
Ehtibar N. Dzhafarov,1,* Janne V. Kujala,2,† and Víctor H. Cervantes1,‡

1Purdue University, USA
2University of Turku, Finland

Having established that two measures of contextuality, $C\text{NT}_1$ and $C\text{NT}_2$, coincide for any cyclic system, in the last section of the paper we attempted to show by a counterexample that

\mathcal{S}: for non-cyclic systems, $C\text{NT}_1$ and $C\text{NT}_2$ do not generally coincide, nor is one of them any function of the other.

As it turns out, this statement is correct, but the counterexample we chose was flawed due to a mistake in programming (see Fig. 1).

![Figure 1. A corrected version of Fig. 16 for system (66) in the paper, with the same meaning of the symbols. Although $C\text{NT}_1$ and $C\text{NT}_2$ do not coincide, they are linearly related.](image)

* Corresponding author: ehtibar@purdue.edu
† jvk@iki.fi
‡ cervantv@purdue.edu
Here is a correct demonstration of \mathcal{S}. Consider the following system of dichotomous (0/1) uniformly distributed random variables,

\[
\begin{array}{cccc}
R_1^1 & R_2^1 & | & c_1 \\
R_2^2 & R_3^2 & | & c_2 \\
R_3^3 & R_4^3 & | & c_3 \\
R_4^4 & R_5^4 & | & c_4 \\
q_1 & q_2 & q_3 & q_4 \\
\end{array}
\]

(1)

Assuming the variables in each of the first four rows are perfectly correlated, compute CNT$_1$ and CNT$_2$ for various joint distributions of the four variables in context c_5. The results in Fig. 2 show that statement \mathcal{S} is true.

![Figure 2. CNT$_1$ vs CNT$_2$ for system (1), with $\Pr[R_i^j = 1] = 1/2$ for all i, j in the system. Each symbol corresponds to a specific choice of the joint distribution of $R_1^1, R_2^2, R_3^3, R_4^4$, while keeping $R_1^1 = R_2^2 = R_3^3$, $R_3^3 = R_4^4$, and $R_4^4 = R_1^1$. Neither of CNT$_1$ and CNT$_2$ is a function of the other, as indicated by the horizontally and vertically aligned points.](image)

The flawed counterexample was only used to demonstrate \mathcal{S}, so nothing else in the paper is affected.