degree of contextuality the system exhibits.

To illustrate these interrelated points on Specker’s example, observe that the identity hypothesis
(6) cannot be satisfied if the system is “inconsistently connected,” i.e., if the marginal distribution
of, say, AX is not the same as that of AZ . This may happen if the magic boxes somehow physically
communicate (e.g., the gem can be transposed from one of the boxes being opened to another),
and the probability of finding a gem in the first box (A = 1) is affected differently by the opening
of the second box (i.e., in context X) and of the third box (in context Z). AX and AZ may have
different distributions also as a result of (perhaps magically induced) errors in correctly identifying
which of the two open boxes contains a gem: e.g., when boxes i and j are open (i < j), one may
with some probability erroneously see/record the gem contained in the ith box as being in the
jth box. We may speak of “signaling” between the boxes in the former case, and of “contextual
measurement biases” in the latter. In either case, the requirement (6) cannot be satisfied for AX
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and AZ , and to determine this one does not even have to look at the observed distributions of
(AX , BX) , (BY , CY ), and (AZ , CZ). However, in either of the two cases one can meaningfully ask:
what is the maximum possible value of Pr [AX = AZ ] that is consistent with the distributions of
AX and AZ (and analogously for BX , BY and CY , CZ), and are these maximum possible values
consistent with the observed distributions of (AX , BX) , (BY , CY ), and (AZ , CZ)?

We will proceed now to formulate these ideas in a more rigorous way.

2 Systems, Random Bunches, and Connections
Let X = (A,B,C, . . .) be a (generalized) sequence1 of jointly distributed random variables, called
components of X. We will refer to X as a (random) bunch. Let S be a set of random bunches

X = (AX , A
′
X , A

′′
X , . . .) , Y = (BY , B

′
Y , B

′′
Y , . . .) , Z = (CZ , C

′
Z , C

′′
Z , . . .) , . . . (7)

(of arbitrary cardinalities), with the property that they are pairwise componentwise stochastically
unrelated. The term means that no component of one random bunch is jointly distributed with any
component of another.

Remark 1. Intuitively, each random bunch corresponds to certain conditions under which (or con-
texts in which) the components of the bunch are jointly recorded; and the conditions corresponding
to different random bunches are mutually exclusive.

Any pair {A,B} such that A and B are components of two distinct random bunches in S
is called a (simple) connection. A set C of pairwise disjoint connections is called a simple set of
(simple) connections.

Remark 2. Intuitively, a connection indicates a pair of random variables A and B that represent
“the same” physical property, because of which, ideally, they should be “one and the same” random
variable in different contexts. However, the distributions of A and B may be different due to signal-
ing (from other random variables in their contexts) or due to contextual measurement biases. Note
that the elements A and B of a connection never co-occur, i.e., they possess no joint distribution,
and their “identity” therefore can never be verified by observation.

Together, (S,C) form a system (of measurements, or of random bunches). Without loss of
generality, we can assume that S contains no “non-participating” bunches, i.e., each random bunch
X has at least one component A that belongs to some connection {A,B} in C. In particular, if set
C is finite, then so is set S (even if the number of components in some of the bunches in S is not
finite).

Example 3 (KCBS-system). A KCBS-system [1] consists of five pairs of binary (±1) random
variables,

S = {(V1,W2) , (V2,W3) , (V3,W4) , (V4,W5) , (V5,W1)} . (8)

Abstracting away from the physical meaning, the schematic picture below shows five radius-vectors,
each corresponding to a distinct physical property represented by a binary random variable. They
can only be recorded in pairs (8), and each of these pairs corresponds to vertices connected by an

1A sequence is an indexed set, and “generalized” means that the indexing is not necessarily finite or countable. We
try to keep the notation simple, omitting technicalities. A sequence of random variables that are jointly distributed is
a random variable, if the latter term is understood broadly, as anything with a well-defined probability distribution,
to include random vectors, random sets, random processes, etc.
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edge of the pentagram. In accordance with the Contextuality-by-Default principle, we label each
variable both by index i ∈ {1, . . . , 5} indicating the radius-vector (physical property) it corresponds
to, and by the context, defined by which of the two pairs it enters. We use notation V i in one of
these pairs and Wi in another. For instance, i = 2 is used to label V2 in the pair (V2,W3) and W2

in the pair (V1,W2). With this notation, the simple set of the connections of interest in this system
is

C = {(V1,W1) , (V2,W2) , (V3,W3) , (V4,W4) , (V5,W5)} . (9)

In the ideal KCBS-system, each recorded pair, say, (V1,W2), can attain values (+1,−1), (−1,+1),
(−1,−1), but not (+1,+1). In our analysis, however, we allow for experimental errors, so that the
“pure” KCBS-system is a special case of a more general system in which Pr [V1 = +1,W2 = +1]
may be non-zero. In the ideal KCBS-system the probabilities are computed in accordance with
the principles of quantum mechanics, so that the distribution of (Vi,Wj) in (8) is determined by
the angle between the radius vectors i and j, and the distributions of Vi is always the same as
the distribution of Wi (i = 1, . . . , 5). In our analysis, however, we allow for “signaling” between
the detectors and/or for “contextual measurement biases,” so that, e.g., V1 in (V1,W2) and W1 in
(V5,W1) may have different distributions.
Remark 4. There is no “traditional” contextual notation for the KCBS system, but one can think
of a variety of alternatives to our V −W scheme, e.g., denoting the ith measurement in the context
of being conjoint with the jth measurement by Rji , as we do in Ref. [9].

Example 5 (EPRB-systems). An EPRB-system [2–6] consists of four pairs of binary (±1) random
variables,

S = {(V1,W2) , (V2,W3) , (V3,W4) , (V4,W1)} . (10)
Again we abstract away from the physical meaning, involving spins of entangled particles. In the
schematic picture below each direction (1 or 3 in one particle and 2 or 4 in another) corresponds
to a binary random variable. They are recorded in pairs {1, 3} × {2, 4}, so each random variable
participates in two contexts, and is denoted either Vi orWi (i ∈ {1, 2, 3, 4}) accordingly. The simple
set of connections of interest is

C = {(V1,W1) , (V2,W2) , (V3,W3) , (V4,W4)} . (11)
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Here, (Vi,Wj) may attain all four possible values (±1,±1). In the ideal system with space-like
separation between the recordings of Vi and Wj , the distribution of Vi is always the same as that
of Wi (i = 1, . . . , 4). However, we allow for the possibility that the measurements are time-like
separated (so that direct signaling is possible), as well as for the possibility that the results of the
two measurements are recorded by someone who may occasionally make errors and be contextually
biased. Thus, one may erroneously assign +1 to, say, V1 = −1 more often than to W 1 = −1.

Remark 6. The contextual notation for the EPRB-systems adopted in our previous papers [11–18]
is (Aij , Bij), i, j ∈ {1, 2}, where A and B refer to measurements on the first and second particles,
respectively. The first index refers to one of the two A-measurements (1 or 2), the second index
refers to one of the two B-measurements (1 or 2). So the non-contextual (misleading) notation for
(Aij , Bij) would be (Ai, Bj). In relation to our present notation, A11 corresponds to V1, and A12

(the same property in another context) to W1; A21 corresponds to W3, and A22 (the same property
in another context) to V3; and analogously for Bij .

Example 7 (SZLG-system). An SZLG-system [7,8] consists of three pairs of binary (±1) random
variables,

S = {(V1,W2) , (V2,W3) , (V3,W1)} . (12)

The three random variables are recorded in pairs, the logic of the notation being otherwise the same
as above. The simple set of connections of interest in this system is

C = {(V1,W1) , (V2,W2) , (V3,W3)} . (13)

In the Leggett-Garg paradigm proper [7], the three measurements are made at three moments of
time, fixed with respect to some zero point, as shown in the schematic picture below. This is, how-
ever, only one possible physical meaning, and we can think of any three identifiable measurements
performed two at a time.

Again, we allow for the possibility of signaling (which is predicted by the laws of quantum
mechanics in some cases, e.g., for pure initial states, as shown in Ref. [26]), i.e., earlier measurements
may influence later ones. And, again, we allow for measurement errors and contextual biases:
knowing, e.g., that W2 is preceded by V1 and is not followed by another measurement, and that V2
is followed by W2 and is not preceded by another measurement, may lead one to record V2 and W2

differently even if they are identically distributed “in reality.”

Remark 8. The contextual notation for the LG-systems adopted in Ref. [16–18] is (Qij , Qji), i, j ∈
{1, 2, 3} (i < j), where the first index refers to the earlier of the two measurements. Thus, Q12

corresponds to V1 in our present notation, and Q13 (the same property in another context) to W1;
Q23 corresponds to V2, and A21 (the same property in another context) to W2; and analogously
for Q31 and Q32 (resp., V3 and W3). In Ref. [26] the notation used is Q{i,j}i , where the superscript
indicates the context and the subscript the physical property.
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3 Contextuality
This section contains our main definitions: of a maximal connection, of (in)consistent connectedness,
and of contextuality.

3.1 Couplings
Definition 9. A coupling of a set of random variablesX,Y, Z, . . . is a random bunch (X∗, Y ∗, Z∗, . . .)
(with jointly distributed components), such that

X∗ ∼ X,Y ∗ ∼ Y, Z∗ ∼ Z, . . . , (14)

where ∼ stands for “has the same distribution as.” In particular, a coupling S for S is a random
bunch coupling all elements (random bunches) of S.

Example 10. For two binary (±1) random variables A,B, any random bunch (A∗, B∗) with the
distribution

r11 = Pr [A∗ = +1, B∗ = +1]
r10 = Pr [A∗ = +1, B∗ = −1]
r01 = Pr [A∗ = −1, B∗ = +1]
r00 = Pr [A∗ = −1, B∗ = −1] ,

(15)

such that
r11 + r10 = Pr [A = +1] ,
r11 + r01 = Pr [B = +1] ,

(16)

is a coupling.

Remark 11. It is a simple but fundamental theorem of Kolmogorov’s probability theory [6,8,21,25]
that a coupling (X∗, Y ∗, Z∗, . . .) of X,Y, Z, . . . exists if and only if there is a random variable R
and a sequence of measurable functions (fX , fY , fZ , . . .), such that

X ∼ fX (R) , Y ∼ fY (R) , Z ∼ fZ (R) , . . . . (17)

In quantum mechanics, R is referred to as a hidden variable. (In John Bell’s pioneering work [2],
he considers the question of whether such a representation exists for four binary random variables
A1, A2, B1, B2 with known distributions of (Ai, Bj), i, j ∈ {1, 2}. He imposes no constraints on R,
but it is easy to see that the existence of some R in his problem is equivalent to the existence of
an R with just 16-values.)

3.2 Maximally Coupled Connections and Consistent Connectedness
Definition 12. A coupling (A∗, B∗) of a connection {A,B} ∈ C is called maximal if

Pr [A∗ = B∗] ≥ Pr [A∗∗ = B∗∗] (18)

for any coupling (A∗∗, B∗∗) of {A,B}.

Definition 13. A system (S,C) is consistently connected (CC) if A ∼ B in any connection {A,B} ∈
C. Otherwise the system (S,C) is inconsistently connected (not CC).
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Remark 14. In physics, the CC condition is sometimes referred to as “no-signaling” [27–29], the term
we are going to avoid because then non-CC systems should be referred to as “signaling.” The latter
term has strong connotations making its use in our technical meaning objectionable to physicists.
Inconsistent connectedness may be due to signaling in the narrow physical meaning, but it may
also indicate measurement biases due to context (so that one measures A differently when one also
measures B than when one also measures C). We make no distinction between “ideal” random
variables and those measured “incorrectly.”

Lemma 15. In a CC system, a maximal coupling (A∗, B∗) for any connection {A,B} ∈ C exists,
and in this coupling Pr [A∗ = B∗] = 1. If the system is not CC, and A 6∼ B in a connection {A,B},
then in a maximal coupling (A∗, B∗), if it exists, Pr [A∗ = B∗] < 1.

A proof is obvious. We focus now on binary systems, in which all components of the random
bunches are binary (±1) variables. The three systems mentioned in the opening section, KCBS,
LG, and EPRB-type ones, are binary. (A generalization to components with finite but arbitrary
numbers of values is straightforward.)

Lemma 16. For a connection {A,B} with binary (±1) A,B and

p = Pr [A = 1] ≥ Pr [B = 1] = q, (19)

a maximal coupling (A∗, B∗) exists, and its distribution is

r11 = q
r10 = p− q
r01 = 0
r00 = 1− p,

(20)

where
rab = Pr [A∗ = 2a− 1, B∗ = 2b− 1] . (21)

Proof. For given values p ≥ q, the maximum possible value of r11 is min (p, q) = q, and the maximum
possible value of r00 is min (1− p, 1− q) = 1 − p; these values are attained in distribution (20),
with r01, r10 determined uniquely. Pr [A∗ = B∗] = r11 + r00 in this distribution has the maximum
possible value, 1− (p− q).

Remark 17. In a maximal coupling (A∗, B∗) of two binary random variables A,B the expectation

〈A∗B∗〉 = 2 (r11 + r00)− 1 (22)

attains its maximum possible value (assuming p ≥ q)

〈A∗B∗〉 = 1− 2 (p− q) = 1− (〈A〉 − 〈B〉) . (23)

.

Remark 18. In some cases it is more convenient to speak of the minimum value of Pr [A∗ 6= B∗] =
r10 + r01 rather than the maximum value of Pr [A∗ = B∗] = r11 + r00. This minimum can be
presented as

Pr [A∗ 6= B∗] = p− q =
1

2
(〈A〉 − 〈B〉) . (24)
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Remark 19. In a maximal coupling (A∗, B∗) of two binary random variables A,B,

Pr [A∗ = B∗] = 1 (25)

if and only if A ∼ B, i.e.,
p = Pr [A = 1] = Pr [B = 1] = q. (26)

3.3 Contextuality
Definition 20. Let maximal couplings exist for all connections in C. A system (S,C) has a
(maximally) noncontextual description if there exists a coupling S for S in which all 2-marginals
(A∗, B∗) that couple the connections in C are maximal couplings. If such a coupling S does not
exist, the system is contextual.

Remark 21. We will omit the qualifier “maximally” when speaking of the existence of a maximally
noncontextual description.

Remark 22. In particular, if the system is CC, it has a noncontextual description if and only if there
is a coupling S for S in which Pr [A∗ = B∗] = 1 for all connections {A,B} ∈ C. This is essentially
the traditional use of the term “(non)contextuality.”

Example 23. Let system (S,C) consist of random bunches

(A,C) , (B,D) ,

with all components binary (±1), and a single connection {A,B}. To determine if the system is
contextual, we consider all possible couplings for A,B,C,D, i.e., all possible random bunches

(A∗, B∗, C∗, D∗)

such that (A∗, C∗) ∼ (A,C) and (B∗, D∗) ∼ (B,D). Denoting, for a, b, c, d ∈ {0, 1},

sac = Pr [A = 2a− 1, C = 2c− 1] ,
tbd = Pr [B = 2b− 1, D = 2d− 1] ,

uabcd = Pr [A∗ = 2a− 1, B∗ = 2b− 1, C∗ = 2c− 1, D∗ = 2d− 1] ,
(27)

the distributional equations (A∗, C∗) ∼ (A,C) and (B∗, D∗) ∼ (B,D) translate into the following
8 equations for 16 probabilities uabcd:

1∑
b=0

1∑
d=0

uabcd = sac, a, c ∈ {0, 1} , (28)

1∑
a=0

1∑
c=0

uabcd = tbd, b, d ∈ {0, 1} . (29)

The requirement that the coupling for {A,B} be maximal translates into the additional four equa-
tions

1∑
c=0

1∑
d=0

uabcd = rab = Pr [A∗ = 2a− 1, B∗ = 2b− 1] , (30)
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where, in view of Lemma (16), rab is given by (20), with the same meaning of p, q and the same
convention p = Pr [A = 1] ≥ Pr [B = 1] = q. The problem of contextuality therefore reduces to one
of determining whether the system of 12 equations (28)-(29)-(30) for the 16 unknown uabcd ≥ 0 has
a solution. The answer in this case can be shown to be affirmative, so the system considered has a
noncontextual description.

Definition 20 is sufficient for all subsequent considerations in this paper, but we note that it can
be extended to situations when maximal couplings for connections do not necessarily exist. Let us
associate with each connection for A,B a supremal number

pAB = sup
all couplings (A∗,B∗)

Pr [A∗ = B∗] .

Definition 24 (extended). A system (S,C) has a (maximally) noncontextual description (is con-
textual) if there exists (resp., does not exist) a sequence of couplings S1, S2, . . . for S in which
Pr [A∗ = B∗] for all connections {A,B} in C uniformly converge to the corresponding supremal
numbers pAB .

3.4 Measure of Contextuality for Binary Systems with Finite Simple
Sets of Connections

We will assume that in the binary systems we are dealing with the simple set of connections C is
finite:

C = {{Ai, Bi} : i ∈ {1, . . . , n}} . (31)

Lemma 25. Given a finite simple set of connections {{Ai, Bi} : i ∈ {1, . . . , n}} in a binary system,
the respective couplings in the set {(A∗i , B∗i ) : i ∈ {1, . . . , n}} are all maximal if and only if

n∑
i=1

Pr [A∗i 6= Bi
∗] =

1

2

n∑
i=1

|〈A∗i 〉 − 〈B∗i 〉| . (32)

Proof. Immediately follows from Lemma (16) and Remark (18).

Notation. We denote

∆0 (C) =
1

2

n∑
i=1

|〈A∗i 〉 − 〈B∗i 〉| , (33)

and this quantity is to play a central role in the subsequent computations.

Definition 26. Let ∆min (S,C) for a system with C = {{Ai, Bi} : i ∈ {1, . . . , n}} be the infimum
for

n∑
i=1

Pr [A∗i 6= Bi
∗]

across all possible couplings S for S.

This is another quantity to play a central role in subsequent computations.
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Theorem 27. For a binary system with a finite simple set of connections, the value ∆min (S,C)
is achieved in some coupling S, and

∆min (S,C) ≥ ∆0 (C) . (34)

The system has a noncontextual description if and only if

∆min (S,C) = ∆0 (C) . (35)

Proof. That ∆min (S,C) is an achievable minimum follows from the fact that any coupling S is
described by a system of linear inequalities relating to each other

Pr [A∗ = a,B∗ = b, C∗ = c, . . .]

for all possible values (a, b, c, . . .) of all the random variables involved (the union of all random
bunches in S). ∆min (S,C) being a linear combinations of these probabilities, its infimum has to
be a minimum. (34) and (35) are obvious.

This theorem allows one to construct a convenient definition for the degree of contextuality in
binary systems with finite number of connections.

Definition 28. In a binary system (S,C) with a finite simple set of connections the degree of
contextuality is

CNTX (S,C) = ∆min (S,C)−∆0 (C) ≥ 0. (36)

In the subsequent sections of this paper we show how this definition of contextuality applies to
KCBS, LG, and EPRB-systems.

Remark 29. Clearly, a measure of contextuality could also be constructed as (1 + ∆min (S,C)) / (1 + ∆0 (C))−
1, (∆min (S,C)−∆0 (C)) / (∆min (S,C) + ∆0 (C)), and in a variety of other ways. The only log-
ically necessary aspect of the definition is that CNTX (S,C) is zero when ∆min (S,C) = ∆0 (C)
and positive otherwise. The simple difference is chosen because it has been shown to have certain
desirable properties [16], but this choice is not critical for the present paper.

3.5 Conventions
3.5.1 Abuse of language

To simplify notation we adopt the following convention: in a coupling (X∗, Y ∗) of two random
variablesX,Y we drop the asterisks and write simply (X,Y ). The abuse of language thus introduced
is common, if not universally accepted in quantum physics, and we too conveniently resorted to it
when discussing Specker’s magic boxes in our introductory section.

3.5.2 Functions seven and sodd

We will make use of the following notation. For any finite sequence of real numbers (ai : i ∈ {1, . . . , n})
we denote by

seven (ai : i ∈ {1, . . . , n}) = seven (a1, . . . , an) = max
even number of −’s

n∑
i=1

(±ai) , (37)
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where each ± should be replaced with + or −, and the maximum is taken over all combinations of
the signs containing an even number of −’s.

Analogously,

sodd (ai : i ∈ {1, . . . , n}) = sodd (a1, . . . , an) = max
odd number of −’s

n∑
i=1

(±ai) . (38)

Lemma 30. For any finite sequence of real numbers (ai : i ∈ {1, . . . , n}) ,

seven (a1, . . . , an) =
∑
|ai| − 2[a1 . . . ak < 0] min (|a1| , . . . , |an|) , (39)

sodd (a1, . . . , an) =
∑
|ai| − 2[a1 . . . ak > 0] min (|a1| , . . . , |an|) . (40)

4 KCBS-systems

4.1 Main Theorem
Theorem 31 (contextuality measure and criterion for KCBS-systems). In a KCBS-system (S,C),
with

S = {(Vi,Wi⊕51) : i ∈ {1, . . . , 5}} ,C = {(Vi,Wi) : i ∈ {1, . . . , 5}} , (41)
where ⊕5 stands for circular addition of 1 on {1, 2, 3, 4, 5},

∆0 (C) =
1

2

5∑
i=1

|〈Vi〉 − 〈Wi〉| , (42)

∆min (S,C) =
1

2
max (2∆0 (C) , sodd (〈ViWi⊕51〉 : i ∈ {1, . . . , 5})− 3) . (43)

Consequently, the degree of contextuality in the KCBS-system is

CNTX (S,C) =
1

2
max

(
0, sodd (〈ViWi⊕51〉 : i ∈ {1, . . . , 5})− 3−

5∑
i=1

|〈Vi〉 − 〈Wi〉|

)
, (44)

and the system has a noncontextual description if and only if

sodd (〈ViWi⊕51〉 : i ∈ {1, . . . , 5}) ≤ 3 +

5∑
i=1

|〈Vi〉 − 〈Wi〉| . (45)

Proof. The computer-assisted proof is based on Lemma 32 below, and its details, omitted here, are
analogous to those in the proofs of Theorems 3-6 in Appendix of Ref. [18].

Lemma 32. The necessary and sufficient condition for the connection couplings {(Vi,Wi) : i ∈ {1, . . . , 5}}
to be compatible with the observed pairs {(Vi,Wi⊕51) : i ∈ {1, . . . , 5}} is

sodd (〈ViWi⊕51〉 , 〈ViWi〉 : i ∈ {1, . . . , 5}) ≤ 8, (46)

which can be equivalently written as

sodd (〈ViWi⊕41〉 : i ∈ {1, . . . , 5}) + seven (〈ViWi〉 : i ∈ {1, . . . , 5}) ≤ 8,

seven (〈ViWi⊕41〉 : i ∈ {1, . . . , 5}) + sodd (〈ViWi〉 : i ∈ {1, . . . , 5}) ≤ 8.
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Remark 33. The compatibility in the formulation of the lemma means the existence of a cou-
pling S for S with given marginals {(Vi,Wi) : i ∈ {1, . . . , 5}} and given (coupled) connections
{(Vi,Wi⊕51) : i ∈ {1, . . . , 5}}.

4.2 Special cases
In a CC KCBS-system, ∆0 (C) = 0, the criterion for noncontextuality acquires the form

sodd (〈ViWi⊕51〉 : i ∈ {1, . . . , 5}) ≤ 3. (47)

If, in addition, the KCBS-exclusion is satisfied,2 i.e., in every 〈ViWi⊕51〉,

Pr [Vi = 1,Wi⊕51 = 1] = 0, (48)

then we have
〈ViWi⊕51〉 = 1− 2 (pi + pi⊕51) , (49)

where
pi = Pr [Vi = 1] = Pr [Wi = 1] , i ∈ {1, . . . , 5} . (50)

It follows that
5∑
i=1

pi ≤ 2. (51)

This is the KCBS inequality, that has been derived in Ref. [1] as a necessary condition for noncon-
textuality. As it turns out (we omit the simple proof), this condition is also necessary.

Theorem 34. In a CC KCBS-system with KCBS exclusion, (47) is equivalent to (51).

5 EPRB-systems

5.1 Main Theorem
Theorem 35 (contextuality measure and criterion for EPRB-systems). In an EPRB-system (S,C),
with

S = {(Vi,Wi⊕41) : i ∈ {1, . . . , 4}} ,C = {(Vi,Wi) : i ∈ {1, . . . , 4}} , (52)

where ⊕4 stands for circular addition of 1 on {1, 2, 3, 4},

∆0 (C) =
1

2

4∑
i=1

|〈Vi〉 − 〈Wi〉| , (53)

and
∆min (S,C) =

1

2
max (2∆0 (C) , sodd (〈ViWi⊕41〉 : i ∈ {1, . . . , 4})− 2) . (54)

2This means that the directions in the 3D real Hilbert space are chosen strictly in accordance with [1], with no
experimental errors, signaling, or contextual biases involved. In this case, the values (+1,+1) for paired measurements
(Vi,Wi⊕51) are excluded by quantum theory.
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Consequently, the degree of contextuality in the EPRB-system is

CNTX (S,C) =
1

2
max

(
0, sodd (〈ViWi⊕41〉 : i ∈ {1, . . . , 4})− 2−

4∑
i=1

|〈Vi〉 − 〈Wi〉|

)
, (55)

and the system has a noncontextual description if and only if

sodd (〈ViWi⊕41〉 : i ∈ {1, . . . , 4}) ≤ 2 +

4∑
i=1

|〈Vi〉 − 〈Wi〉| . (56)

Proof. The computer-assisted proof is based on Lemma 36 below, and its details, omitted here, can
be found in Ref. [18], Appendix and Theorems 3 and 5.

Lemma 36. The necessary and sufficient condition for the connections {(Vi,Wi) : i ∈ {1, . . . , 4}}
to be compatible with the observed pairs {(V1,W2) , (V2,W3) , (V3,W4) , (V4,W1)} is

sodd (〈ViWi⊕51〉 , 〈ViWi〉 : i ∈ {1, . . . , 4}) ≤ 6, (57)

which can be equivalently written as

sodd (〈ViWi⊕41〉 : i ∈ {1, . . . , 4}) + seven (〈ViWi〉 : i ∈ {1, . . . , 4}) ≤ 6,

seven (〈ViWi⊕41〉 : i ∈ {1, . . . , 4}) + sodd (〈ViWi〉 : i ∈ {1, . . . , 4}) ≤ 6.
(58)

5.2 Special case
In a CC EPRB-system, ∆0 (C) = 0, the criterion for noncontextuality acquires the form

sodd (〈ViWi⊕41〉 : i ∈ {1, . . . , 4}) ≤ 2, (59)

which is the standard CHSH inequalities [4–6], presentable in a more familiar way as

−2 ≤ 〈V1W2〉+ 〈V2W3〉+ 〈V3W4〉 − 〈V4W1〉 ≤ 2,
−2 ≤ 〈V1W2〉+ 〈V2W3〉 − 〈V3W4〉+ 〈V4W1〉 ≤ 2,
−2 ≤ 〈V1W2〉 − 〈V2W3〉+ 〈V3W4〉+ 〈V4W1〉 ≤ 2,
−2 ≤ −〈V1W2〉+ 〈V2W3〉+ 〈V3W4〉+ 〈V4W1〉 ≤ 2.

(60)

6 SZLG-systems

6.1 Main Theorem
Theorem 37 (contextuality measure and criterion for SZLG-systems). In an SZLG-system (S,C),
with

S = {(Vi,Wi⊕31) : i ∈ {1, 2, 3}} ,C = {(Vi,Wi) : i ∈ {1, 2, 3}} , (61)

where ⊕3 stands for circular addition of 1 on {1, 2, 3},

∆0 (C) =
1

2

3∑
i=1

|〈Vi〉 − 〈Wi〉| , (62)
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∆min (S,C) =
1

2
max (2∆0 (C) , sodd (〈ViWi⊕31〉 : i ∈ {1, 2, 3})− 1) . (63)

Consequently, the degree of contextuality in the SZLG-system is

CNTX (S,C) =
1

2
max

(
0, sodd (〈ViWi⊕31〉 : i ∈ {1, 2, 3})− 1−

3∑
i=1

|〈Vi〉 − 〈Wi〉|

)
, (64)

and the system has a noncontextual description if and only if

sodd (〈ViWi⊕31〉 : i ∈ {1, 2, 3}) ≤ 1 +

3∑
i=1

|〈Vi〉 − 〈Wi〉| . (65)

Proof. The computer-assisted proof is based on Lemma 38 below, and its details, omitted here, can
be found in Ref. [18], Appendix and Theorems 4 and 6.

Lemma 38. The necessary and sufficient condition for the connections {(Vi,Wi) : i ∈ {1, 2, 3}} to
be compatible with the observed pairs {(Vi,Wi⊕31) : i ∈ {1, 2, 3}} is

sodd (〈ViWi⊕31〉 , 〈ViWi〉 : i ∈ {1, 2, 3}) ≤ 4, (66)

which can be equivalently written as

sodd (〈ViWi⊕41〉 : i ∈ {1, 2, 3}) + seven (〈ViWi〉 : i ∈ {1, 2, 3}) ≤ 4,

seven (〈ViWi⊕41〉 : i ∈ {1, 2, 3}) + sodd (〈ViWi〉 : i ∈ {1, 2, 3}) ≤ 4.
(67)

6.2 Special cases
If the SZLG-system is a CC-system, ∆0 (C) = 0, the criterion for noncontextuality acquires the
form

sodd (〈ViWi⊕31〉 : i ∈ {1, 2, 3}) ≤ 1. (68)

This can be written in the more familiar (Suppes-Zanotti’s) form [8] as

−1 ≤ 〈V1W2〉+ 〈V2W3〉+ 〈V3W1〉 ≤ 1 + 2 max (〈V1W2〉 , 〈V2W3〉 , 〈V3W1〉) . (69)

Remark 39. In the temporal version of SZLG-systems (the Leggett-Garg paradigm proper), V1 and
W1 are the results of the first measurement in both (V1,W2) and (V3,W1). They therefore cannot
be influenced by later measurements (no signaling back in time). Consequently, if there are no
contextual measurement biases, V1 ∼W1, and

∆0 (C) =
1

2

3∑
i=2

|〈Vi〉 − 〈Wi〉| . (70)

Including |〈V1〉 − 〈W1〉|, however, does not hurt, and it allows one to accommodate cases with non-
temporal measurements and biased measurements (when knowing whether variable 1 will be paired
with 2 or with 3 changes the way one measures 1).
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7 Comparing the Systems
The main theorems regarding our three systems, Theorems 31, 35, and 37, strongly suggest the
following generalization, which we formulate as a conjecture.

Remark 40. As of February 2015 we have a proof of this conjecture. A proof of the supporting
Lemma 42 is given in Ref. [9].

Conjecture 41. Let (S,C) be a system with

S =
{(
Vi,Wπ(i)

)
: i ∈ {1, . . . , n}

}
, (71)

where π ({1, . . . , n}) is a circular (having a single cycle) permutation of {1, . . . , n}, and

C = {(Vi,Wi) : i ∈ {1, . . . , n}} . (72)

Then

∆0 (C) =
1

2

n∑
i=1

|〈Vi〉 − 〈Wi〉| , (73)

and
∆min (S,C) =

1

2
max

(
2∆0 (C) , sodd

(〈
ViWπ(i)

〉
: i ∈ {1, . . . , n}

)
− n+ 2

)
. (74)

Consequently, the degree of contextuality in this system is

CNTX (S,C) =
1

2
max

(
0, sodd

(〈
ViWπ(i)

〉
: i ∈ {1, . . . , n}

)
− n+ 2−

n∑
i=1

|〈Vi〉 − 〈Wi〉|

)
, (75)

and the system has a noncontextual description if and only if

sodd
(〈
ViWπ(i)

〉
: i ∈ {1, . . . , n}

)
≤ n− 2 +

n∑
i=1

|〈Vi〉 − 〈Wi〉| . (76)

The corresponding generalization of the supporting lemmas is

Lemma 42. The necessary and sufficient condition for the connections {(Vi,Wi) : i ∈ {1, . . . , n}}
to be compatible with the observed pairs

{〈
Vi,Wπ(i)

〉
: i ∈ {1, . . . , n}

}
is

sodd
(〈
ViWπ(i)

〉
, 〈ViWi〉 : i ∈ {1, . . . , n}

)
≤ 2n− 2, (77)

which can be equivalently written as

sodd
(〈
ViWπ(i)

〉
: i ∈ {1, . . . , n}

)
+ seven (〈ViWi〉 : i ∈ {1, . . . , n}) ≤ 2n− 2,

seven
(〈
ViWπ(i)

〉
: i ∈ {1, . . . , n}

)
+ sodd (〈ViWi〉 : i ∈ {1, . . . , n}) ≤ 2n− 2.

(78)

It is easy to see that the criterion and measure for the SZLG-system (Theorem 35) is a special
case of those for the EPRB-system (Theorem 37) which in turn is a special case of those for the
KCBS system. Specifically, by putting 〈V5W1〉 = 1 in the KCBS-system, and assuming in addition
that W5 ∼ V5, so that 〈V5W5〉 = 1 in the maximal coupling, we can replace W5 in 〈V4W5〉 with W1
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and obtain the EPRB-system. By putting then 〈V4W1〉 = 1 in the EPRB-system, and W4 ∼ V4,
so that 〈V4W4〉 = 1 in the maximal coupling, can replace W4 in 〈V3W4〉 with W1 and obtain the
SZLG-system.

It is easy to see how this pattern generalizes. First of all, any circular permutation π can be
replaced, by appropriate renaming, with circular addition of 1 on {1, . . . , n}, making the observed
pairs (V1,W2) , . . . , (Vn−1,Wn) , (Vn,W1). Let the SZLG, EPRB, and KCBS systems be designated
as systems of order 3, 4, and 5, respectively, and the system in Conjecture 41 as an (n)-system. By
putting 〈VnW1〉 = 1 in the (n)-system, and assuming that Wn ∼ Vn , so that 〈VnWn〉 = 1 in the
maximal coupling, we replace Wn in 〈Vn−1Wn〉 with W1 and obtain an (n− 1)-system.

Remark 43. In Ref. [9] we have proved the following theorem: the system (S,C) in Conjecture (41)
has a noncontextual description if and only if

sodd
(〈
ViWπ(i)

〉
, 1− |〈Vi〉 − 〈Wi〉| : i = 1, . . . , n

)
≤ 2n− 2. (79)

It is easy to show that the conjectured criterion (76) follows from (79), i.e., its violation is a sufficient
condition for contextuality. The conjecture is that it is also true that (79) follows from (76). See
Remark 40.

8 Conclusion
We have presented a theory of (non)contextuality in purely probabilistic terms abstracted away
from physical meaning. The computational aspects of the theory are confined to finite systems
with binary components, but it is easily generalizable to deal with components attaining arbitrary
finite numbers of values. As the components of the bunches get more complex and/or connections
get longer than pairs, the generalizations become less unique.

The basis for the theory is the principle of Contextuality-by-Default, which has philosophical
and mathematical consequences. Mathematically, it leads to revamping (while remaining within
its confines) of the Kolmogorovian probability theory, with more prominent than usual emphasis
on stochastic unrelatedness. A reformulated theory may even avoid the notion of a sample space
altogether [21].

Philosophically, the principle of Contextuality-by-Default may elucidate the difference between
“ontic” and “epistemic” aspects of contextuality (perhaps even of probability theory generally).

The theory also offers pragmatic advantages: it allows for non-CC-systems (whether due to
signaling or due to context-dependent measurement biases) and for experimental/computational
errors in the analysis (including statistical analysis) of experimental data.

The theory has predecessors in the literature. The idea of labeling differently random variables
in different contexts and considering the probability with which they can be equal to each other if
coupled has been prominently used in Refs. [30, 31].
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