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II. Discriminability of Serial and Parallel Architectures

James M. Cortese and Ehtibar N. Dzhafarov

University of Illinois at Urbana�Champaign

Among the possible response time (RT) decomposition rules, three
are of a traditional interest: addition (serial RT architecture), minimum
(parallel-OR architecture), and maximum (parallel-AND architecture).
Given RT samples, one can decide which of these three operation is the
true decomposition rule by choosing the operation producing the
smallest Smirnov distance between the RT samples combined in a cer-
tain way, as described by E. N. Dzhafarov and J. M. Cortese (1996,
Journal of Mathematical Psychology 40, 185�202). By means of Monte-
Carlo simulations, we determine at what sample sizes this decision
identifies the true decomposition rule reliably. The results indicate that
for a broad class of RT distribution functions the sample sizes required
are by an order of magnitude larger when the component times are
stochastically independent than when they are perfectly positively
stochastically interdependent. In both cases, however, the required
sample sizes are realistically achievable in an experiment, provided the
experimental factors selectively influencing component times are suf-
ficiently effective. Addition and maximum are generally more difficult to
discriminate than addition and minimum, which in turn are more dif-
ficult to discriminate than maximum and minimum. ] 1996 Academic

Press, Inc.

PROBLEM

In this paper, we address the problem of how to identify
the response time (RT) decomposition rule within a list of
operations containing this decomposition rule, given that
RTs are only known on a sample level. Although the general
logic of this study applies to all RT architectures that are
within the scope of Dzhafarov and Schweickert's (1995)
theory of decomposition tests, we specifically focus on three
architectures of traditional interest: serial architectures
(where the decomposition rule is arithmetic addition),
parallel-OR architectures (where the decomposition rule is
minimum), and parallel-AND architectures (where the
decomposition rule is maximum).

A rigorous statement of this problem follows Dzhafarov
and Schweickert's theory of decomposition tests and their
sample-level version presented in Dzhafarov and Cortese
(1996). A familiarity with these papers is desirable, but we

include just enough introductory information to make the
present paper readable independently.

Let Tij be a RT whose distribution depends on two
experimental factors, i and j being levels of the two factors
in a crossed factorial design. We consider decompositions of
Tij by means of an operation H into component times A i

and Bj that are selectively influenced by these factors and
have a given form of stochastic relationship ���s between
them:

Tij =
d

AiHBj , Ai � � �s Bj . (1)

Here, =
d

means ``is distributed as,'' and ���s denotes one
of two simple forms of stochastic relationship investigated
in Dzhafarov (1992), Dzhafarov and Rouder (1996),
and Dzhafarov and Schweickert (1995): the ``classical''
stochastic independence between Ai and Bj (denoted
Ai = Bj and abbreviated s.-independence), and the perfect
positive stochastic interdependence between Ai and Bj

(denoted Ai & Bj and abbreviated p.p.s.-interdependence),
when Ai and Bj are increasing functions of a single random
variable (a common ``internal source of variability'').

Let the true decomposition rule H be known (assumed)
to belong to a list of k competing operations [h1 , ..., hk],
and let the RTs Tij be represented by random samples of size
n, [T1

ij , ..., Tn
ij]. The problem is to determine a procedure by

which one can identify H among [h1 , ..., hk]. We specifi-
cally focus on the list containing three operations, [+, min,
max], or any two of them. The theoretical importance of
these operations is due to the possibility of the following
well-known interpretation: if Ai and Bj are the durations of
two processes (selectively influenced by the index factors),
then Ai+Bj is the duration of their serial connection,
max[Ai , Bj] is the duration of their parallel-AND connec-
tion, and min[Ai , Bj] is the duration of their parallel-OR
connection (in the latter case the duration of the longer pro-
cess should be viewed as virtual, or potential; alternatively,
the longer process may be viewed as continuing after the
response is given). The present work, therefore, relates to
the vast literature on empirical discriminability of serial and
parallel architectures of processing times (Nozawa, 1992;
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Schweickert, 1978; Townsend 6 Ashby, 1983; Townsend 6
Nozawa, 1988; for surveys, see Luce, 1986; Massaro 6
Cowan, 1993; Schweickert, 1992; Townsend, 1990).

However, Dzhafarov 6 Schweickert (1995) suggested
that the component times Ai and Bj can be viewed as time-
dimensioned aspects of a single process developing until it
reaches a critical level (see Dzhafarov, 1993), rather than
durations of separate processes. In such an interpretation
the operations plus, minimum, and maximum have no
privileged status compared to other operations (e.g., multi-
plication), except in the following purely mathematically
sense. For any operation within the scope of Dzhafarov 6
Schweickert's theory (termed ``simple operations''), if
c=a h b, then either g(c)= g(a)+ g(b), by a strictly
monotonic transformation g, or h is minimum or maxi-
mum.

The problem of identifying the true decomposition rule H
among the operations [+, min, max] is well-defined,
because according to the uniqueness theorems of Dzhafarov
and Schweickert's theory, under a mild constraint imposed
on the RT distributions, if (1) holds for one of these opera-
tions then it cannot hold for another: thus (min)-decom-
posability excludes both (+)-decomposability and (max)-
decomposability, etc. The following statement is referred to
as the (population-level) decomposition test for h, or (h)-
test. For any 2_2 (subset of a) crossed factorial design
producing the RTs Tij (i.e., putting i=1, 2, j=1, 2),
provided that the RTs Tij are decomposable at all, they are
(h)-decomposable (i.e., h is the true decomposition rule
H) if and only if

d[Uh(t), Ch(t)]=0, (2)

where Ch(t) is the distribution function of the ``cross''
combination T12 h T21 (T12 ���s T21), Uh(t) the distribu-
tion function of the ``uncross'' combination T11 h T22

(T11 ���s T22), and d[Uh(t), Ch(t)] is any distance func-
tion on the space of distribution functions (symmetrical,
satisfying the triangle inequality, and vanishing if and only
if the two distribution functions are identical). A decom-
position test is only designed to identify the true operation
H, not the component times themselves (that generally can-
not be recovered uniquely), or the form of stochastic rela-
tionship �� �s (that should be viewed as part of the definition
of the component times to be connected by the operation
sought).

Based on formulation (2), Dzhafarov and Cortese (1996)
proposed the following sample-level version of a (h)-test.
Given random samples [T1

ij , ..., Tn
ij] from Tij (i=1, 2,

j=1, 2), let [T (1)
ij , ..., T (n)

ij ] be the same samples arranged in
an increasing order. Form the sequences

[T1
11 h T1

22 , ..., Tn
11 h Tn

22]

and

[T1
12 h T1

21 , ..., Tn
12 h Tn

21]

if the stochastic relationship is s.-independence (Ai = Bj), or
form the sequences of paired empirical quantiles

[T (1)
11 h T (1)

22 , ..., T (n)
11 h T (n)

22 ]

and

[T (1)
12 h T (1)

21 , ..., T (n)
12 h T (n)

21 ]

if the stochastic relationship is p.p.s.-interdependence
(Ai & Bj). Let Un

h(t)= and Cn
h(t)= be (random) empirical

distribution functions corresponding to the former two
sequences, respectively; analogously, Un

h(t)& and Cn
h(t)&

correspond to the latter two sequences. Compute the
Smirnov distance

Dh=sup
t

|Un
h(t)=&Cn

h(t)= |

or

Dh=sup
t

|Un
h(t)&&Cn

h(t)& |,

depending on the form of stochastic relationship. Dzhafarov
and Cortese (1996) show that these distances are strongly
consistent estimators of the corresponding distances
between the population distribution functions, which means
that

sup
t

|Un
h(t)=&Un

h(t)= | w�
a.s.

sup
t

|Uh(t)=&Ch(t)= |

(3)

sup
t

|Un
h(t)&&Un

h(t)& | w�
a.s.

sup
t

|Uh(t)&&Ch(t)& |

(a.s. stands for almost sure convergence). Also Dzhafarov
and Cortese (1996) derive the asymptotic sampling distribu-
tion for Dh under the hypothesis that h is the true decom-
position rule H: for any observed value dh of Dh , the
asymptotic p-value

lim
n � �

Prob[DH> dh]

can be evaluated (or enclosed between bounds), and it does
not depend on H; whereas for any incorrect operation V
(i.e., any operation different from the true decomposition
rule H),

lim
n � �

Prob[D
*

>dh]> lim
n � �

Prob[DH>dh].

The hypothesis that h is the true decomposition rule H
(against the generic alternative that it is not) then can be
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tested by comparing, in the conventional way, the observed
p-value with a significance level :.

This decision rule, however, is not directly applicable to
our present problem��to identify H within a given list of
operations that is assumed to contain H, say, [+, min,
max], [min, max], [+, min], or [+, max]. It is quite
possible that a given value of : falls below the p-values for
more than one operation from the list, or exceeds the
p-values for all these operations. Most importantly,
however, this decision rule, as well as the sampling distribu-
tion theory upon which it is based, does not take into
account that the Smirnov distances for different operations,
say, Dmin , D+ , and Dmax , are all computed from one and
the same quadruple of RT samples, [T1

ij , ..., Tn
ij], i=1, 2,

j=1, 2. They are not, therefore, stochastically independent.
An analytic approach to this problem requires that one

evaluate a joint sampling distribution of the vector [DH ,
D

*1
, ..., D

*k&1
] computed from one and the same quad-

ruple of samples selected from (H)-decomposable RTs T11 ,
T12 , T21 , T22 . Such a theory is not available. A suitable deci-
sion rule, however, follows immediately from the strong
consistency property (3): identify H as the operation for
which the observed value of the Smirnow distance is the
smallest. Indeed, as the sample sizes for the RTs T11 , T12 ,
T21 , T22 increase beyond bound,

Prob[min[DH, D
*1

, ..., D
*k&1

]=DH] � 1 (4)

for all operations [V1 , ..., Vk&1] different from these true
decomposition rule H. This follows from the fact that, due
to (3), for any =>0, Prob[DH<=] converges to 1 (as
sample size increases), whereas, for any incorrect opera-
tion V, one can chose a sufficiently small =>0 for which
Prob[D

*
<=] � 0. It follows from (4) that to make

Prob[min[DH, D
*1

, ..., D
*k&1

]=DH] arbitrarily close to
1 one ``merely'' has to chose sufficiently large samples. From
an empirical point of view, of course, the main question is
whether such sample sizes are realistically achievable in an
experiment. This question is central for the present work.
The results suggest a cautiously affirmative answer, at least
if one confines one's attention to the operations [+, min,
max] and if the distributions used in our study are not all
very dissimilar to empirically observed ones.

The minimum sample size (for convenience, let it be the
same for all four RT samples) at which the probability in (4)
reaches a given level can be considered a measure of the
empirical identifiability of H within a given list of opera-
tions: the larger this minimum sample size, the less iden-
tifiable is the operation empirically (as opposed to the
theoretical, population-level identifiability established by
the uniqueness theorems of Dzhafarov 6 Schweickert,
1995). If, as in the simulation study described below, all
operations within a list, say, [+, min, max], take turns in

serving as the true decomposition rule H, then the mini-
mum sample size at which all three probabilities,

Prob[min[D+ , Dmax , Dmin]=D+ |H is +],

Prob[min[D+ , Dmax , Dmin]=Dmax |H is max],

Prob[min[D+ , Dmax , Dmin]=Dmin |H is min]

(or analogous probabilities for any other list of operations)
exceed a given level can be considered a measure of empiri-
cal discriminability of these operations: the larger this
sample size, the less discriminable they are empirically. As
the context precludes ambiguity, hereafter we omit the
qualifier ``empirical'' when referring to the identifiability and
discriminability.

It is important to keep in mind that the identifiability, or
discriminability, within a given list of operations is not
generally invariant with respect to possible distributions of
the RTs T11 , T12 , T21 , T22 . One aspect of this assertion
relates to the effectiveness of the index factors. The first
(or second) index factor i=1, 2 ( j=1, 2) is ineffective if,
respectively,

{F11(t)#F21(t)
F22(t)#F12(t)

or {F11(t)#F12(t)
F22(t)#F21(t),

(5)

where Fij (t) is the distribution function for Tij . In either of
these cases

sup
t

|Uh(t)&Ch(t)|=0

for any operation h, and consequently, no two operations
are discriminable at all (Dzhafarov 6 Schweickert, 1995).
A ``gradualized'' version of this statement is that the less
effective one of the index factors, the less identifiable is the
true decomposition rule within a given list of operations.
Unfortunately, there seems to be no universal measure of
effectiveness for the index factors that could allow one
to predict the value of Prob[min[DH , D

*1
, ..., D

*k&1
]=

DH], or even to rank-order such probabilities for different
lists of operations. In a sense, this probability itself can be
viewed as a list-specific measure for the effectiveness of the
index factors: the higher this probability, the more effective
the factors are (with respect to a given list of operations).

This logical circularity is, obviously, unsatisfactory: to be
of use, a measure of effectiveness should be computable
from the RT distribution functions. One can only hope to
find such a measure, however, by confining one's analysis to
a particular list of operations, say, [+, min, max], and
to a particular class of RT distributions (such as the com-
binations of the Weibull-distributed component times used
in our Monte-Carlo simulations). As shown below, for
instance, the correct identification probabilities in our
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simulations are in the ordinal correspondence with certain
measures (different for the two forms of stochastic rela-
tionship) computed from the supremal distances

sup
t

|F11(t)&F12(t)|, sup
t

|F22(t)&F21(t)|,

sup
t

|F11(t)&F21(t)|, sup
t

|F22(t)&F12(t)|.

Another, perhaps less obvious, aspect of the assertion
that the identifiability, or discriminability, within a given list
of operations is not generally invariant with respect to
possible RT distributions, relates to the comparative
statements like ``operation h1 is more discriminable from
operation h2 than from operation h3 .'' The truth value of
such statements can also change from one quadruple of RTs
to another. For example, in the Monte-Carlo simulation
results presented below, addition and maximum are usually
less discriminable than addition and minimum, but the
reverse is true in at least one case. Assuming that the main
determinant of the discriminability of the true decomposi-
tion rule H from an incorrect operation V is the magnitude
of supt |U

*
(t)&C

*
(t)| (see Dzhafarov 6 Cortese, 1996),

such cases can easily be constructed analytically. One can
even construct a case when the operations maximum and
minimum are more discriminable from addition than they
are from each other. Consider RTs T11 , T12 , T21 , T22 with
distribution functions F11(t), F12(t), F21(t), F22(t) such that
(5) does not hold, but

max[F12(t), F21(t)]#max[F11(t), F22(t)]
(6)

min[F12(t), F21(t)]#min[F11(t), F22(t)].

In the language of Dzhafarov and Schweickert's theory,
this means that the two index factors are effective, but
the pairs of the distribution functions [F11(t), F22(t)] and
[F12(t), F21(t)] are cross-over rearrangements of each
other. In such a situation, under s.-independence,

sup
t

|Umax(t)&Cmax(t)|=0, sup
t

|Umin(t)&Cmin(t)|=0,

but generally

sup
t

|U+(t)&C+(t)|>0.

Then, obviously, the difference between Dmax and Dmin will
be stochastically smaller than that between either Dmax and
D+ or Dmin and D+. Strictly speaking, this example is not
legitimate as stated, because Dzhafarov and Schweickert's
theory excludes the case of cross-over rearrangements
from consideration. However, it is easy to realize that the
distribution functions [F11(t), F22(t)] can always be chosen

arbitrarily close but not identical to cross-over rearran-
gements of [F12(t), F21(t)], resulting in the same outcome:
a better discriminability of maximum and minimum from
addition than from each other.

MONTE-CARLO SIMULATION

The logic of this simulation study is similar to that in
Dzhafarov and Cortese's (1996) analysis of the statistical
power of the sample-level decomposition tests. Let A1 , B1 ,
A2 , B2 be component times with known distributions, and
let the form of stochastic relationship ���s be given. We
choose one of the three operations, minimum, maximum, or
addition, to serve as the true decomposition rule H, with
the remaining two serving as competing, ``incorrect'' alter-
natives V1 , V2 . Using the true decomposition rule, we form
RTs T11 , T12 , T21 , T22 from A1 , B1 , A2 , B2 according to
(1). Then we select a quadruple of samples of size n from
these RTs, and we form their ``uncross'' and ``cross'' com-
binations by means of all three operations,

[t (1)
11 +t (n)

22 , ..., t (n)
11 +t (n)

22 ]

and [t (1)
12 +t (1)

21 , ..., t (n)
12 +t (n)

21 ]

[min[t (1)
11 , t (1)

22 ], ..., min[t (n)
11 , t (n)

22 ]]

and [min[t (1)
12 , t (1)

21 ], ..., min[t (n)
12 , t (n)

21 ]]

[max[t (1)
11 , t (1)

22 ], ..., max[t (n)
11 , t (n)

22 ]]

and [max[t (1)
12 , t (1)

21 ], ..., max[t (n)
12 , t (n)

21 ]]

in the case of p.p.s.-interdependence, and

[t1
11+t1

22 , ..., tn
11+tn

22]

and [t1
12+t1

21 , ..., tn
12+tn

21]

[min[t1
11 , t1

22], ..., min[tn
11 , tn

22]]

and [min[t1
12 , t1

21], ..., min[tn
12 , tn

21]]

[max[t1
11 , t1

22], ..., max[tn
11 , tn

22]]

and [max[t1
12 , t1

21], ..., max[tn
12 , tn

21]]

in the case of s.-independence. Then we compute the
Smirnov distances dH, d

*1
, and d

*2
and verify whether

dH< d
*1

and�or dH<d
*2

,
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FIG. 1. Six different Weibull distributions used for the component times in the Monte-Carlo study.

(i.e., whether the true decomposition rule ``wins'' in a com-
petition with an incorrect operation). This procedure is
repeated 2500 times, allowing us to reliably estimate
(asymptotically, ignoring the probability of ties)

Prob[min[DH, D
*1

, D
*2

]=DH] ,

as well as the pairwise probabilities

Prob[min[DH, D
*1

]=DH]

and

Prob[min[DH, D
*2

]=DH] .

The estimates of these probabilities are obtained for all
three operations as each serves in turn as the true decom-
position rule, for both forms of stochastic relationship, for
different sample sizes n, and for a variety of distributions for
the component times A1 , B1 , A2 , B2 .

For reasons discussed below, we chose Weibull-dis-
tributed component times in our simulations:

{
A1 =

d bA1[&log(1&P)]cA1
&1

A2 =
d bA2[&log(1&P)]cA2

&1

B1 =
d bB1[&log(1&P)]cB1

&1

B2 =
d bB2[&log(1&P)]cB2

&1
,
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FIG 2. Examples of density functions for simulated RTs.

where P is unit-uniformly distributed, and b and c are
referred to as the scale and shape parameters, respectively.
The simulated RTs, therefore, are formed as

Tij =
d bAi[&log(1&P)]cAi

&1
H bBj [&log(1&Q)]cBj

&1

(i=1, 2, j=1, 2),

where P and Q are unit-uniformly distributed: under p.p.s.-
interdependence, P=Q, whereas under s.-independence,
P = Q.

The six Weibull distributions used in our simulations are
shown in Fig. 1. To limit the number of combinations, in
computing the RTs T11 , T12 , T21 , T22 each of the two

parameters was fixed in turn while the other varied on three
levels, as shown by grouping of the distributions in the
upper and lower panels of Fig. 1. There were 12 different
quadruples of component time distributions, 6 with varying
scale parameter and 6 with varying shape parameter,
yielding the total of 72 quadruples of RT distributions: 12
times 2 forms of stochastic relationship times 3 operations
taking turns in serving as the decomposition rule (a few out
of these 72 cases, however, had to be excluded for reasons
indicated in Appendices 1�4). Each quadruple of the RT dis-
tributions was examined at 3 to 5 sample sizes, based on
preliminary estimates of their order of magnitude.

As follows from the discussion in the introductory sec-
tion, two considerations should guide one's choice of the
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distributions for the component times A1 , B1 , A2 , B2 . First,
while the simulated RTs T11 , T12 , T21 , T22 computed from
these component times should form a sufficiently wide
variety of distribution shapes, some of them should be suf-
ficiently similar to empirically observed RT distributions.
The presence of such ``realistic looking'' distributions would
ensure that the simulation results are transferable to
experimental data; at the same time, the variety of different
shapes among the simulated quadruples of RTs, provided
that the simulation results are essentially the same for all of
them, would ensure that the results are robust (so that
whatever dissimilarity there is between the ``realistic look-
ing'' simulated distributions and the empirically observed
ones, it should not lead to dramatically different outcomes).
The second consideration is that the effectiveness of the
index factors in T11 , T12 , T21 , T22 should be on the order of
or smaller than that expected to be found in an experiment.
This would ensure that the simulation-based identifiability
and discriminability estimates are realistic or conservative.

Unfortunately, these requirements are too informal to
allow one to verify one's compliance with them. There are
many conflicting ways of assessing similarity between dis-
tributions (e.g., see Luce's 1986 discussion of the com-
parisons of distribution functions versus densities versus
hazard functions), and we do not know all the critical
features that make a random variable similar to an empiri-
cally observed RT. Nor is it possible to construct a general
algorithm for assessing the effectiveness of index factors (see
the introductory section), and even if some measure of effec-
tiveness is adopted, there is no way of assessing its ``typical''
values in an experiment. As a result, the conformity of our
simulations with the requirements above is more of an
assumption than a fact.

We assume, for instance, that the simulated RT distribu-
tions shown in Fig. 2 are sufficiently similar to empirically
observed RTs (see Luce, 1986, for a review). A Weibull dis-
tribution with the shape parameter c=1 is exponential, and
as c increases, the density function becomes progressively
more normal-like, with relatively little skewness at c-values
greater than about 3. Under s.-independence, therefore, the
distributions of RTs generated from Weibull-distributed
component times can provide fair imitations of distributions
that have been previously used for modeling RTs, ranging
from generalized two-stage gamma (McGill, 1963) to ex-
Gaussian (Hohle, 1965; Ratcliff, 1978). Weibull distribu-
tions themselves, that may be obtained as RT distributions
under p.p.s.-interdependence when the decomposition rule
is maximum or minimum (Fig. 2, bottom panel), have also
been proposed as approximations for RT distributions
(Maloney 6 Wandel, 1984).

On the other hand, Weibull-distributed component times
produce in some cases quadruples of RTs whose distribu-
tions are clearly different from those of empirically observed
RTs. As an example, under p.p.s.-interdependence, the

maximum or minimum of two Weibull-distributed compo-
nent times with the same scale parameter but different shape
parameters has a density function with a distinct discon-
tinuity. Also, under s.-independence, when the operation is
minimum and one of the components is exponential, the
resulting density function is nonzero at the origin. The fact
that the results reported below do not differ for ``realistic''
and ``unrealistic'' simulated RTs can be interpreted as an
indication of the results' robustness.

We relegate to the subsequent discussion the issue of
whether the effectiveness of the index factors in our
simulated RT quadruples was reasonably low to ensure
that our identifiability and discriminability estimates are
conservative.

RESULTS AND DISCUSSION

For the triple comparisons, the estimates of

Prob[min[DH , D
*1

, D
*2

]=DH]

plotted against sample size per treatment are shown in
Figs. 3�6. All estimates, based on 2500 replications, are
highly reliable: when computed from two non-overlapping
blocks of 1000 replications, the estimates generally differ by
less than two percentage points.

We found empirically that the probability of correct iden-
tification for a given sample size within each panel (but not
across the panels) is monotonically related to the following
two measures of the effectiveness of index factors,

min[max[d11
12 , d22

21], max[d11
21 , d22

12]] (7)

in the case of p.p.s.-interdependence, and

(d11
12+d22

21)(d11
21+d22

12) (8)

in the case of s.-independence, where

d ij
kl=sup

t
|Fij (t)&Fkl (t)|

(i=1, 2, j=1, 2, k=1, 2, l=1, 2).

These measures are well-constructed because they only
vanish when (5) is satisfied, that is, when at least one of the
two index factors is ineffective. The two measures, however,
have very different properties: the possible values of (7)
range from 0 to 1, achieving the maximal value when both
pairs [d11

12 , d22
21] and [d11

21 , d22
12] contain distances equal to 1;

the possible values of (8) range from 0 to 4, achieving the
maximal value when all four distances [d11

12 , d22
21 , d11

21 , d22
12]

equal 1. The values of dij
kl and the overall effectiveness
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FIG 3. Estimates of the probability with which the true decompostion rule produces a smaller Smirnov distance than the two competing operations.
The results are for p.p.s.-interdependent components, whose distributions have the same shape. The missing curves correspond to the cases excluded for
the reasons indicated in the Appendices

measures for all simulated RT quadruples are shown in
Appendices 1�4.

To ascertain that the effectiveness values in the simulated
RT quadruples were not unrealistically high, we estimated
the distances [d11

12 , d22
21 , d11

21 , d22
12] from the graphs of RT dis-

tributions reported in Roberts and Sternberg (1992)��the
only study so far where a decomposition test (for addition,
under the assumption of s.-independence) was applied
to experimental data. Although their particular design
involves a Cartesian product scheme (discussed below) and
is further complicated by the involvement of a third
experimental factor as well as averaging across subjects,
which does not permit a direct comparison of their sample
sizes with ours, the distances [d11

12 , d22
21 , d11

21 , d22
12] in their

graphs can still serve as a reference point. Computed accord-
ing to (8), as it should be under s.-independence, the effec-
tiveness measure in their experiments 1, 2a, and 2b equals,

respectively, 0.68, 0.20, and 1.77. Only two of the effective-
ness values in Figs. 5 and 6 exceed the lowest of these num-
bers (Fig. 5, with addition and maximum as true decom-
position rules), and these are the cases with very high iden-
tification probabilities (exceeding 0.9) achieved well below
1000 observations per treatment. If the effectiveness of the
index factors in Roberts and Sternberg's graphs is computed
according to (7), that is, under the assumption of p.p.s.-
interdependence, then the estimated values are 0.29, 0.19,
and 0.49 (for their experiments 1, 2a, and 2b, respectively).
Again, the lowest of these estimates lies well within the
upper quartile of the effectiveness values associated with the
curves shown in Figs. 3 and 4. Finally, without resorting to
any single measure of effectiveness, a simple comparison of
the distances [d11

12 , d22
21 , d11

21 , d22
12] estimated from Roberts

and Sternberg's graphs with those in Appendices 1�4 clearly
show that overwhelmingly most of the distances in our
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FIG. 4. Same as in Fig. 3, except that the component time distributions have different shapes.

simulations were smaller. We conclude that the simulation-
based estimates of the sample sizes required to achieve high
identification probabilities can be considered conservative.

The results presented in Figs. 3�6 indicate that sample
sizes at which a true operation, plus, minimum, or maxi-
mum, reliably wins over its two competitors (say, with
probability 0.75) are by an order of magnitude larger when
the component times are s.-independent (about 5000 obser-
vations per treatment) than when they are p.p.s.-interdepen-
dent (about 500 observations per treatment). This result is
in good agreement with the statistical power analysis in
Dzhafarov and Cortese (1996). There it is shown that the
superiority of the p.p.s.-interdependence is due to the fact
that in this case the differences

|U
*1

(t)&C
*1

(t)| and |U
*2

(t)&C
*2

(t)|

are much larger than in the case of s.-independence. The
suprema of these differences are typically on the order of 0.1

under p.p.s.-interdependence, but only on the order of 0.01
under s.-independence. Dzhafarov and Cortese point out that
this fact should only be taken as an empirical finding pertain-
ing to a limited, though perhaps very broad from an experi-
mentalist's point of view, class of distribution functions. Thus
one can see in Figs. 3�6 that the identification probabilities
for the lowest values of the effectiveness of the index factors
under p.p.s.-interdependence come very close to those for the
highest effectiveness values under s.-independence.

Dzhafarov and Cortese (1996) also consider and dismiss
as inappropriate the possibility that the statistical power (in
our case, the correct identification probabilities) under
s.-independence can be increased by computing the Smirnov
distances between empirical distribution functions corre-
sponding to two Cartesian product combinations

[T(k)
11 h T (l )

22 ] and [T (k)
12 h T (l )

21 ],

k=1, ..., n; l=1, ..., n,
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FIG. 5. Same as in Fig. 3, but for s.-independence.

instead of two ``linear'' pairings,

[Tk
11 h Tk

22] and [Tk
12 h Tk

21], k=1, ..., n.

For smaller sample sizes (on the order of 500 observations
per treatment) we directly verified that the Cartesian
product scheme leads to the operation plus consistently
winning over minimum and maximum,

min[D+ , Dmax , Dmin]=D+ ,

even when maximum or minimum is the true decomposition
rule. It is easy to prove that this trend should disappear at
much larger sample sizes, but then the Cartesian product
scheme becomes computationally unmanageable; it also
becomes unnecessary, because at large sample sizes a
reliable discriminability is also achieved by the ``linear''
pairing scheme.

Another possible attempt to increase the identifiability of
the true decomposition rule under s.-independence is related
to the fact that for a given quadruple of random samples
[T1

ij , ..., Tn
ij] (i=1, 2, j=1, 2), one can form (n !)2 different

pairings

[Tk
11 h T?1(k)

22 ] and [Tk
12 h T?2(k)

21 ], k=1, ..., n,

where ?1 and ?2 are two independent permutations of
[1, ..., n]. The strategy used in our simulations was to base
our decision on just one randomly chosen pair of such per-
mutations. Consider, however, the following alternative: for
each pair of permutations ?1 and ?2 one computes the triad

[D?1, ?2
+ , D?1, ?2

max , D?1, ?2
min ]

and determines which operation corresponds to the smallest
value; across all (n!)2 pairs of permutations (or some large
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FIG. 6. Same as in Fig. 4, but for s.-independence.

random subset thereof) one computes the proportions P+ ,
Pmax , Pmin of times when this smallest value corresponds to
operations plus, maximum, and minimum, respectively
(these proportions are random variables when considered
as functions of the initial random samples); the operation
corresponding to the largest of these proportions is declared
a winner; the whole procedure is repeated for different
quadruples of samples [T1

ij , ..., Tn
ij] until one achieves a

reliable estimate of

Pmultiple=Prob[max[PH, P
*1

, P
*2

]=PH] .

We refer to this scheme as the multiple pairings one, as
opposed to the single pairing scheme used in our simula-
tions. Clearly, the random variables

min[D?1, ?2
H , D

*1
?1, ?2, D

*2
?1, ?2]

computed for different permutations but one and the same
quadruple of samples

[T1
ij , ..., Tn

ij]

are identically distributed but stochastically interdependent.
Lacking a sampling distribution theory for this statistic, one
cannot predict, therefore, the difference between Pmultiple

and

Psingle=Prob[min[DH, P
*1

, D
*2

]=DH] .

in the single pairing scheme, although it is clear that

Pmultiple�Psingle .

We estimated these probabilities in a Monte-Carlo
simulation where the two pairing schemes were applied to
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FIG. 7. Comparison of the identification probability curves obtained by means of the Smirnov distance with those obtained by means of the
t-statistic.

RTs formed from two quadruples of component times
A1 , B1 , A2 , B2 . The sample size in these simulations was
1000 observations�treatment. In the multiple pairings
scheme, the winning operation (for a given quadruple of RT
samples) was determined from 400 different pairings ran-
domly selected from the astronomic number of (1000!)2

possible pairings. The number of replications of the proce-
dure, for both pairing schemes, was 2500, as in the main
simulation study. For one of the quadruples (with Weibull
parameters bA1=1.0, bA2=1.3, bB1=1.3, bB2=1.6; c=2.0),
the estimates were

Psingle=0.53, Pmultiple=0.59,

for another (with Weibull parameters cA1=1.0, cA2=3.0,
cB1=2.0, cB2=3.0; b=1.0),

Psingle=0.71, Pmultiple=0.82.

(The estimates for Pmultiple are reasonably reliable, in spite of
being based on 400 pairings only: we found by looking at
many blocks of 400 different pairings, all on the same quad-
ruple of samples, that the proportion of the pairings within
a block won by any one operation generally varies by less
than 5 or 60, and usually one operation wins an over-
whelming proportion of the pairings within a block.)
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FIG. 8. Estimates of the probability with which the true decomposition rule produces a smaller Smirnov distance than each of the two competing
operations in turn. The results are averaged across all quadruples of the simulated RT distributions.

These findings indicate that the gain in the identifiability
provided by the multiple pairings scheme is too small to
warrant the enormous increase in the computational time it
entails. The use of the single pairing scheme in Monte-Carlo
simulations is therefore justifiable. For an experimenter
with a single data set, however, it may be relatively easy, in
terms of computational time, to examine many different
pairings. The estimates given in the present paper can then
be viewed as lower bounds for achievable levels of dis-
criminability.

The multiple pairings scheme is not, of course, the only
way of increasing discriminability. Another possibility is to
use dissimilarity measures between ``cross'' and ``uncross''
combinations of RT samples other than the Smirnov dis-
tance. These dissimilarity measures do not even have to be

true distances. If, for example, one expects that the
experimental factor levels strongly affect RT means, one
might use the traditional t-statistic,

t=
|t� U&t� C |

- s2
U+s2

C

,

where the symbols represent, in the conventional way, the
means and variances of the ``cross'' and ``uncross'' combina-
tions of RT samples. (This measure is not a distance in the
space of samples, as it does not satisfy the triangle inequality
and it may vanish even when the samples are not identical.)
To compare the performance of this measure with that of
the Smirnov distance, we repeated our simulation study
using the t-statistic instead. The examples chosen for Fig. 7
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show that the t-statistic may perform very poorly, but in
some cases it does increase the identification probabilities.

Returning to our main study, the results presented in
Figs. 3�6 should be complemented by the estimates of

Prob[min[DH, D
*1

]=DH]

and

Prob[min[DH, D
*2

]=DH]

for the pairwise comparisons. These are presented in Fig. 8.
The pairwise comparisons are too numerous to show them
in the same format as the triple comparisons in Figs. 3�6. As
a result, we only present the results averaged across all dif-
ferent quadruples of RT distributions. The main finding
contained in Fig. 8 (in addition to what is already known
from the analysis of the triple comparisons) is that it is
generally easier to discriminate addition from minimum
than to discriminate addition from maximum. This result
was consistently found across a wide variety of parameters
for the component distributions, but there were some excep-
tions: out of 72 different RT quadruples (less some cases
excluded as indicated in Appendices 1�4) we found a few
examples where plus was about equally discriminable from
both minimum and maximum, and one case, with addition
as the true decomposition rule and with parameters
cA1=2.0, cA2=3.0, cB1=2.0, cB2=3.0, (under s.-inde-
pendence) where a small but reliable tendency existed for
addition and minimum to be less discriminable than addi-
tion and maximum. With no exceptions, however, mini-
mum and maximum are more discriminable from each
other than either of them is from addition. As shown in the
introductory section, this result should be treated in the
same way as the p.p.s.-interdependence superiority effect
considered earlier��as an empirical finding pertaining to a
broad but limited class of RT distributions.

CONCLUSION

The most important information conveyed by the results
of our Monte-Carlo study is that the sample sizes required
to identify the true decomposition rule among the three
operations of traditional interest, addition, minimum, and
maximum, are generally within the reach of a realistic,
though sometimes large, experiment. This means that if a
family of RTs indeed has one of the corresponding architec-
tures (serial, parallel-OR, and parallel-AND), then one can
reliably establish which one. If none of these architectures is
present, then this also can be reliably established, by means
of the procedure developed in Dzhafarov and Cortese (1996).

These determinations are especially easy to make under
the assumption of p.p.s.-interdependence, and given the

conceptual simplicity of this form of stochastic relationship,
as well as the existence of some empirical support for it
(Dzhafarov, 1992; Dzhafarov 6 Rouder, 1996), analysis of
the decomposability of RTs into p.p.s.-interdependent com-
ponents seems well worth the effort. Under the more tradi-
tional assumption of s.-independence, the determination of
the true decomposition rule (or the determination that none
of the three applies) may be more onerous a task; but only
at the lowest values of the effectiveness of the index factors
the identification probabilities in our study do not reach
high levels (say, 0.75) at realistic sample sizes (less than
5000 observations per treatment in a 2_2 factorial design).
As effectiveness of the index factors approaches zero, an
experimenter may have no other option but to alter the
levels of the factors in an attempt to produce greater dif-
ferences between the empirical RT distributions. Ideally, the
effectiveness measure should be computable directly from
the quadruples of RT samples, and not from the population
distribution functions as in our study. Sample-level versions
of (7) and (8) can, of course, be readily proposed, but their
reliability is yet to be determined in future research.

APPENDICES

Appendix 1.

Supremal distances between the component distribution
functions and overall effectiveness of index factors for
stochastically independent components: variation in the
scale parameter b; the shape parameter c=2.

Scale
parameter b Distance Effectiveness

A1 A2 B1 B2 d 11
21 d 22

12 d 11
12 d 22

21

Plus 1.0 1.3 1.0 1.3 .15 .13 .15 .13 .08
1.0 1.6 1.0 1.6 .27 .22 .27 .22 .24
1.3 1.6 1.3 1.6 .12 .10 .12 .10 .05
1.0 1.6 1.0 1.3 .27 .24 .15 .11 .13
1.0 1.6 1.3 1.6 .24 .22 .13 .10 .11
1.0 1.3 1.3 1.6 .15 .11 .13 .12 .07

Max 1.0 1.3 1.0 1.3 .15 .12 .15 .12 .07
1.0 1.6 1.0 1.6 .28 .18 .28 .18 .21
1.3 1.6 1.3 1.6 .12 .10 .12 .10 .05
1.0 1.6 1.0 1.3 .28 .23 .15 .09 .12
1.0 1.6 1.3 1.6 .23 .18 .14 .10 .10
1.0 1.3 1.3 1.6 .15 .09 .14 .12 .06

Min 1.0 1.3 1.0 1.3 .08 .11 .08 .11 .04
1.0 1.6 1.0 1.6 .13 .21 .13 .21 .12
1.3 1.6 1.3 1.6 .07 .09 .07 .09 .03
1.0 1.6 1.0 1.3 .13 .18 .08 .13 .07
1.0 1.6 1.3 1.6 .18 .21 .05 .08 .05
1.0 1.3 1.3 1.6 .11 .13 .05 .07 .03
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Appendix 2.

Supremal distances between the component distribution
functions and overall effectiveness of index factors for
stochastically independent components: variation in the
shape parameter c; the scale parameter b=1.

Shape
parameter c Distance Effectiveness

A1 A2 B1 B2 d 11
21 d 22

12 d 11
12 d 22

21

Plus 1.0 2.0 1.0 2.0 .08 .10 .08 .10 .03
1.0 3.0 1.0 3.0 .12 .17 .12 .17 .08
2.0 3.0 2.0 3.0 .05 .06 .05 .06 .01
1.0 3.0 1.0 2.0 .12 .14 .08 .11 .05
1.0 3.0 2.0 3.0 .08 .17 .04 .06 .03
1.0 2.0 2.0 3.0 .10 .11 .04 .05 .02

Max 1.0 2.0 1.0 2.0 .11 .12 .11 .12 .05
1.0 3.0 1.0 3.0 .15 .18 .15 .18 .11
2.0 3.0 2.0 3.0 .07 .07 .07 .07 .02
1.0 3.0 1.0 2.0 .15 .17 .11 .13 .08
1.0 3.0 2.0 3.0 .17 .15 .16 .07 .07
1.0 2.0 2.0 3.0 .12 .13 .06 .07 .03

Min 1.0 2.0 1.0 2.0 .13 .16 .13 .16 .08
1.0 3.0 1.0 3.0 .18 .25 .18 .25 .18
2.0 3.0 2.0 2.0 .08 .09 .08 .09 .03
1.0 3.0 1.0 2.0 .18 .23 .13 .17 .12
1.0 3.0 2.0 3.0 .23 .25 .06 .09 .07
1.0 2.0 2.0 3.0 .16 .17 .06 .08 .05

Appendix 3.

Supremal distances between the component distribution
functions and overall effectiveness of index factors for per-
fectly positively stochastically interdependent components:
variation in the scale parameter b; the shape parameter
c=2.

Scale
parameter b Distance Effectiveness

A1 A2 B1 B2 d 11
21 d 22

12 d 11
12 d 22

21

Plus 1.0 1.3 1.0 1.3 .10 .09 .10 .09 .09
1.0 1.6 1.0 1.6 .19 .15 .19 .15 .19
1.3 1.6 1.3 1.6 .08 .07 .08 .07 .08
1.0 1.6 1.0 1.3 .19 .17 .10 .08 .10
1.0 1.6 1.3 1.6 .17 .15 .09 .07 .10
1.0 1.3 1.3 1.6 .09 .08 .09 .08 .09

Max 1.0 1.3 1.0 1.3 .19 .00 .19 .00 .19
1.0 1.6 1.0 1.6 .33 .00 .33 .00 .33
1.3 1.6 1.3 1.6 .15 .00 .15 .00 .15
1.0 1.6 1.0 1.3 .33 .15 .19 .00 .19
1.0 1.6 1.3 1.6 (Duplicates the case

for parameters
1.3, 1.6, 1.3, 1.6)

1.0 1.3 1.3 1.6 (Excluded case:
Factor B ineffective)

Min 1.0 1.3 1.0 1.3 .00 .19 .00 .19 .19
1.0 1.6 1.0 1.6 .00 .33 .00 .33 .33
1.3 1.6 1.3 1.6 .00 .15 .00 .05 .15
1.0 1.6 1.0 1.3 (Duplicates the case

for parameters
1.0, 1.3, 1.0, 1.3)

1.0 1.6 1.3 1.6 .19 .33 .00 .15 .15
1.0 1.3 1.3 1.6 (Excluded case:

Factor A ineffective)

Appendix 4.

Supremal distances between the component distribution
functions and overall effectiveness of index factors for per-
fectly positively stochastically interdependent components:
variation in the shape parameter c; the scale parameter
b=1.

Scale
parameter b Distance Effectiveness

A1 A2 B1 B2 d 11
21 d 22

12 d 11
12 d 22

21

Plus 1.0 2.0 1.0 2.0 .10 .10 .10 .10 .10
1.0 3.0 1.0 3.0 .15 .16 .15 .16 .16
2.0 3.0 2.0 3.0 .05 .06 .05 .06 .06
1.0 3.0 1.0 2.0 .15 .15 .10 .11 .11
1.0 3.0 2.0 3.0 .15 .16 .06 .06 .06
1.0 2.0 2.0 3.0 .10 .11 .06 .05 .06

Max 1.0 2.0 1.0 2.0 .18 .13 .18 .13 .17
1.0 3.0 1.0 3.0 .28 .19 .28 .19 .28
2.0 3.0 2.0 3.0 .11 .08 .11 .08 .11
1.0 3.0 1.0 2.0 .28 .13 .18 .13 .18
1.0 3.0 2.0 3.0 .13 .19 .11 .08 .11
1.0 2.0 2.0 3.0 (Excluded case:

Cross-over rearrangements)

Min 1.0 2.0 1.0 2.0 .13 .18 .13 .18 .18
1.0 3.0 1.0 3.0 .19 .28 .19 .28 .28
2.0 3.0 2.0 3.0 .08 .11 .08 .11 .11
1.0 3.0 1.0 2.0 .19 .18 .13 .18 .18
1.0 3.0 2.0 3.0 .18 .28 .08 .11 .11

1.0 2.0 2.0 3.0 (Excluded case:
Cross-over rearrangements)
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