
Journal of Mathematical Psychology 43, 123�157 (1999)

Conditionally Selective Dependence of Random
Variables on External Factors
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Purdue University and Hanse-Wissenschaftskolleg

Selective influence of experimental factors upon observable or hypo-
thetical random variables is a key concept in the analysis of processing
architectures and response time decompositions. This paper deals with
the notion of conditionally selective influence, defined as follows. Let
[X1 , ..., Xn] be stochastically interdependent random variables (e.g.,
hypothetical components of response time), and let 8 be a set of external
factors affecting the joint distribution of [X1 , ..., Xn]. A subset of factors
4i conditionally selectively influences Xi if at any fixed values of the
remaining random variables the conditional distribution of Xi only
depends on factors inside 4 i . The notion of conditional selectivity
generalizes the relationship between factors and random variables
described in Townsend (1984) as ``indirect nonselectivity.'' This paper
establishes the structure of the joint distribution of [X1 , ..., Xn] that is
necessary and sufficient for [X1 , ..., Xn] to be conditionally selectively
influenced by (not necessarily disjoint) factor subsets [41 , ..., 4n],
respectively. The notion of conditional selectivity is compared to that of
unconditional selectivity, defined as follows. A subset of factors 1i

unconditionally selectively influences X i if the latter can be presented as
a deterministic function of 1i and of some random variables (the same
for all Xi , i=1, ..., n) whose joint distribution does not depend on any
factors from 8. The two forms of selective influence are generally incom-
patible. ] 1999 Academic Press

1. INTRODUCTION

1.1. Selective influence. Selective influence of experimental factors upon observ-
able or hypothetical random variables (such as response times or response time
components) has been a key concept in the analysis of ``mental architectures'' since
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the pioneering publication of Sternberg (1969). The concept is very simple when the
random variables in question are (assumed to be) stochastically independent. As
an example, let [X1 , ..., Xn] be hypothetical stochastically independent components
of observable response time, which means that the response time is assumed to
be some algebraic combination of [X1 , ..., Xn] (Dzhafarov, 1997; Dzhafarov 6

Schweickert, 1995). Let 8 be the set of factors manipulated in the experiment in a
mutually independent fashion. We say that the component Xi is selectively influenced
by factors from a subset 1i �8 if the distribution of Xi remains unchanged when-
ever all factors in 1i are fixed, irrespective of the values of the factors from the
complementary subset 8&1i , whereas the distribution of Xi is different for at least
two different values of 1i , at some fixed values of 8&1i . (A value of a set is, of
course, the set of values of its elements.)

Note that the factor subsets [11 , ..., 1n] selectively influencing [X1 , ..., Xn],
respectively, need not be pairwise disjunctive; they may overlap or even coincide.
The selectiveness in the above definition only refers to the fact that some factors
(namely, those from 8&1i) are excluded from the list of the factors that may
influence Xi . If, for example, the set of random variables is [X1 , X2] and 8 consists
of two independently manipulated factors [#1 , #2], then the above definition of
selective influence encompasses all 16 possible situations: X1 being selectively
influenced by the empty set, or [#1], or [#2], or [#1 , #2], combined with the same
possibilities for X2 .

1.2. Stochastic interdependence and selective influence. The notion of selective
influence becomes less straightforward once the random variables [X1 , ..., Xn] are
allowed to be stochastically interdependent. In the literature on mental architectures
and processing time decompositions one can find two distinctly different approaches to
this problem. According to one of them, derived from Dzhafarov (1992, 1997) and
Dzhafarov and Schweickert (1995), the random variables [X1 , ..., Xn] are selec-
tively influenced by, respectively, subsets [11 , ..., 1n] of a factor space 8 if these
random variables can be represented as

X1 =X1(P1 , ..., Pn ; 11)

} } }

Xi =Xi (P1 , ..., Pn ; 1i) (1)

} } }

Xn=Xn(P1 , ..., Pn ; 1n),

where [X1 , ..., Xn] are some (deterministic) functions, and [P1 , ..., Pn] are stochasti-
cally independent random variables (``sources of randomness'') with arbitrary distribu-
tion functions strictly increasing on their respective supports (e.g., uniformly distributed
between 0 and 1).

This definition of selective influence is based on the observation (Dzhafarov,
1997) that any set of random variables [X1 , ..., Xn] whose joint distribution
depends on factors from a set 8 can be represented as
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X1 =X1(P1 , ..., Pn ; 8)

} } }

Xi =Xi (P1 , ..., Pn ; 8) (2)

} } }

Xn=Xn(P1 , ..., Pn ; 8),

with the same meaning of the symbols as in (1).
For instance, choosing stochastically independent [P1 , ..., Pn] uniformly distri-

buted between 0 and 1, one can always represent [X1 , ..., Xn] as

X1 =Q1(P1 ; 8)

} } }

Xi =Qi (X1 , ..., X i&1 , Pi ; 8) (3)

} } }

Xn=Qn(X1 , ..., Xn&1 , Pn ; 8),

where Q1 is the quantile function1 for X1 , and, for any x1 , ..., xi&1 , Qi is the
quantile function for the conditional distribution of Xi given X1=x1 , ..., Xi&1=
xi&1 . Note that Pi is stochastically independent of [X1 , ..., Xi&1], i=2, ..., n. This
universal representation is used for simulating arbitrarily distributed vectors of
random variables [X1 , ..., Xn] by means of standard generators of random numbers,
[P1 , ..., Pn] (Yermalov, 1971). Since

Qi (X1 , ..., Xi&1 , Pi ; 8)=Qi[Q1(P1 ; 8), ..., Qi&1(X1 , ..., X i&2 , Pi&1 ; 8), Pi ; 8]

=Xi (P1 , ..., P i ; 8), i=1, ..., n, (4)

representation (2) can be viewed as a symmetrical rendering of (3); the two
representations are equivalent because (3) is universally true, and, through (4), it
implies (2).

By imposing different restrictions on the functions [X1 , ..., Xn] one can obtain
various forms of interdependence between [X1 , ..., Xn] as special cases of (1). Thus
the case of mutual stochastic independence of these random variables corresponds
to the representation

Xi=Xi (Pi ; 1i), i=1, ..., n.

At another extreme, if all [X1 , ..., Xn] are strictly monotonic functions of one and
the same source of randomness, Pi=P, so that (1) reduces to

Xi=Xi (P; 1i), i=1, ..., n,
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then any random variable Xi becomes a deterministic function of any other random
variable Xj , for any fixed values of the factor subsets 1i and 1j influencing them
selectively:

Xj=Xij (X i ; 1i _ 1j), i, j=1, ..., n.

These extreme special cases of stochastic in(ter)dependence under selective influence
are analyzed in Dzhafarov and Schweickert (1995), Cortese and Dzhafarov (1996)
and Dzhafarov and Cortese (1996).

1.3. Conditionally selective influence. The focus of this paper, however, is on
another approach to extending the notion of selective influence to incorporate
stochastically interdependent random variables, proposed in Townsend (1984) and
Townsend and Thomas (1994). This approach consists in allowing the marginal
distribution of any of the variables Xi to generally depend on all factors in the
factor space 8, but distinguishing between a subset 4i �8 of factors that influence
Xi directly and the complementary subset 8&4i of factors influencing Xi indirectly,
through the values of other variables from the list [X1 , ..., Xn].

The following definition is designed to facilitate the comparison of this notion to
(1). The random variables [X1 , ..., Xn] are directly influenced by, respectively, sub-
sets [41 , ..., 4n] of a factor space 8 if these random variables can be represented
by the following self-referencing system of equations:

X1 =X1(P1 , X2 , ..., Xn ; 41)

} } }

Xi =Xi (X1 , ..., X i&1 , Pi , Xi+1 , ..., Xn ; 4i) (5)

} } }

Xn=Xn(X1 , ..., Xn&1 , Pn ; 4n),

where all symbols have the same meaning as in (1), and, in addition, Pi is stochasti-
cally independent of [X1 , ..., Xi&1 , Xi+1 , ..., Xn], i=1, ..., n.

The rationale for this definition is analogous to that of (1): it is derived from the
possibility of representing any set of random variables [X1 , ..., Xn] (whose joint
distribution depends on 8) in the form

X1 =X1(P1 , X2 , ..., Xn ; 8)

} } }

Xi =Xi (X1 , ..., X i&1 , Pi , Xi+1 , ..., Xn ; 8). (6)

} } }

Xn=Xn(X1 , ..., Xn&1 , Pn ; 8),
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with the same meaning of the symbols. This follows from the universal representa-
tion (3) by renaming the variables X1 , ..., Xn so that each of them is successively
placed at the end of the variables' list.

Returning to (5), if the value of the arguments X1 , ..., Xi&1 , Xi+1 , ..., Xn in the
function Xi are fixed, the remaining function can be written as

Xi (Pi ; 4i | x1 , ..., x i&1 , xi+1 , ..., xn).

Clearly, this is a random variable, and it can be viewed as the conditional random
variable Xi , given X1=x1 , ..., Xi&1=x i&1 , Xi+1=xi+1 , ..., Xn=xn :

Xi |X1=x1, ..., Xi&1=xi&1, Xi+1=xi+1, ..., Xn=xn

=Xi (Pi ; 4i | x1 , ..., x i&1 , x i+1 , ..., xn), i=1, ..., n. (7)

The distribution of this conditional random variable (in more conventional terms,
the conditional distribution of Xi given X1=x1 , ..., Xi&1=xi&1 , Xi+1=xi+1 , ...,
Xn=xn) only depends on factors from the subset 4i . Substantively, this observation
generalizes the original definition of direct and indirect influence (Townsend, 1984),
making it applicable to n arbitrary random variables (without the context of any
specific ``mental architecture'') and n arbitrary factor subsets [41 , ..., 4n], not
necessarily disjunctive or distinct.

The term coined by Townsend (1984) for the situation described in (7) is indirect
nonselectivity. In this paper, however, I use the mathematically more descriptive
term conditionally selective influence, as opposed to the unconditionally selective
influence represented by (1). In other words, if (5) holds (equivalently, if (7) holds),
we say that [X1 , ..., Xn] are conditionally selectively influenced by [41 , ..., 4n],
respectively, while if (1) holds, we say that [X1 , ..., Xn] are (unconditionally) selec-
tively influenced by [11 , ..., 1n], respectively.

1.4. Unconditional and conditional selectivity. Conditional selectivity is generally
excluded by unconditional selectivity, that is, generally

[41 , ..., 4n]{[11 , ..., 1n]

for one and the same vector [X1 , ..., Xn]. Indeed, by fixing the values of, say,
[X2 , ..., Xn] in (1), one imposes n&1 constraints on [P1 , P2 , ..., Pn], and these
constraints induce a conditional distribution of

[P1 , ..., Pn]|X2=x2 , ..., Xn=xn

that generally depends on factors from 12 _ } } } _ 1n . The remaining conditional
random variable, therefore,

X1 |X2=x2 , ..., Xn=xn
=X1([P1 , ..., Pn]|X2=x2 , ..., Xn=xn

; 11),

generally depends on 11 _ 12 _ } } } _ 1n , rather than just on 11 .
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1.5. Problem. Although representation (5) is conceptually simple and convenient
for comparing the two forms of selective influence, conditional and unconditional,
its self-referencing structure makes it difficult to study the relationship among the
random variables [X1 , ..., Xn] directly. The question arises whether a greater
insight in this relationship can be achieved if instead of the random variables per
se one investigates their joint distribution functions. To realize this approach one
should establish the structure of the joint distribution of [X1 , ..., Xn] that is sufficient
and necessary for these random variables to be conditionally selectively influenced by
[41 , ..., 4n], respectively. This is the target issue of the present paper.

2. CONVENTIONS AND PRELIMINARIES

In this section I introduce notation, terminology, and technical conventions to
be used subsequently. It can also serve as a reference section to be consulted
recurrently while reading the remainder of the paper.

2.1. Context system. It is apparent from (5) and (7) that the answer to the ques-
tion whether a given random variable, Xi , is conditionally selectively influenced by
some factor subset 4i depends on what other random variables are in play and
what other factors belong to the factor space 8. In other words, the concept of
conditional selectivity is context-dependent, and I accordingly refer to the system
[X1 , ..., Xn ; 8] as the context system. Given a context system, the subset of factors
that conditionally selectively influence Xi is denoted by 4(Xi). Thus in (5),
4(X1)=41 6 } } } 6 4(Xn)=4n .

The following simple observation is required in the proof of the main theorem of
this paper (Theorem 3), and it is also of interest by itself. Consider a context system
[X1 , ..., Xn ; 8], and let some of the random variables, say, X1 , ..., Xr (r<n), be
conditioned on some fixed values of the remaining variables, Xr+1=xr+1 6 } } } 6

Xn=xn . Then, for the conditional context system

[X1 , ..., Xr ; 8]| Xr+1=xr+1 6 } } } 6 Xn=xn
,

the following is true:

4(Xi |Xr+1=xr+1 6 } } } 6 Xn=xn
)�4(X i), i=1, ..., r. (8)

In other words, the factor subsets conditionally selectively influencing X1 , ..., Xr at
some fixed values of the remaining variables are included in the corresponding
factor subsets conditionally selectively influencing X1 , ..., Xr when the remaining
variables vary freely. This immediately follows from the fact that

[X1 |X2=x2 6 } } } 6 Xr=xr
]| Xr+1=xr+1 6 } } } 6 Xn=xn

=X1 | X2=x2 6 } } } 6 Xr=xr 6 Xr+1=xr+1 6 } } } 6 Xn=xn
. (9)

2.2. Factors. The factors belonging to the factor space 8 are assumed to
have completely crossable levels (which can always be achieved by appropriate
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parametrization). It is also assumed that all factors are effective, in the following
sense: every factor possesses at least two different values corresponding to two
different joint distributions of [X1 , ..., Xn] at some fixed values of the remaining
factors. As shown below (in corollaries to Theorems 2 and 3), this amounts to
saying that any factor conditionally selectively influences at least one random
variable, that is, 4(X1) _ } } } _ 4(Xn)=8.

2.3. Density. The joint distribution of [X1 , ..., Xn] is assumed to be represen-
table by a density function 9[X1=x1 6 } } } 6 Xn=xn], defined on some unspecified
region of [x1 , ..., xn]. For all applied purposes the density can be understood either
as a conventional piecewise continuous density in n-dimensional Euclidean space,
or as a probability mass function on a Cartesian product of n sets of counting
indices (in which case all integrals should be understood as simple summation).
However, 9[X1=x1 6 } } } 6 Xn=xn] may also be treated in a general way, as a
Radon�Nikodym derivative with respect to a product-measure imposed on [x1 , ..., xn].
All results established in this paper hold under this general point of view in the
``almost everywhere'' sense.

2.4. Conditional density. The focal object of our discussion is the conditional
density

9[Xi=xi | X1=x1 6 } } } 6 Xi&1=x i&1 6 Xi+1=xi+1 6 } } } 6 Xn=xn]

=
9[X1=x1 6 } } } 6 Xn=xn]

9[X1=x1 6 } } } 6 Xi&1=xi&1 6 X i+1=x i+1 6 } } } 6 Xn=xn]

=
9[X1=x1 6 } } } 6 Xn=xn]

� 9[X1=x1 6 } } } 6 Xn=xn] dxi
, (10)

for i=1, ..., n. Thus we say that Xi is conditionally selectively influenced by 4i , that
is, 4(Xi)=4i , if the value of (10) is fixed whenever 4i is fixed. To ascertain that
4(Xi)=4i rather than merely 4(Xi)/4i , one has to add to the previous sentence
that every factor from 4i possesses at least two different values corresponding to
two different values of (10), at some fixed values of the remaining factors from 8.

2.5. Convention on 0�0. Conditional density (10) is either well-defined for all
values of xi , or it is indefinite (0�0) for all values of xi , depending on whether

| 9[X1=x1 6 } } } 6 Xn=xn] dx i

is positive or zero (in both cases xi is considered varying while other x-arguments
and factors are fixed). Throughout this paper 0�0 is treated as a non-removable
singularity assigned a special value, indef. Consequently, if as a result of changing
the value of a factor * (at some fixed values of other factors) the value of (10)
changes from indef to zero or to a positive number, then the conditional probability
in (10) depends on *, that is, * # 4(Xi); if, however, the value of (10) remains indef
under all changes of * (at any fixed values of other factors), then the conditional
probability does not depend on *, that is, * � 4(Xi).
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2.6. Positive domain. Given a function F(x1 , ..., xn ; 8), the set of values of its
arguments [x1 , ..., xn] at which the function is positive generally depends on the
value of its factor set 8. This area is referred to as the positive domain of the func-
tion. Note that the factors from 8 in this definition are treated as parameters,
rather than arguments of the function. If F(x1 , ..., xn ; 8) is a density function, then
its positive domain is traditionally referred to as its support. Of special interest is
the support of the joint density 9[X1=x1 6 } } } 6 Xn=xn], always denoted in this
paper by R1 } } } n=R1 } } } n[8]. It is assumed throughout this paper that R1 } } } n is a
region of non-zero measure at all values of 8. The projection of this region on the
xi -axis is denoted by Ri=Ri[8] (i=1, ..., n); its projection on the xi xj -plane is
denoted by Rij=R ij[8] (i, j=1, ..., n; i{ j); and so on, for all projection hyper-
planes corresponding to the subsets of the arguments [x1 , ..., xn]. Figure 1 illustrates
these concepts for n=2.

2.7. Absorption principle. Many formulations found in this paper have the
following form: a certain function is representable as a sum of some functions,
� Fi (Ai), or a product of some nonnegative functions, > Fi (Ai), where the Ai 's are
certain sets of arguments, with no other restrictions imposed on Fi 's. The absorption
principle is a simple observation that if Aj �Ai for some i and j, then the function
Fj (Aj) can be eliminated from such a representation. As an example, to say that a
function is representable as

F1(a1 , a2 , a3)+F2(a1 , a4)+F3(a2 , a3)

is equivalent to saying that it is representable as

F1(a1 , a2 , a3)+F2(a1 , a4).

Indeed, F1(a1 , a2 , a3)+F3(a2 , a3) is some function of [a1 , a2 , a3] that, to save
notation, itself can be denoted by F1(a1 , a2 , a3). Conversely, for any functions
F1(a1 , a2 , a3) and F3(a2 , a3), the function F1(a1 , a2 , a3) can be written as F3(a2 , a3)
plus some function of [a1 , a2 , a3]. Analogous reasoning obviously applies to
products of nonnegative functions.

2.8. Index subset symbolism. The main result of this paper (Theorem 3) involves
functions of a special structure: given n variables [x1 , ..., xn] and n factor subsets
[41 , ...4n], these functions are

f (8)

fi (xi ; 4i), i=1, ..., n
(11)

fij (xi , xj ; 4i & 4j), i, j=1, ..., n; i{ j

fijk(xi , xj , xk ; 4i & 4j & 4k), i, j, k=1, ..., n; i{ j, i{ j, j{k

} } }

f1 } } } n(x1 , ..., xn ; 41 & } } } & 4n).
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FIG. 1. An illustration for the support R12 of a density function 9[X1=x1 | X2=x2] and its projec-
tions R1 and R2 on the two axes; shown for two different values of the factor set 8 upon which the
density function and its support depend.

Ignoring for the moment the first of these functions, it is easy to notice that
the subscripts are formed by all nonempty subsets of the index set [1, ..., n]; the
x-arguments are the corresponding subsets of [x1 , ..., xn]; and the factor-arguments
are the intersections of the corresponding factor subsets chosen from [41 , ..., 4n].
A simple way of referring to such functions in general is

fI \[xi]i # I ; ,
i # I

4i+ , I�[1, ..., n].

To incorporate the first function in (11), f (8), one only has to drop the restriction
that the index subset I�[1, ..., n] be nonempty and treat f (8) as f<(8). Indeed,
from the obvious identities

[xi]i # I _ [xi]i # < =[xi]i # I _ <=[xi]i # I

(12)

\,
i # I

4i +& \ ,
i # <

4i+= ,
i # I _ <

4i=,
i # I

4i

we conclude that2

[xi]i # < =<
(13)

,
i # <

4i =8.
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The index subset symbolism can also be used for other purposes. For instance, any
nonempty I�[1, ..., n] defines a hyperplane [xi]i # I , and RI denotes the projection
of the support R1 } } } n on this hyperplane (see Subsection 2.6). An extensive use of
the index subset symbolism is made in Appendix D.

3. RESULTS

All mathematical results are presented below as numbered theorems whose
proofs are relegated to Appendices, together with lemmas, definitions, and notation
conventions needed in the proofs. To facilitate understanding, the formulations of
the theorems in the main text are typically less succinct than their equivalent
formulations in the Appendices.

3.1. Support of joint density. As stated earlier (Subsection 2.6) and illustrated in
Fig. 1, the support R1 } } } n of the joint density function 9[X1=x1 6 } } } 6 Xn=xn]
generally depends on the values of the factors 8. It turns out that this dependence
imposes an important restriction on the class of subsets [41 , ..., 4n] of 8 that may
conditionally selectively influence [X1 , ..., Xn], respectively. Namely, we have the
following

Theorem 1. In a context system [X1 , ..., Xn ; 8], if the support R1 } } } n of the
joint density function 9[X1=x1 6 } } } 6 Xn=xn] depends on a factor * # 8, then
* # 4(X1) & } } } & 4(Xn). Put differently, R1 } } } n does not depend on factors outside
4(X1) & } } } & 4(Xn):

R1 } } } n=R1 } } } n[4(X1) & } } } & 4(Xn)]. (14)

The proof is given in Appendix A. An immediate consequence of this theorem is
that all projections RI of the support R1 } } } n , I�[1, ..., n], also depend on 4(X1)
& } } } & 4(Xn) only:

RI=RI[4(X1) & } } } & 4(Xn)], I�[1, ..., n]. (15)

3.2. Conditional selectivity for bivariate density. This section presents the main
result of this paper for bivariate context systems, [X1 , X2 ; 8]: it establishes the
structure of the density function 9[X1=x1 6 X2=x2] that is necessary and suf-
ficient for [X1 , X2] to be conditionally selectively influenced by subsets [41 , 42]
of 8, respectively.

It is convenient to begin by formulating these necessary and sufficient conditions
for 4(X1)�41 6 4(X2)�42 , rather than 4(X1)=41 6 4(X2)=42 , for two
reasons. First, the necessary conditions for the inclusion obviously also apply to the
equality, whereas the sufficient conditions for the inclusion, as shown below, need
only trivial modifications to apply to the equality. Second, the logical essence of the
notion of selective influence (conditional or unconditional) is in the exclusion of
certain factors rather than ascertaining that the factors that have not been excluded
are all effective. By stating that 4(X1)�41 one positively excludes all factors in
8&41 from the class of those conditionally selectively influencing X1 ; the factors
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within 41 then are treated as those that may influence X1 , even if the influence of
a given factor from 41 is negligible or even (as a marginal case) non-existent. With
this in mind we can formulate the following

Theorem 2. In a context system [X1 , X2 ; 8], the statement

4(X1)�41 6 4(X2)�42

(i.e., Xi is not conditionally selectively influenced by factors outside 4i , i=1, 2) is
true if and only if the joint density function is representable as

9[X1=x1 6 X2=x2]= f12(x1 , x2 ; 41 & 42) f1(x1 ; 41) f2(x2 ; 42) f (8), (16)

where

(i) f12(x1 , x2 ; 41 & 42) is a nonnegative function whose positive domain coin-
cides with R12 , the support of the density function;

(ii) f1(x1 ; 41) is a function whose positive domain contains R1 , the projection
of R12 on the x1 -axis;

(iii) f2(x2 ; 42) is a function whose positive domain contains R2 , the projection
of R12 on the x2 -axis;

(iv) f (8) is a positive function defined as

f (8)=\|| f12(x1 , x2 ; 41 & 42) f1(x1 ; 41) f2(x2 ; 42) dx1 dx2+
&1

. (17)

The proof is given in Appendix C; the reader should also consult Appendix B in
which a certain ``multiple-difference'' operator is introduced that is needed in the
proof. Recall that, by convention (Subsection 2.6), the support R12 is a region of
non-zero measure at all values of 8, because of which the double integral in (17)
is always non-zero. The statement that f (8) is positive implies that the double
integral is finite.

Note that Theorem 2 only states that representation (16), with certain constraints
imposed on the functions involved, is equivalent to the statement 4(X1)�41 6

4(X2)�42 . The theorem does not state that (16) is the only possible representa-
tion equivalent to this statement. Notably, one can sometimes modify the constraints
on the positive domains of the functions involved. For example, one can make the
positive domains of f1 and f2 strictly coincide with R1 and R2 while allowing the
function f12 to be positive in arbitrary regions outside R1_R2 . The constraints
listed in Theorem 2, however, are the most economical ones for arbitrary density
functions.

The following is an immediate but significant consequence of Theorem 2.

Corollary 1 to Theorem 2. In a context system [X1 , X2 ; 8], if 4(X1)�41 6

4(X2)�42 , then 41 _ 42=8. In other words, every factor conditionally selectively
influences at least one of the two random variables.
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Indeed, it is clear from (17) that f (8)= f (41 _ 42), and by applying this to (16)
one realizes that the joint density function 9[X1=x1 6 X2=x2] cannot depend on
any factors outside 41 _ 42 . Since, by convention (Subsection 2.2), all factors in
the factor space 8 are effective, in the sense that they all influence the joint density
function, one concludes that 41 _ 42=8.

Figure 2 shows three possible pairs of [41 , 42] for the context system [X1 , X2 ;
*1 , *2], where *1 and *2 are two independently manipulated factors. (With obvious
notational modifications *1 and *2 can also be interpreted as disjoint complemen-
tary subsets of a factor space.) It is instructive to apply Theorem 2 to these special
cases and see the corresponding structures of the joint density function.

A formal application of (16) to panel (a) yields

9[X1=x1 6 X2=x2]= f12(x1 , x2 ; *1 , *2) f1(x1 ; *1 , *2) f2(x2 ; *1 , *2) f (*1 , *2),

which, by the absorption principle (Subsection 2.7), reduces to

9[X1=x1 6 X2=x2]= f12(x1 , x2 ; *1 , *2).

The result is a completely uninformative statement: the joint density function is some
nonnegative function of [x1 , x2] depending on [*1 , *2]. This comes as no surprise,
however, because in order to state that 4(X1)�[*1 , *2] 6 4(X2)�[*1 , *2] one
does not have to know anything except for the context system involved.

The application of (16) to the remaining panels of Fig. 2 (and subsequent reduc-
tion of the expressions by means of the absorption principle) yields the results

9[X1=x1 6 X2=x2]=f12(x1 , x2 ; *1) f2(x2 ; *2) f (*1 , *2) for panel (b),

9[X1=x1 6 X2=x2]=f12(x1 , x2) f1(x1 ; *1) f2(x2 ; *2) f (*1 , *2) for panel (c).

The latter case is of special interest, as it refers to the classical paradigm in which
conditional selective influence (``indirect nonselectivity'') has been discussed in the

FIG. 2. Three possible pairs of sets containing 4(X1) and 4(X2) in a context system [X1 , X2 ;
*1 , *2]. An arrow from a factor to a random variable indicates that the factor may conditionally selectively
influence the variable.

134 EHTIBAR N. DZHAFAROV



literature (Townsend, 1984; Townsend 6 Thomas, 1994).3 It deserves, therefore, to
be formalized as a special consequence of Theorem 2.

Corollary 2 to Theorem 2. In a context system [X1 , X2 ; *1 , *2], the statement

4(X1)�[*1] 6 4(X2)�[*2]

(i.e., X1 is not conditionally selectively influenced by *2 , and X2 is not conditionally
selectively influenced by *1) is true if and only if the joint density function is represen-
table as

9[X1=x1 6 X2=x2]= f12(x1 , x2) f1(x1 ; *1) f2(x2 ; *2) f (*1 , *2), (18)

where the functions involved have the same properties as the corresponding functions
in Theorem 2.

Returning now to conditions that are necessary and sufficient for 4(X1)=4 6

4(X2)=42 , rather than merely 4(X1)�41 6 4(X2)�42 , we have the following
obvious yet remarkable.

Corollary 3 to Theorem 2. Any density function in a context system [X1 , X2 ; 8]
is representable by (16) if 41 and 42 denote 4(X1) and 4(X2), respectively. Put
differently, any bivariate density has the structure

9[X1=x1 6 X2=x2]=f12[x1 , x2 ; 4(X1) & 4(X2)] f1[x1 ; 4(X1)]

_f2[x2 ; 4(X2)] f [4(X1) _ 4(X2)], (19)

where the functions have the same properties as the corresponding functions in
Theorem 2.

The adaptation of the sufficiency part of Theorem 2 to 4(X1)=41 6 4(X2)=42

requires an additional statement that all factors within 41 and 42 are effective in
changing the values of the corresponding conditional densities. This purpose is
served by

Corollary 4 to Theorem 2. In a context system [X1 , X2 ; 8], 4(X1)=4 6

4(X2)=42 if the density function is representable by (16), and if, for i=1, 2, any
factor * # 4i possesses two values corresponding to two different values of

f12(x1 , x2 ; 41 & 42) fi (x i ; 4i)
� f12(x1 , x2 ; 41 & 42) fi (xi ; 4i) dxi

,

at some fixed values of [x1 , x2] and of the remaining factors in 4i .
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The truth of this corollary is apparent from the proof of the necessity part of
Theorem 2, in Appendix C: the expression above equals 9[X1=x1 | X2=x2] for
i=1 and 9[X2=x2 | X1=x1] for i=2.

3.3. Conditional selectivity for multivariate density. It is not immediately obvious
how to generalize the results obtained in the previous section to arbitrary context
systems, [X1 , ..., Xn ; 8]. The correct guess suggests itself, however, if one rewrites
representation (16) using the index subset symbolism introduced in Subsection 2.8:

9[X1=x1 6 X2=x2]= `
I�[1, 2]

fI \[xi] i # I ; ,
i # I

4i + .

The multiplication here is across all possible subsets of the index set [1, 2], includ-
ing the empty set and the index set itself.

The following theorem generalizing Theorem 2 is the main result of this paper:
it establishes the structure of the density function 9[X1=x1 6 } } } 6 Xn=xn] that
is necessary and sufficient for 4(X1)�41 6 } } } 6 4(Xn)�4n .

Theorem 3. In a context system [X1 , ..., Xn ; 8], the statement

4(X1)�41 6 } } } 6 4(Xn)�4n

(i.e., Xi is not conditionally selectively influenced by factors outside 4i , i=1, ..., n) is
true if and only if the joint density function is representable as

9[X1=x1 6 } } } 6 Xn=xn]= `
I�[1, ..., n]

fI \[xi]i # I ; ,
i # I

4i+ , (20)

where

(i) the function corresponding to I=[1, ..., n] is nonnegative, and its positive
domain coincides with R1 } } } n , the support of the density function;

(ii) any function corresponding to a proper subset I, <{I/[1, ..., n], has a
positive domain containing RI , the projection of R1 } } } n on the hyperplane [xi] i # I ;

(iii) the function corresponding to I=< is positive and is related to the other
functions as

f (8)=\| } } } | `
<{I�[1, ..., n]

fI \[xi] i # I ; ,
i # I

4i+ dx1 } } } dxn +
&1

. (21)

The proof is given in Appendix D, preceded by additional notational conventions
and a lemma. (For reasons explained in the appendix the functions denoted above
as fI are denoted there by fI; I .) The proof also makes use of the multiple-difference
operator introduced in Appendix B.

As with Theorem 2, it should be noted that the convention of Subsection 2.6 on
the support R1 } } } n together with the positiveness of f (8) implies that the multiple
integral in (21) is positive and finite.
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A detailed illustration for Theorem 3 is given in the concluding section of this
paper. All comments and formal consequences of Theorem 2 can now be trivially
generalized to the multivariate case.

Corollary 1 to Theorem 3. In a context system [X1 , ..., Xn ; 8], if 4(X1)�
41 6 } } } 6 4(Xn)�4n , then 41 _ } } } _ 4n=8. In other words, every factor condi-
tionally selectively influences at least one of the random variables.

For n independently manipulated factors [*1 , ..., *n] (or n disjoint subsets of 8),
we have the important

Corollary 2 to Theorem 3. In a context system [X1 , ..., Xn ; 8], the statement

4(X1)�[*1] 6 } } } 6 4(Xn)�[*n]

(i.e., Xi is not conditionally selectively influenced by any factors except, perhaps, for
*i) is true if and only if the joint density function is representable as

9[X1=x1 6 } } } 6 Xn=xn]

= f (*1 , ..., *n) f1 } } } n(x1 , ..., xn) `
i=1, ..., n

f i (xi , * i), (22)

where the functions have the same properties as the corresponding functions in
Theorem 3.

Indeed, the functions containing more than just one x-argument contain no
*-arguments (because all intersections are empty). As a result, all these functions
are absorbed by f1 } } } n(x1 , ..., xn).

The necessary conditions for 4(X1)=4 6 } } } 6 4(Xn)=4n are given by

Corollary 3 to Theorem 3. Any density function in a context system [X1 , ...,
Xn ; 8] is representable by (20) if 4i denotes 4(Xi), i=1, ..., n. Put differently, any
multivariate density has the structure

9[X1=x1 6 } } } 6 Xn=xn]= `
I�[1, ..., n]

fI _[xi]i # I ; ,
i # I

4(Xi)& , (23)

where the functions have the same properties as the corresponding functions in
Theorem 3.

Finally, the sufficient conditions for 4(X1)=41 6 } } } 6 4(Xn)=4n are given by

Corollary 4 to Theorem 3. In a context system [X1 , ..., Xn ; 8], 4(X1)=41

6 } } } 6 4(Xn)=4n if the density is representable by (20), and if, for i=1, ..., n, any
factor * # 4i possesses two values corresponding to different values of

>I�[1, ..., n] 6 i # I fI ([x j] j # I ; � j # I 4j)

� >I�[1, ..., n] 6 i # I fI ([x j] j # I ; � j # I 4j) dxi
, i=1, ..., n,

for some fixed valued of [x1 , ..., xn] and of the remaining factors in 4i .
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The truth of the corollary immediately follows from observing that the expression
above is the conditional density

9[Xi=xi | X1=x1 6 } } } 6 Xi&1=x i&1 6 X i+1=xi+1 6 } } } 6 Xn=xn].

4. CONCLUSION

4.1. Reconstructing joint density functions. Theorem 3 provides a solution for
the focal problem of this paper: it establishes the structure of the joint density
function for [X1 , ..., Xn] that is necessary and sufficient for [X1 , ..., Xn] to be con-
ditionally selectively influenced by factor subsets [41 , ..., 4n], respectively. An
important aspect of this theorem is that its necessity part is constructive: it provides
an algorithm for recovering the principal structure of the density functions given
any diagram of conditionally selective influences.

As an illustration, consider the context system [X1 , X2 , X3 ; *1 , *2 , *3 , *4]
shown in the upper panel of Fig. 3. A straightforward application of (20) to this
diagram generates 23=8 f-functions (corresponding to the 8 possible subsets of 1,
2, 3). The first step consists in finding the argument sets for all these functions:

name: f123 x-arguments: x1 , x2 , x3 factors: [*1] & [*1 , *2 , *3] & [*1 , *3 , *4]=[*1]

name: f12 x-arguments: x1 , x2 factors: [*1] & [*1 , *2 , *3]=[*1]

name: f13 x-arguments: x1 , x3 factors: [*1] & [*1 , *3 , *4]=[*1]

name: f23 x-arguments: x2 , x3 factors: [*1 , *2 , *3] & [*1 , *3 , *4]=[*1 , *3]

name: f1 x-arguments: x1 factors: [*1]

name: f2 x-arguments: x2 factors: [*1 , *2 , *3]

name: f3 x-arguments: x3 factors: [*1 , *3 , *4]

name: f x-arguments: none factors: [*1 , *2 , *3 , *4].

The next step is to eliminate some of the functions by means of the absorption
principle. Thus, the functions f12 , f13 , and f1 are eliminated because their respective
arguments sets, [x1 , x2 ; *1], [x1 , x3 ; *1], and [x1 , *1], are subsets of [x1 , x2 , x3 ; *1],
the argument set of f123 . The resulting representation is

9[X1=x1 6 X2=x2 6 X3=x3]

= f123(x1 , x2 , x3 ; *1) f23(x2 , x3 ; *1 , *3) f2(x2 ; *1 , *2 , *3)

_f3(x3 ; *1 , *3 , *4) f (*1 , *2 , *3 , *4),

where f (*1 , *2 , *3 , *4) is the reciprocal of

||| f123(x1 , x2 , x3 ; *1) f23(x2 , x3 ; *1 , *3) f2(x2 ; *1 , *2 , *3)

_f3(x3 ; *1 , *3 , *4) dx1 dx2 dx3 .
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FIG. 3. A diagram of conditional selective influences for a context system [X1 , X2 , X3 ; *1 , *2 ,
*3 , *4] and a context system [X1 , X2 , X3 , X4 , X5; *1 , *2 , *3 , *4]; the arrows have the same meaning
as in Fig. 2.

The choice of the functions f123 , f23 , f2 , and f3 is arbitrary, except for three
considerations. First, f123 should have a positive domain of non-zero measure at all
values of *1 and should equal zero outside this domain (which thereby becomes the
support R123 of the density function being constructed). Second, the positive
domains of f23 , f2 , and f3 should include the corresponding projections R23 , R2 ,
and R3 of R123 . Third, the functions should be chosen so that the triple integral
above is finite.

Analogously, the diagram in the lower panel of Fig. 3, after considering 25=32
f-functions (corresponding to the 32 possible subsets of 1, 2, 3, 4, 5) and after
eliminating most of them by means of the absorption principle, leads to the expression

9[X1=x1 6 } } } 6 X5=x5]=f12345(x1 , x2 , x3 , x4 , x5) f235(x2 , x3 , x5 ; *3)

_f12(x1 , x2 ; *1) f45(x4 , x5 ; *4) f2(x2 ; *1 , *2 , *3)

_f5(x5 ; *3 , *4) f (*1 , *2 , *3 , *4).

4.2. Relating the theory to data. In an experiment, the random variables
[X1 , ..., Xn] can only be known by samples of their joint values, or, more typically,
by samples of the values of some functions computed from these random variables,
such as X1+X2 , min[X1 , X2]+X3 , or other hypothetical decompositions of the
observable random variables (Dzhafarov, 1997). If the experimenter assumes a
certain diagram of conditionally selective influences, that is, if the contents of 4(Xi)
for all random variables in the context system are assumed to be known, Theorem
3 provides a general structure of the joint density function for these random
variables. This structure, however, is too general to relate it to experimental data
directly. As usual, auxiliary assumptions are needed to enable one to relate the data
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to specific functions with free parameters, rather than the ``free functions'' of
Theorem 3. By their nature, such auxiliary assumptions should be different in dif-
ferent applications, whether they specify the forms of the f-functions directly, or
through restrictions imposed on the joint distributions of the random variables or
some functions thereof. A systematic discussion of these issues is beyond the scope
of this paper, whose aim is exclusively conceptual: to clarify the meanings, represented
by (1) and, especially, by (5), in which one can say that certain random variables,
while being stochastically interdependent, are selectively influenced by certain
factors. Nevertheless, it may be useful to provide simple illustrations for how the
concepts developed in this paper can be related to empirical data. The illustrations
given below are chosen primarily for their mathematical simplicity and do not
imply any particular applied importance.

In our first example, let [X1 , X2] be observable random variables (e.g., scores
obtained in two performance tests) known to be influenced by certain three factors,
[*1 , *2 , *3]. Let the researcher be interested in the hypothesis that the diagram of
conditionally selective influences is as shown in Fig. 4. In other words, the hypo-
thesis is that X1 is not conditionally selectively influenced by *2 , while X2 is not
conditionally selectively influenced by *1 . To test this hypothesis directly, by
analyzing, for each value of [*1 , *2 , *3], the subsamples of X1-values (X2-values)
corresponding to various fixed values of X2 (respectively, X1), one would need
unrealistically large samples of [X1 , X2]-values at all values of [*1 , *2 , *3]. The
situation simplifies considerably if, as it is often done when dealing with test scores,
the auxiliary assumption is made that [X1 , X2] are distributed bivariate-normally.
Given enough data, this assumption can, of course, be corroborated independently,
as a nesting hypothesis with respect to the conjunction of this hypothesis with the
diagram of Fig. 4.

Equating the expression for the joint density function derived from (16) to the
expression for a bivariate normal density, one can easily prove that the diagram of
Fig. 4 holds if and only if there are functions m1(*3), m2(*3), c1(*1 , *3), c2(*2 , *3),
c3(*3) such that the correlation coefficient \(*1 , *2 , *3), the two variances

FIG. 4. A diagram of conditionally selective influences for the context system [X1 , X2 ; *1 , *2 , *3]
used in the illustrations involving two test scores and two response time components (see text for
details); the arrows have the same meaning as in Fig. 2.
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_2
1(*1 , *2 , *3) and _2

2(*1 , *2 , *3), and the two means +1(*1 , *2 , *3) and +2(*1 , *2 , *3)
of [X1 , X2] can be presented as

\=c1(*1 , *3) c2(*2 , *3) c3(*3)

_2
1=

c2
1(*1 , *3)
1&\2 , _2

2=
c2

2(*2 , *3)
1&\2 (24)

+1=m1(*3), +2=m2(*3),

where m1(*3), m2(*3), c1(*1 , *3), c2(*2 , *3), c3(*3) are arbitrary except for the
obvious constraint

|\|=|c1(*1 , *3) c2(*2 , *3) c3(*3)|<1.

The validity of the focal hypothesis (i.e., the hypothesis that the diagram of Fig. 4
holds) can be tested in a standard way: by fitting to the data the constrained
bivariate normal density,

,*norm[x1 , x2 | m1(*3), m2(*3), c1(*1 , *3), c2(*2 , *3), c3(*3)],

and comparing the fit with that of the bivariate normal density with unconstrained
parameters,

,norm[x1 , x2 | +1(*1 , *2 , *3), +2(*1 , *2 , *3),

_2
1(*1 , *2 , *3) _2

2(*1 , *2 , *3), \(*1 , *2 , *3)].

Denoting by N i the number of the levels of factor *i (i=1, 2, 3), the addition of the
focal hypothesis to the nesting hypothesis (of the bivariate normality) reduces the
number of the free parameters from 5N1N2 N3 to N3(N1+N2+3). Observe that the
diagram of Fig. 4 can be falsified on the level of marginal distributions alone, by
showing that either of the means +1 and +2 depends on either of the factors *1

and *2 .
In our second example, assume that [X1 , X2] are unobservable components of

a certain observable function of these random variables, say, X=X1+X2 . For
instance, X may be a response time recorded in an experiment where the response
is assumed to be the termination point for two serially connected processes with
individual durations X1 and X2 . Let this response time be known to depend on
three experimental factors, [*1 , *2 , *3], and let the hypothesis be, again, that the
diagram of conditionally selective influences is as shown in Fig. 4. To be able to
make use of the results already obtained, let the researcher adopt the auxiliary
hypothesis (not entirely implausible, given what we know of the empirical proper-
ties of response time distributions) that [X1 , X2] have a bivariate log-normal
distribution, in the sense that [log X1 , log X2] are distributed bivariate-normally
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(Johnson 6 Kotz, 1976). Making use of (24), the focal hypothesis here can be
tested by fitting to the data the equality

Prob[X<x]=||
exp(z1)+exp(z2)<x

,*norm[z1 , z2 | m1 , m2 , c1 , c2 , c3] dz1 dz2 ,

with N3(N1+N2+3) free parameters, and comparing the fit with that of the
equality

Prob[X<x]=||
exp(z1)+exp(z2)<x

,norm[z1 , z2 | +1 , +2 , _2
1 , _2

2 , \] dz1 dz2 ,

with 5N1 N2N3 free parameters.
This example can be modified to apply to the situation when a diagram of condi-

tionally selective influences is not viewed as an empirically testable proposition but
rather as a defining property of the hypothetical response time components. In the
completely analogous discussion of unconditionally selective influences this situation
is considered in Cortese and Dzhafarov (1996), Dzhafarov and Cortese (1996), and
Dzhafarov (1997). In our case, the unobservable components [X1 , X2] of X can be
defined as those conditionally selectively influenced by [*1 , *2 , *3] as shown in
Fig. 4. The research interest in such a situation shifts from the diagram itself (that
is now taken as a given) to recovering either the composition rule by which X can
be obtained from [X1 , X2], or the form of the stochastic relationship between X1

and X2 (Dzhafarov, 1997; Dzhafarov 6 Schweickert, 1995). Consider, again, the
assumption that [X1 , X2] have a bivariate log-normal distribution, and let the
researcher be interested in which of the three commonly used operations,

X=X1+X2 , X=min[X1 , X2], X=max[X1 , X2],

provides a better approximation to the true composition rule (Cortese 6 Dzhafarov,
1996). Making use of Theorem 2 and (24), this problem is solved by comparing the
fits to the data provided by the three equalities

||
exp(z1)+exp(z2)<x

,*norm[z1 , z2 | m1 , m2 , c1 , c2 , c3] dz1 dz2

Prob[X<x]={||
min[z1, z2]<log x

,*norm[z1 , z2 | m1 , m2 , c1 , c2 , c3] dz1 dz2

||
max[z1, z2]<log x

,*norm[z1 , z2 | m1 , m2 , c1 , c2 , c3] dz1 dz2 .

It should be noted that none of these or similar illustrations can be used to justify
the expectation that the concept of conditionally selective influence is likely to play
an important role in response time analysis, psychometrics, or any other applied
area. The extent of the empirical usefulness of this concept remains to be seen.
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APPENDIX A: SUPPORT OF JOINT DENSITY

Theorem 1. In a context system [X1 , ..., Xn ; 8],

R1 } } } n=R1 } } } n { ,
i=1, ..., n

4(Xi)= .

Proof. If 9[X1=x1 6 } } } 6 Xn=xn] is positive for all values of (x1 , ..., xn , 8),
then the theorem holds trivially. Assume therefore that 9[X1=x1 6 } } } 6 Xn=xn]
=0 at some values of (x1 , ..., xn , 8). Choose some * # 8. If R1 } } } n depends on *,
then there are two values *(1) and *(2) of * such that, for some fixed values of
8&[*] and some fixed x1 , ..., xn ,

9[X1=x1 6 } } } 6 Xn=xn]=0 when *=*(1)

9[X1=x1 6 } } } 6 Xn=xn]>0 when *=*(2).

It follows that for *=*(1),

9[Xi=xi | X1=x1 , ..., Xi&1=x i&1 , Xi+1=xi+1 , ..., Xn=xn]

=0 or indef, i=1, ..., n,

while for *=*(2),

9[Xi=xi | X1=x1 , ..., Xi&1=x i&1 , Xi+1=xi+1 , ..., Xn=xn]

>0, i=1, ..., n.

Since indef is treated as non-removable singularity (Subsection 2.5), all the condi-
tional probabilities above have different values at *(1) and *(2), because of which
* # 4(Xi) for i=1, ..., n. Hence * # 4(X1) & } } } & 4(Xn).

APPENDIX B: MULTIPLE-DIFFERENCE OPERATOR

The notion of the multiple-difference operator $[1, ..., r] introduced in this appendix
is utilized in the proofs of Theorem 2 in Appendix C and Theorem 3 in Appendix D.
The reader who is willing to assume that the functions to which this operator is
applied are sufficiently smooth may omit this appendix and treat $[1, ..., r] in all
proofs as the conventional derivative �r��x1 } } } �xr .

Let A be a set of arguments of a function F=F(A). Let certain values of all
arguments constituting A be chosen, and let the chosen value of x # A be denoted
by x0. For any vector of arguments x1 , ..., xr , belonging to A, the operator
$[1, ..., r] F(A) is defined as follows (by induction):

(i) $[1] F(A)=F(x1 ; A&[x1])&F(x0
1 ; A&[x1])

(ii) $[1, ..., r] F(A)=$[1] $[1, ..., r&1] F(A).
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Thus,

$[1, 2] F(x1 , x2 , ...)=[F(x1 , x2 , ...)&F(x0
1 , x2 , ...)]

&[F(x1 , x0
2 , ...)&F(x0

1 , x0
2 , ...)],

$[1, 2, 3] F(x1 , x2 , x3)=[[F(x1 , x2 , x3 , ...)&F(x0
1 , x2 , x3 , ...)]

&[F(x1 , x0
2 , x3 , ...)&F(x0

1 , x0
2 , x3 , ...)]]

&[[F(x1 , x2 , x0
3 , ...)&F(x0

1 , x2 , x0
3 , ...)]

&[F(x1 , x0
2 , x0

3 , ...)&F(x0
1 , x0

2 , x0
3 , ...)]],

etc.
It can be easily verified by induction that $[1, ..., r]F(A) remains the same for all

permutations of the indices [1, ..., r], and that for any 1�i�r,

$[1, ..., r] F(A)=$[1, ..., i]$[i+1, ..., r] F(A).

Lemma 1. If, for some ��5, $[1, ..., r] F(x1 , ..., xr ; 5) does not depend on
arguments from 5&�, then

F(x1 , ..., xr ; 5)=F0(x1 , ..., xr ; �)+ :
i=1, ..., r

Fi (x1 , ..., xi&1 , xi+1 , ..., xn ; 5),

where

F0(x1 , ..., xr ; �)=$[1, ..., r] F(x1 , ..., xr ; 5)

Proof (by induction on r). For r=1, the premise of the lemma can be written
as

$[1] F(x1 ; 5)=F(x1 ; 5)&F(x0
1 ; 5)=F0(x1 ; �).

Denoting F(x0
1 ; 5) by F1(5), we get

F(x1 ; 5)=F0(x1 ; �)+F1(5),

which satisfies the lemma.
Assume that the lemma is satisfied for r&1�1.
For r, the premise of the lemma can be written as

$[1, ..., r] F(x1 , ..., xr ; 5)=F0(x1 , ..., xr ; �).

Applying the induction hypothesis to

$[1, ..., r] F(x1 , ..., xr ; 5)=$[2, ..., r][$[1] F(x1 , ..., xr ; 5)],
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we have

$[1] F(x1 , ..., xr ; 5)=F0(x1 , ..., xr ; �)+ :
i=2, ..., r

F i (x1 , ..., xi&1 , x i+1 , ..., xr ; 5).

But

$[1] F(x1 , ..., xr ; 5)=F(x1 , ..., xr ; 5)&F(x0
1 , ..., xr ; 5),

and we conclude the proof by combining the last two equations and renaming
F(x0

1 , ..., xr ; 5) into F1(x2 , ..., xr ; 5).

By trivial renaming of the indices and the corresponding x-arguments one can
define the multiple-difference operator $I for an arbitrary set of indices I. This
generalization is used in Appendix D. For completeness, the multiple-difference
operator with the empty set of indices is defined as an identity operator,

$< F(A)=F(A).

APPENDIX C: BIVARIATE CONTEXT SYSTEMS

The proof below utilizes the bivariate version, $[1, 2] , of the multiple-difference
operator introduced in Appendix B.

Theorem 2. In a context system [X1 , X2 ; 8], 4(X1)�41 �8 and 4(X2)�42

�8 if and only if

9[X1=x1 6 X2=x2]= f12(x1 , x2 ; 41 & 42) f2(x1 ; 41) f2(x2 ; 42) f (8), (C1)

where f12 is nonnegative with the positive domain R12 , f1 and f2 are positive on R1

and R2 , respectively, and

f (8)=\|| f12(x1 , x2 ; 41 & 42) f1(x1 ; 41) f2(x2 ; 42) dx1 dx2+
&1

is positive.

Proof. The sufficiency is proved by direct verification. The conditional density

9[X1=x1 | X2=x2]=
9[X1=x1 6 X2=x2]

9[X2=x2]

equals

f12(x1 , x2 ; 41 & 42) f1(x1 ; 41) f2(x2 ; 42) f (8)
f2(x2 ; 42) f (8) � f12(x1 , x2 ; 41 & 42) f1(x1 ; 41) dx1

=
f12(x1 , x2 ; 41 & 42) f1(x1 ; 41)

� f12(x1 , x2 ; 41 & 42) f1(x1 ; 41) dx1

.
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Indeed, if f2(x2 ; 42)>0, then it is eliminated algebraically, whereas if f2(x2 ; 42)
=0, then x2 � R2 , (x1 , x2) � R12 for all x1 , and both expressions above are indef
(under the convention on 0�0 in Subsection 2.5). Since the right-hand expression
does not depend on factors outside 41 , one concludes that 4(X1)�41 . Analogously,
4(X2)�42 .

To prove the necessity, define the following functions on the support R12 :

log(9[X1=x1])=u1(x1 ; 8)

log(9[X2=x2])=u2(x2 ; 8)

log(9[X1=x1 | X2=x2])=u1 | 2(x1 , x2 ; 41)

log(9[X2=x2 | X1=x1])=u2 | 1(x1 , x2 ; 42).

Then log(9[X1=x1 6 X2=x2]) can be decomposed as

u1(x1 ; 8)+u2 | 1(x1 , x2 ; 42)=u2(x2 ; 8)+u1 | 2(x1 , x2 ; 41). (C2)

Applying $[1, 2, ] to these two decompositions, we have

$[1, 2] u1 | 2(x1 , x2 ; 41)=$[1, 2] u2 | 1(x1 , x2 ; 42).

Clearly, these two expressions equal some function of x1 , x2 and 41 & 42 . By
Lemma 1 (Appendix B), this means that

u1 | 2(x1 , x2 ; 41)=!12(x1 , x2 ; 41 & 42)+a1(x1 ; 41)+a2(x2 ; 41)

u2 | 1(x1 , x2 ; 42)=!12(x1 , x2 ; 41 & 42)+b1(x1 ; 42)+b2(x2 ; 42).

Substituting these representations in (C2), we see that log(9[X1=x1 6 X2=x2])
equals

u1(x1 ; 8)+!12(x1 , x2 ; 41 & 42)+b1(x1 ; 42)+b2(x2 ; 42)

=u2(x2 ; 8)+!12(x1 , x2 ; 41 & 42)+a1(x1 ; 41)+a2(x2 ; 41).

Renaming, by the absorption principle, u1(x1 ; 8)+b1(x1 ; 42) into u1(x1 ; 8) and
u2(x2 ; 8)+a2(x2 ; 41) into u2(x2 ; 8), we have

log(9[X1=x1 6 X2=x2])=!12(x1 , x2 ; 41 & 42)+u1(x1 ; 8)+b2(x2 ; 42)

=!12(x1 , x2 ; 4 & 42)+a1(x1 ; 41)+u2(x2 ; 8). (C3)

It follows that

u2(x2 ; 8)&b2(x2 ; 42)=u1(x1 ; 8)&a1(x1 ; 41),
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which can only be the case if the functions involved are decomposable as

a1(x1 ; 41)=!1(x1 ; 41)+'1(41)

u1(x1 ; 8)=!1(x1 ; 41)+"1(8)

b2(x2 ; 42)=!2(x2 ; 42)+'2(42)

u2(x2 ; 8)=!2(x2 ; 42)+"2(8).

Substituting the expressions for a1 and u2 in the right-hand side of (C3) (or b2 and
u1 in its left-hand side), we get, after renaming '1(41)+"2(8) into !(8),

log(9[X1=x1 6 X2=x2])

=!12(x1 , x2 ; 41 & 42)+!1(x1 ; 41)+!2(x2 ; 42)+!(8).

Representation (C1) is now obtained by exponentiating the equality above and
observing that f12 #exp(!12), f1 #exp(!1), f2 #exp(!2) are all positive (on areas
R12 , R1 , and R2 , respectively), and that f (8)=exp[!(8)] is also positive and
must be reciprocal to

|| f (x1 , x2 ; 41 & 42) f1(x1 ; 41) f2(x2 ; 42) dx1 dx2 ,

if the integration is carried out over R12 . This restriction on the integration area
can be removed by making the function f12(x1 , x2 ; 41 & 42) vanish outside R12 .

APPENDIX D: MULTIVARIATE CONTEXT SYSTEMS

The proofs below utilize the multiple-difference operator of Appendix B and the
index subset symbolism introduced in Subsection 2.8. In addition, we need the
following notation agreements.

Given an index subset I�[1, ..., n], N(I ) denotes the number of the indices in
I: N(I )=0, 1, ..., n.

Given two index subsets, I and J, a function with arguments

[xi] i # I ; ,
i # J

4i

is abbreviated as fI; J (or another symbol with these subscripts). In particular, the
abbreviation fI; I is used in this appendix for the functions

fI \[xi] i # I ; ,
i # I

4i+ , I�[1, ..., n],

147CONDITIONALLY SELECTIVE INFLUENCE



that play a central role in this work. As explained in Subsection 2.8,

[xi] i # <=<, ,
i # <

4i=8,

because of which

f<; J= f<; J \,
i # J

4i+ , fI; <= fI; <([xi] i # I ; 8), f<; <= f<; <(8).

Sometimes we need superscripts to distinguish different functions of the same
type (i.e., with the same subscripts and arguments):

f (1)
I; J , f (2)

I; J , ..., f (i)
I; J , ....

The proof of Theorem 3 is based on the following

Lemma 2. For n�2, 1�r�n, if a function h(x1 , ..., xn ; 8) can be represented by
n identities

h(x1 , ..., xn ; 8)= :
N(I )�r

, (i)
I; I&[i] , i=1, ..., n, (D1)

then it can also be represented by n identities

h(x1 , ..., xn ; 8)= :
N(I )=r

,I; I+ :
N(I )�r&1

. (i)
I; I&[i] , i=1, ..., n. (D2)

Remark on Notation. The superscript in , (i)
I; I&[i] indicates that for i{ j the

functions , (i)
I; I&[i] and , ( j)

I; I&[ j] are generally different, even if they have the same
subscripts and therefore the same arguments (which is the case, for instance, if I
does not include either i or j). By contrast, ,I; I in (D2) are the same for i=1, ..., n.

Proof. Consider an arbitrary index subset I with N(I )=r. Applying the
operator $I to (D1) we observe that

$Ih(x1 , ..., xn ; 8)=$I, (i)
I; I&[i] , i=1, ..., n.

The set of arguments for $I, (i)
I; I&[i] is the same as for , (i)

I; I&[i] ,

[xj] j # I ; ,
j # I&[i]

4j ,

and the intersection of all such sets, for i=1, ..., n, is

[xj] j # I ; ,
j # I

4j .

148 EHTIBAR N. DZHAFAROV



Clearly, all $I,I; I&[i] , for i=1, ..., n, equal one and the same function of this inter-
section of the argument sets, and this function has the structure of ,I; I . Due to
Lemma 1 (Appendix B), we have

, (i)
I; I&[i]=,I; I+ :

k # I

, (i)
I&[k]; I&[i] , i=1, ..., n,

and (D1) can be rewritten as

h(x1 , ..., xn ; 8)= :
N(I )=r

,I; I+ :
N(I )=r

:
k # I

, (i)
I&[k]; I&[i]+ :

N(I )�r&1

, (i)
I; I&[i] ,

for i=1, ..., n. Observe now that to any J with N(J)=r there corresponds a func-
tion , (i)

J&[k]; J&[i] in the middle double-sum and a function , (i)
J&[k]; J&[k, i] in the

rightmost sum: they have the same set of x-arguments but the latter generally has
a larger set of factors:

,
j # I&[i]

4j � ,
j # I&[k, i]

4j .

By the absorption principle,

, (i)
J&[k]; J&[i]+, (i)

J&[k]; J&[k, i]=. (i)
J&[k]; J&[k, i] .

As the resulting function has the structure of . (i)
I; I&[i] with N(I )=r&1, (D1)

transforms into

h(x1 , ..., xn ; 8)= :
N(I )=r

,I; I+ :
N(I)=r&1

. (i)
I; I&[i]+ :

N(I )<r&1

, (i)
I; I&[i] ,

i=1, ..., n.

The statement of the lemma is now obtained by renaming the ,-functions in the
rightmost sum into .-functions and combining this sum with the middle one.

Theorem 3. In a context system [X1 , ..., Xn ; 8], 6i=1, ..., n 4(Xi)�4i �8 if and
only if

9 _ 6
i # [1, ..., n]

Xi=x i&= `
I�[1, ..., n]

fI; I , (D3)

where f[1, ..., n]; [1, ..., n] is nonnegative with the positive domain R1 } } } n , fI; I is positive on
RI for all proper index subsets I, and

f<; <=\| } } } | `
<{I�[1, ..., n]

fI; I dx1 } } } dxn+
&1

is positive.
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Proof. Sufficiency is proved by direct verification, as in Theorem 2.
Necessity is proved by induction with respect to the number of random variables,

n. Theorem 2 provides the induction basis (n=2). Assume that representation (D3)
holds for any context system with n&1�2 random variables. Then, due to the
observation on conditional context systems made in Subsection 2.1, this representa-
tion holds for n conditional density functions,

9 _ 6
j # [1, ..., n]&[i]

Xj=x j | X i=x i& , i=1, ..., n.

Namely,

9 _ 6
j # [1, ..., n]&[i]

Xj=x j | Xi=xi&= `
I�[1, ..., n]&[i]

&(i)
I; I , i=1, ..., n,

and consequently,

9 _ 6
j # [1, ..., n]

Xj=x j&=9[Xi=xi] `
I�[1, ..., n]&[i]

& (i)
I; I , i=1, ..., n.

Every function in the right-hand side of this expression generally depends on xi ,
because of which we can write

& (i)
I; I=w (i)

I _ [i]; I

and

9[Xi=xi]=w(i)(xi , 8)=w (i)
< _ [i]; < .

It follows that

9 _ 6
j # [1, ..., n]

Xj=x j&= `
I�[1, ..., n]&[i]

w (i)
I _ [i]; I , i=1, ..., n.

On the support R1 } } } n one can take logarithms of both sides:

h(x1 , ..., xn ; 8)= :
I�[1, ..., n]&[i]

,I _ [i]; I , i=1, ..., n.

It is easy to see that

:
I�[1, ..., n]&[i]

,I _ [i]; I= :
I�[1, ..., n] 6 i # I

,I; I&[i] .
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The summation area I�[1, ..., n] 6 i # I can always be formally extended to
I�[1, ..., n] by, say, adding functions identically equal to zero. The n additive
decompositions of h(x1 , ..., xn ; 8), therefore, can be presented as

h(x1 , ..., xn ; 8)= :
N(I )�n

, (i)
I; I&[i] , i=1, ..., n.

Applying Lemma 2 (with r=n) to this expression, we get

h(x1 , ..., xn ; 8)&,[1, ..., n]; [1, ..., n]= :
N(I )�n&1

.(i)
I; I&[i] , i=1, ..., n.

Applying Lemma 2 once again (with r=n&1, treating the left-hand side as a single
function of x1 , ..., xn and 8), we get

h(x1 , ..., xn ; 8)&,[1, ..., n]; [1, ..., n]& :
N(I )=n&1

,I; I = :
N(I )�n&2

! (i)
I; I&[i] ,

i=1, ..., n.

Continuing to apply Lemma 2 in this fashion (with r=n&2, ..., 1), we eventually
come to

h(x1 , ..., xn ; 8)& :
1�N(I )�n

,I; I= :
N(I )=0

` (i)
I; I&[i] , i=1, ..., n.

Clearly,

:
N(I )=0

` (i)
I; I&[i]=` (i)

<; <=,<; < , i=1, ..., n,

and therefore,

h(x1 , ..., xn ; 8)= :
N(I )�n

,I; I .

Representation (D3) is now obtained by exponentiation and observations
analogous to those ending the proof of Theorem 2.
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