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Abstract

We present a new mathematical notion, dissimilarity function, and based on it, a radical extension

of Fechnerian Scaling, a theory dealing with the computation of subjective distances from pairwise

discrimination probabilities. The new theory is applicable to all possible stimulus spaces subject to

the following two assumptions: (A) that discrimination probabilities satisfy the Regular Minimality

law; and (B) that the canonical psychometric increments of the �rst and second kind are dissimilarity

functions. A dissimilarity function Dab for pairs of stimuli in a canonical representation is de�ned by

the following properties: (1) a 6= b =) Dab > 0; (2) Daa = 0; (3) If Dana0n ! 0 and Dbnb0n ! 0,

then Da0nb
0
n � Danbn ! 0; and (4) for any sequence fanXnbngn2N ; where Xn is a chain of stimuli,

DanXnbn ! 0 =) Danbn ! 0: The expression DaXb refers to the dissimilarity value cumulated along

successive links of the chain aXb. The subjective (Fechnerian) distance between a and b is de�ned as

the in�mum of DaXb+DbYa across all possible chains X and Y inserted between a and b:

Keywords: deviation, dissimilarity, discrimination probability, Fechnerian Scaling, observation area,

oriented distance, perceptual discrimination, Regular Minimality, same-di¤erent judgements, stimulus

chains, stimulus space, subjective equality, symmetric distance, topology, uniformity

1. Introduction

This paper introduces a new mathematical notion, dissimilarity function. This notion shares some properties

with that of a metric (distance function), but it is considerably more general: in particular, dissimilarity

generally satis�es neither the triangle inequality nor the symmetry constraint. Once de�ned on some space,

however (e.g., space of stimuli), a dissimilarity function allows one to impose a metric on this space by means

of the following standard construction: dissimilarity values are cumulated along all �nite chains of points

leading from point a to point b; and the in�mum of these cumulated values (which one can call the �lengths�

of the chains leading from a to b) is taken to be the oriented (asymmetric) distance from a to b;1 by adding
�Corresponding author. Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN

47907-2081, USA. E-mail address: ehtibar@purdue.edu (E.N. Dzhafarov).
1The oriented distance from a to b is a quantity Gab � 0 which satis�es the triangle inequality (for any x; Gax+Gxb � Gab)

and the zero property (Gab = 0 i¤ a = b), but which does not have to satisfy the symmetry constraint (Gab = Gba). If the

latter is satis�ed too, the distance is called conventional, or symmetric.
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the oriented distance from a to b to that from b to a one gets a conventional (symmetric) distance between

a and b: In view of this procedure we call the new mathematical theory to be presented the Dissimilarity

Cumulation (DC) theory.

The motivation for this particular construction comes from its main application: computing �subjective�

(Fechnerian) distances among stimuli from their pairwise discrimination probabilities. The latter are the

probabilities with which the judgment �these two stimuli are di¤erent�is chosen over �these two stimuli are

the same.�2 This application presupposes that a properly de�ned stimulus space satis�es the fundamental

law of Regular Minimality. This law allows one to transform (relabel) the stimuli so that the probability

 aa with which a is judged to be di¤erent from a (as explained later, it is better not to say �from itself�) is

always smaller than  ab and  ba; the probabilities with which a is judged to be di¤erent from any b 6= a.

Aside from the law of Regular Minimality, the application of our DC theory to discrimination probabilities

is based on one assumption only: that the di¤erences  ab� aa and  ba� aa, the so-called psychometric

increments, are both of them (di¤erent) dissimilarity functions.

The application of DC to discrimination probabilities is a radical extension of the theoretical program

called Generalized Fechnerian Scaling, which includes as special cases Multidimensional Fechnerian Scaling

(Dzhafarov, 2001a-b, 2002a-d, 2003a-b, 2004; Dzhafarov & Colonius, 1999a-b, 2001), Fechnerian Scaling of

Continuous Spaces (Dzhafarov & Colonius, 2005a), and Fechnerian Scaling of Discrete Object Sets (Dzha-

farov & Colonius, 2005b, 2006b-c). We refer the reader to this literature (especially, Dzhafarov, 2001a,

2002b,d; Dzhafarov & Colonius, 1999a, 2001, 2006c) for historical background and the relation of General-

ized Fechnerian Scaling to traditional issues of psychophysics (Fechner�s original theory, its experimental and

theoretical critiques, �the Fechner problem,�geometries of color spaces, Multidimensional Scaling, and oth-

ers). For recently published related work see Ennis (2006), Iverson (2006), Townsend, Aisbett, Busemeyer,

and Assadi (2006), and Zhang (2004, 2006).

In Fechner�s original theory every point on a unidimensional stimulus continuum was assigned a measure

of its discriminability from its �immediate neighbors,� and this discriminability measure, when integrated

from one stimulus to another, yielded the subjective distance between them. Since Fechner assumed that

the unidimensional continuum of stimuli monotonically corresponded to a unidimensional continuum of

�sensations,�the discriminability measure in his theory could be derived from greater-less judgments, e.g.,

by computing the slopes of the probability-of-greater functions at their medians (or, as a crude approximation,

the reciprocals of �just-noticeable di¤erences�).

In Generalized Fechnerian Scaling the greater-less judgments are replaced with same-di¤erent ones, the

discriminability measure is computed from the probability-of-di¤erent functions, and unidimensional continua

are extended into a very broad class of stimulus spaces. This class includes both stimulus spaces in which

stimuli can be connected by continuous paths (such as a space of colors) and stimulus spaces comprised

2These are merely prototypical formulations of the two responses. The notion of discrimination entails a wide variety of

judgment types (see Dzhafarov & Colonius, 2006a).
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of isolated points (such as a space of color names). Although useful links have been established between

the �continuous�and �discrete�computations (Dzhafarov & Colonius, 2005a-b), in the previous versions of

Generalized Fechnerian Scaling they remained very di¤erent in nature. One would be justi�ed in viewing this

as a problem, augmented by di¢ culties in drawing a clear empirical demarcation line between continuous

and discrete stimulus spaces.

The DC theory, by contrast, is applicable to stimulus spaces of entirely arbitrary nature, subject only to

the law of Regular Minimality and the above-stipulated assumption about the psychometric increments. To

emphasize this fact we call the new, DC-based theory of computing subjective distances from discrimination

probabilities Universal Fechnerian Scaling (UFS).

Potentially, the idea of DC has an even broader application area. One may reasonably hypothesize that

most if not all �dissimilarity-type�measures used in the conventional techniques of Cluster Analysis and

Multidimensional Scaling (e.g., an average numerical assessment of dissimilarity) are in fact dissimilarity

functions in our special sense.

Whatever the application area, the computation of distances from dissimilarities is a purely psychological

theory in the technical meaning de�ned in Dzhafarov and Colonius (2005a): this computation is invariant

with respect to all possible relabelings (bijective transformations) of stimuli, thus making no use of their

physical properties. Stimuli are entirely and exclusively characterized by their pairwise discrimination proba-

bilities. Thus, the Fechnerian distance between two given stimuli with real-valued representations will remain

precisely the same if the unidimensional continuum of stimuli to which they belong is bijectively mapped,

say, onto a unit square.

1.1. Notation Conventions

The two abbreviations,

DC = Dissimilarity Cumulation and UFS = Universal Fechnerian Scaling

are used throughout the paper.

Boldface lowercase letters, a; b0; x; yn; : : :, always denote elements of a set of stimuli. Stimuli are merely

names (qualitative entities), with no algebraic operations de�ned on them. If stimuli are represented by real

numbers, we use the same symbol for both a stimulus and its numerical representation but use the boldface

and lightface type to distinguish them: stimuli a; x; 15; ... with values a; x; 15; : : :.3

The set of all stimuli and its subsets are denoted by Gothic letters, S; S�1; s; : : :.

Finite sequences (chains) of stimuli are denoted by uppercase boldface letters, X; Yn, : : :.

Real-valued functions of one or more arguments which are elements of a stimulus set are indicated by

strings without parentheses:  ab; Dabc; DXn; 	
(�)ab; : : :.

3We maintain this rigorous distinction because the DC theory and UFS are being introduced here for the �rst time. It is

generally convenient and innocuous, however, to notationally confuse stimuli with their numerical values.
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In�nite sequences fxngn2N ; fxngn2N ; fXngn2N ; ::: are almost always indicated by their generic elements:

sequence xn; sequence xn; etc. Convergence of a sequence is always understood as conditioned on n!1:

We use the square-bracket notation for intervals of reals (closed, open and half-open): [a; b] ; [a; b[ ;

]a; b] ; and ]a; b[ : The round brackets, (a; b), always indicate an ordered pair of numbers. The sets of reals,

nonnegative reals, and naturals (1; 2; :::) are denoted traditionally, R, R+, and N:

1.2. An �Entomological�Metaphor

1

2

1

2

1

2

1

2

A B

DC

Figure 1. Di¤erent ways of getting from 1 to 2: (A) Direct �ight. (B) Flight with intermediate (instantaneous) stops. (C)

�Crawling� (here, in�nite chain of in�nitesimally small �ights). (D) �Crawls� and �ights.

Consider a terrain with a complicated but steady pattern of winds blowing over it (Fig. 1). There is

a �y that wishes to get from position 1 to position 2. From the �y�s point of view, the pattern of winds

is characterized by the amount of time/e¤ort Dab the �y should expend to �y straight from a to b; for

every pair of positions (a;b) : One can easily see that Dab thus de�ned is generally di¤erent from Dba; and

that, given another position x; Dab need not be always smaller than Dax + Dxb: Thus, the time/e¤ort

of �ying from 1 to 2 directly, without intermediate stops (Fig. 1A), may very well be greater than a chain

of �ights leading from 1 to 2 through intermediate points (Fig. 1B). It is even possible that the �y would

do better by �crawling� all the way from 1 to 2 (Fig. 1C) � for the purposes of the present metaphor,

�crawling�is understood as a limit case for a chain of �ights, as their number increases beyond bounds and
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their individual durations (or associated e¤orts) decrease to zero. It may very well be the case that the

shortest (least exerting) path should include a combination of �crawls�and �ights, as shown in Fig. 1D.

If the terrain (set of locations) is taken to represent a stimulus set, then the time/e¤ort function Dab

is a metaphor for a dissimilarity function. A stimulus set may or may not be representable as a manifold,

may or may not allow for continuous paths (e.g., it can consist of a �nite number of isolated points), but

the idea of cumulating dissimilarity across all possible �nite chains with two given endpoints is applicable

universally.

1

1.1

1.3

1.4 1.5
1.6

1.7

1.8

1.9

2

1.2

1.718

1.297

1.136

Figure 2. �Lengths� (i.e., cumulated dissimilarities) of di¤erent chains of points leading from 1 to 2 in the stimulus space

represented by the interval [1; 2]. The interval is shown by a curved line to make it graphically distinguishable from the chains

of its elements. The dissimilarity function is Dxy =
��ey�x � 1�� :

For a numerical example, consider the situation depicted in Fig. 2. The stimulus set here is represented

by an interval of reals between 1 and 2, and the dissimilarity function is

Dxy =
��ey�x � 1�� ;

where x; y are numerical values assigned to stimuli x;y. If the �y �ies from 1 to 2 directly, it takes 1.718

units of time/e¤ort,

D12 =
��e2�1 � 1�� = 1:718:

Flying from 1 to 2 through point 1:5 takes less,

D1 (1:5)2 = D1 (1:5)+D (1:5)2 =
��e1:5�1 � 1��+ ��e2�1:5 � 1�� = 1:297;

and the chain 1� 1:25� 1:5� 1:75� 2 takes less still,

D1 (1:25) (1:5) (1:75)2 =
��e1:25�1 � 1��+ :::+ ��e2�1:75 � 1�� = 1:135:
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Proceeding in this manner it can be shown (Example 4 in Section 2.5) that the fastest/easiest way to get

from 1 to 2 in this case is to �crawl�all the way across the interval: this will take 1 unit of e¤ort,

inf
k;x1:::xk

D (x0 = 1)x1:::xk (xk+1 = 2) =

Z 2

1

d (ey�x � 1)
dy

����
y=x+

dx =

Z 2

1

dx = 1:

In other words, the in�mum of cumulated dissimilarities for all �nite chains of stimuli leading from 1 to 2

equals 1. This amount is taken to be the oriented (asymmetric) distance from 1 to 2:

G12 = 1:

1

1.1

1.3

1.4 1.5
1.6

1.7

1.8

1.9

2

1.2

.632

.749
.787

Figure 3. �Lengths� of di¤erent chains of points leading from 2 to 1 in the stimulus space of Fig. 2.

The situation is di¤erent for getting back, from 2 to 1 (Fig. 3). The direct �ight here turns out to be

the fastest/easiest path,

D21 =
��e1�2 � 1�� = 0:632:

Any intermediate point inserted between 2 and 1 only increases the time/e¤ort needed. The in�mum of

cumulated dissimilarities for all �nite chains of stimuli leading from 2 to 1 equals therefore 0.632 units. This

amount is taken to be the oriented distance from 2 to 1:

G21 = 0:632:

The overall, symmetric distance between 1 and 2 can now be computed by adding the two oriented distances

�to and from�:

G12+G21 = 1:632:
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A rigorous analysis of this example requires of course that one de�ne the properties of a dissimilarity

function (Section 2.4) and prove that Dxy = jey�x � 1j satis�es these properties on interval [1; 2] (Examples

1 and 4 in Sections 2.1 and 2.5). One should also show that the in�mum of dissimilarity values cumulated

across all �nite chains with �xed endpoints is an oriented distance from the initial to the terminal point

(Section 2.5). Finally, one should justify the computation of the overall, symmetric distance by adding

together the two oriented distances �to and from,� rather than, say, taking their maximum (Sections 1.4

and 2.8). This justi�cation is derived from UFS, by considering the two kinds of psychometric increments as

dissimilarity functions, and requiring that the overall (symmetric) distances computed from them coincide

(Sections 1.3 and 2.8).

1.3. Psychophysics of Discrimination: Basics

Here, we brie�y recapitulate some of the basic concepts and assumptions underlying the theory of same-

di¤erent discrimination probabilities. The discussion is illustrated by Fig. 4. A detailed description and

examples can be found in Dzhafarov (2002d, 2003a) and Dzhafarov and Colonius (2005a, 2006a).

1.3.1. Two observation areas

(See matrix  � in Fig. 4.) The arguments x and y of the discrimination probability function

 �xy = Pr [x and y are judged to be di¤erent] (1)

belong to two distinct observation areas,

 � : S�1 �S�2 7! [0; 1] : (2)

Thus, S�1 (the �rst observation area) may represent stimuli presented chronologically �rst or on the left,

whereas S�2 (the second observation area) designates stimuli presented, respectively, chronologically second

or on the right. The adjectives ��rst�and �second�refer to the ordinal positions of stimulus symbols within

a pair (x;y).

1.3.2. Psychological equality and reduced observation areas

(See the transition from matrix  � to matrix ~ in Fig. 4.) For x;x0 2 S�1, we say that the two stimuli

are psychologically equal (or metameric) if  �xy =  �x0y for any y 2 S�2: Analogously, the psychological

equality for y;y0 2 S�2 is de�ned by  �xy =  �xy0, for any x 2 S�1: The reduced �rst observation area S1
is the factor set of S�1 with respect to the psychological equality on S

�
1; and analogously for the reduced

second observation area S2: Put di¤erently, the reduction of the observation areas consists in relabeling their

elements so that psychologically equal stimuli receive identical labels and are no longer distinguished. The

discrimination probability function  � can then be rede�ned as

~ : S1 �S2 7! [0; 1] : (3)
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0.7
0.5
0.9
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1110.5y4

0.10.80.80.9y2

1110.5y6

1110.5y5

0.6111y3

0.80.10.10.6y1

x6x4x2x1

ya

yb

yc

yd

xa xc xb xd

110.70.5yd

0.610.51yc

0.10.80.90.9yb

0.80.10.60.6ya

xdxcxbxaTOY1

110.70.5yd

0.610.51yc

0.10.80.90.9yb

0.80.10.60.6ya

xdxcxbxaTOY1

0.50.711d
10.50.61c

0.90.90.10.8b
0.60.60.80.1a
dcbaTOY0

0.50.711d
10.50.61c

0.90.90.10.8b
0.60.60.80.1a
dcbaTOY0

Figure 4. A toy example adopted from Dzhafarov & Colonius (2006a). The transformation from
�
S�1;S

�
2;  

�� to �S1;S2; ~ �
is the result of �lumping together�psychologically equal stimuli (e.g., the stimuli y4;y5;y6;y7 are psychologically equal in S�2;

stimuli x2 and x4 are psychologically equal in S�1). The space
�
S1;S2; ~ 

�
satis�es the Regular Minimality condition (the

minimum in each row is also the minimum in its column) because of which
�
S1;S2; ~ 

�
can be canonically transformed into

(S;  ), by means of the transformation table shown in between.
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The adjective �reduced� is usually dropped, and S1;S2 are referred to simply as the �rst and second

observation areas. The elements of S1;S2 are referred to as stimuli even through they are in fact equivalence

classes of the elements of S�1;S
�
2, respectively.

1.3.3. The Law of Regular Minimality

(See matrix ~ in Fig. 4.) We assume that there are functions h : S1 7! S2 and g : S2 7! S1 such that

(P1) ~ x [h (x)] < ~ xy for all y 6= h (x)

(P2) ~ [g (y)]y < ~ xy for all x 6= g (y)

(P3) h � g�1
(4)

Clearly, this implies that h and g are bijections. Stimulus y = h (x) 2 S2 is called the Point of Subjective

Equality (PSE) for x 2 S1; analogously, x = g (y) 2 S1 is the PSE for y 2 S2: The law of Regular Minimality

states therefore that every stimulus in each of the observation areas has a unique PSE in the other observation

area, and that y is the PSE for x if and only if x is the PSE for y: In some contexts the law of Regular

Minimality is an empirical assumption, but it can also serve as a criterion for a properly de�ned stimulus

space. For a detailed discussion of the law and its critiques see Dzhafarov (2002d, 2003a, 2006), Dzhafarov

and Colonius (2006a), and Ennis (2006).

1.3.4. Canonical transformation and psychometric increments

(See the transition from matrix ~ to matrix  in Fig. 4.) Due to the law of Regular Minimality, one can

always relabel the stimuli in S1 and/or S2 so that any two mutual PSEs receive one and the same label. In

other words, one can always bijectively map S1 7! S and S2 7! S so that x 7! a and y 7! a if and only

if x 2 S1 and y 2 S2 are mutual PSEs: y = h (x) ; x = g (y) : The set of labels S is called a canonically

transformed stimulus set. Its elements too, for simplicity, are referred to as stimuli. The discrimination

probability function ~ can now be presented in a canonical form,

 : S�S 7! [0; 1] ; (5)

with the property

 aa < min f ab; bag (6)

for any a and b 6= a: Note that the �rst and the second a in  aa may very well refer to physically dif-

ferent stimuli (equivalence classes of stimuli): hence one should exercise caution in referring to  aa as the

probability with which a is discriminated from �itself.�

Not to have the presentation too schematic, Fig. 5 illustrates the notion of a canonical transformation

on a real data matrix.

For the canonically transformed function  , the psychometric increments of the �rst and second kind are

de�ned as, respectively,

	(1)ab =  ab�  aa (7)
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Figure 5. An illustration for a canonical transformation on a data matrix for Experiment A described in Dzhafarov & Colonius

(2005a). The stimuli are horizontal line segments presented on the left (S1 = S�1) and right (S2 = S
�
2), their lengths in pixels

shown on the margins (1 px � 0:86 min arc). The probability estimates are shown for one participant, they are based on

approximately 550 replications per pair in the central area and 275 replications per pair outside it. Within the precision of the

experiment Regular Minimality is satis�ed: the minima in each row (encircled) are also the minima in their columns. The PSE

relation here is y = x � 2: A canonical transformation therefore can be e¤ected by replacing each y-value in S2 by y + 2; as

shown (more generally, by any bijective transformation x 7! z; y 7! z + 2). The matrix below is in a canonical form: the PSE

pairs lie all on the main diagonal. Note the Nonconstant Self-Dissimilarity property (the diagonal values are clearly di¤erent)

and the lack of symmetry with respect to the rede�ned main diagonal.
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and

	(2)ab =  ba�  aa: (8)

Due to the canonical form of  these quantities are always positive for b 6= a:

1.4. The Logic of Fechnerian Scaling

1.4.1. Stimulus metric is computed within rather than across observation areas

A canonical transformation of stimulus space is more than a notational convenience. The identi�cation of

the two observation areas with one and the same set S is the only way to speak of a stimulus metric: a

metric cannot be de�ned on a Cartesian product of two distinct sets. In Fechnerian Scaling the overall

(symmetric) Fechnerian distance G�ab between two points in the canonical space S is interpreted as the

subjective distance between the corresponding two stimuli within each of the observation areas (Dzhafarov &

Colonius, 2005a, 2006b). That is, G�ab is the distance between any two physical stimuli mapped into labels

a and b from the �rst observation area, S�1 or S1 (say, both presented chronologically �rst or on the left).

And of course, G�ab is also interpretable as the distance between any two stimuli mapped into labels a and

b from the second observation area, S�2 or S2 (both presented chronologically second or on the right). This

interpretation clari�es, in particular, why it is both meaningful and necessary to have G�aa = 0: the two a�s

here refer to one and the same stimulus (say, a given color presented in a given way) or two psychologically

equal stimuli (two metameric colors presented in one and the same way). By contrast, the discrimination

probabilities  ab are always de�ned across two observation areas, and  aa refers to the probability with

which a stimulus mapped into label a from the �rst observation area is discriminated from a stimulus mapped

into label a from the second observation area (which probability therefore need not be zero and generally

varies from one label to another).4

ddcddcbddadd
cdcccbccacc

bdcbbcbbbacbb
adaacaacbaaa
dcbaL

ddcddcbddadd
cdcccbccacc

bdcbbcbbbacbb
adaacaacbaaa
dcbaL

00.71.11d
0.700.91c
1.10.901.3b
111.30a
dcbaG*

00.71.11d
0.700.91c
1.10.901.3b
111.30a
dcbaG*

Figure 6. Fechnerian distances (matrix G�) and geodesic loops (matrix L) computed from matrix  in Fig. 4 (adopted from

Dzhafarov & Colonius, 2006b,c, where the computational details are given). The geodesic loops are the shortest chains �to

and from�: e.g., the shortest way of getting from d to b is dcb; and the shortest way back is bd (�direct �ight�), comprising

together the loop dcbd of length 1.1.

4The non-invariance of  aa with respect to a, referred to as the Nonconstant Self-Dissimilarity property, when combined

with the law of Regular Minimality plays an important role in the analysis of several schemes of perceptual analysis (Dzhafarov,

2002b, 2003a-b, 2006; Dzhafarov & Colonius, 2006a).
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Referring to Fig. 6, to say that the (overall, symmetric) distance between d and b equals 1:1 is equivalent

to saying (with reference to the correspondence table in Fig. 4) that 1:1 is the distance between xa and xd,

both of which are within the (reduced) observation area S1; and also that 1:1 is the distance between yd

and yb, both of them in the (reduced) observation area S2. These statements in their turn are equivalent to

saying (with reference to matrix  � in Fig. 4) that 1:1 is the distance between x1 and either of the stimuli

fx6;x7g, all in the original observation area S�1; and also that 1:1 is the distance between y2 and any of the

stimuli fy4;y5;y6;y7g, all in the original observation area S�2.

1.4.2. Stimulus metric is symmetric rather than oriented

The within-observation-area interpretation for Fechnerian distances makes it clear that a meaningful Fech-

nerian distance must be symmetric rather than oriented: the order of the two stimuli belonging to one and

the same observation area has no operational meaning. Thus, stimuli y7 and y2 in the original observation

area S�2 (say, both presented chronologically second or both presented on the right) can never be �presented

together� or �directly compared�: the distance between them is being computed based on the di¤erence

between the discrimination probability functions  �xy7 and  
�xy2; when y7 and y2 are compared with all

possible stimuli in the other observation area (all chronologically �rst stimuli, or all stimuli presented on

the left). Clearly, the ordered pairs (y7;y2) and (y2;y7) are operationally indistinguishable. The logic of

Fechnerian Scaling requires therefore that we compute a single symmetric distance function.5 As we know,

this is being done by arithmetically adding the oriented distances �to�and �from,�computed by means of

what we call the standard procedure of the DC theory (Sections 1 and 1.2). The rationale for this particular

symmetrization scheme is as follows.

1.4.3. Stimulus metric is the same for the two kinds of psychometric increments

The main assumption of UFS about the psychometric increments of a canonically transformed  is that

both of them are dissimilarity functions (as de�ned in Sections 2.1-2.4). One can then compute the oriented

distance G1ab from the psychometric increments of the �rst kind, 	(1), by considering all possible �nite

chains of stimuli x1:::xk for all possible k and putting

G1ab = inf
k;x1:::xk

h
	(1)ax1 +	

(1)x1x2 + :::+	
(1)xkb

i
: (9)

The overall Fechnerian distance is then computed as

G�ab = G1ab+G1ba: (10)

It is clear from symmetry considerations, however, that we can equally well use 	(2) in place of 	(1);

computing �rst

G2ab = inf
k;x1:::xk

h
	(2)ax1 +	

(2)x1x2 + :::+	
(2)xkb

i
(11)

5We are by no means suggesting that the oriented distances allow for no meaningful interpretation, only that they are not

meaningful distances within observation areas.
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and then adding together

G2ab+G2ba = G�ab: (12)

Theorem 14 in Section 2.8 (essentially replicating a proof presented in Dzhafarov & Colonius, 2006b-c) shows

that the resulting quantity, G�ab; is always the same for the two computations, 	(1)-based and 	(2)-based.6

For a numerical example, take again points d and b in Fig. 4 (matrix  ) and Fig. 6. G1db can be

shown (by trying all possible chains leading from d to b) to be the 	(1)-length of the chain dcb:

	(1)dc+	(1)cb = 0:3:

For the reverse direction, G1bd is found to equal the 	(1)-length of the chain bd (�direct �ight�):

	(1)bd = 0:8:

The sum of these two quantities gives us the value 1:1 we �nd in the cells db and bd of the matrix G�.

Analogously,

G2db =	
(2)db = 0:4;

while

G2bd = 	
(2)bc+	(2)cd = 0:7;

yielding the same sum of 1:1. The overall distances are equal even though the oriented distances G1db;

G1bd; G2db; and G2bd are all distinct.

1.4.4. Addition is (essentially) the only universally applicable symmetrization scheme

If one imposes no a priori restrictions on possible stimulus spaces, the addition of oriented distances

G�ab = G1ab+G1ba = G2ab+G2ba (13)

is in fact the only reasonable way of computing one and the same symmetric metric from the pairs (G1ab; G1ba)

and (G2ab; G2ba) : To demonstrate this, consider a general symmetrization scheme, that is, a function

f (x; y) satisfying the conditions

f (x; y) = f (y; x) (14)

and

f (G1ab;G1ba) = f (G2ab;G2ba) :
7 (15)

6 In previous publications we interpreted the 	(1)-based distances as those among stimuli within the �rst observation area

and 	(2)-based distances as those among stimuli within the second observation area. These attributions, however, are arbitrary

and could as well be reversed.
7The argument to follow in fact makes no use of the symmetry condition, and it works for a more general form of the second

condition: f1 (G1ab;G1ba) = f2 (G2ab;G2ba) : Distinguishing f1 and f2, however, is not meaningful, because either of the

observation areas can be labelled �rst or second arbitrarily.
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Consider a two-element stimulus set fa;bg endowed with four probabilities  aa;  ab;  ba;  bb: Let these

probabilities be allowed to attain all possible values, subject only to the Regular Minimality constraint,

max f aa; bbg < min f ab; bag :

The oriented distances in this space are

G1ab = 	
(1)ab =  ab�  aa

and

G2ab = 	
(2)ab =  ba�  aa:

Observe that for a given value of G�ab = s 2 ]0; 2] ; each of the oriented distances takes values within interval

Ds =

8<: ]0; s[ if s � 1

]s� 1; 1] if s > 1

It is easy to see that for any s and any z 2 Ds one can �nd probabilities  aa;  ab;  ba;  bb (subject to

Regular Minimality) satisfying

G1ab =  ab�  aa = s=2

G1ba =  ba�  bb = s=2

G2ab =  ba�  aa = s� z

G2ba =  ab�  bb = z:

(For instance, if z � s=2; one can always put  bb = 0;  aa = z� s=2;  ba = s=2;  ab = z:) It follows that

f (s=2;s=2) = f (z;s� z)

for all z 2 Ds; which means that f only depends on s and not on z;

f (z;s� z) = g (s) :

In principle g does not have to be an identity function, it can be any function with the following properties:

g (0) = 0

a+ b � c =) g (a) + g (b) � g (c) :

We can call such functions �metric-preserving,� because g (G�ab) is a metric whenever G�ab is. For in-

stance, [G�ab]p is always �metric-preserving� for 0 < p � 1: We will not need to get into a theory of such

transformations, however, once we adopt the following natural requirement: if G1ab = G1ba for all a;b

(i.e., the oriented distance is already symmetric) then the symmetric metric g (G�ab) has to be a multiple

of G1ab (and analogously for G2). With this requirement adopted,

g (G�ab) = cG�ab; c > 0:
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It makes little di¤erence which value of c to use. One might think c = 1
2 to be a convenient choice,

but we prefer c = 1, as this choice a¤ords the following attractive interpretation: G�ab is the in�mum of

	(1)-lengths (or 	(2)-lengths, the two computations yield the same result) of all �nite closed chains that

contain points a and b (see Fig. 7 and matrix L in Fig. 6). That is,

G�ab = inf
k;x1:::xk
l;y1:::yl

h
	(1)ax1 +	

(1)x1x2 + :::+	
(1)xkb+	

(1)by1 +	
(1)y1y2 + :::+	

(1)yla
i

(16)

a

b

Figure 7. A �nite closed loop containing a and b: The in�mum of 	(�)-lengths (� = 1 or 2) of all such loops is the overall

(symmetric) Fechnerian distance between a and b:

2. Systematic Development

The DC theory can now be presented systematically. We introduce the notion of dissimilarity in two steps.

First we stipulate three conditions that de�ne the notion of a uniform deviation function. This notion is

su¢ cient to impose a topology and uniformity on stimulus space. Then we introduce an additional property

that de�nes a dissimilarity function. At the end of the development we return to our main psychological

application (discrimination probabilities), with psychometric increments of the two kinds playing the role of

two dissimilarity functions.

Although in the application to discrimination probabilities the codomain of a dissimilarity function is

[0; 1] ; we also have to keep in mind the possible non-probabilistic applications mentioned in Section 1, as

well as the possibility of using nonlinearly transformed probabilities in Fechnerian Scaling, as discussed in

Dzhafarov and Colonius (2005a-c, 2006b). In the general DC theory therefore the codomain of a dissimilarity

function is not restricted (within R+).

2.1. Uniform Deviation Function

Definition 1 Function D : S�S 7! R is a (uniform) deviation function if it has the following properties:

D1: a 6= b =) Dab > 0;
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D2: Daa = 0;

D3: (Uniform Continuity) If Dana0n ! 0 and Dbnb0n ! 0, then Da0nb
0
n �Danbn ! 0:

Figure 8. An illustration for Property D3: Consider an in�nite sequence of quadrilaterals a1a01b01b1; a2a02b02b2; ::: arbitrarily

situated with respect to each other but such that the D-lengths of the sides ana0n and bnb
0
n (oriented as shown by the arrows)

gradually vanish. Then the D-lengths of the sides anbn and a0nb
0
n (again, in the direction of the arrows) gradually converge to

each other.

(See Fig. 8.) An equivalent way of formulating the uniform continuity of D is

lim
Daa0!0
Dbb0!0

(Da0b0 �Dab) = 0; (17)

or, in extenso, for every " > 0 one can �nd a � > 0 such that jDa0b0 �Dabj < " whenever Daa0 < � and

Dbb0 < �:8

If D is a (symmetric) metric, then it is a deviation function, with the uniform continuity property holding

as a theorem. Indeed, by the triangle inequality,

Dana
0
n +Da

0
nb

0
n +Db

0
nbn � Danbn;

Da0nan +Danbn +Dbnb
0
n � Da0nb

0
n;

whence

Dana
0
n +Db

0
nbn � Danbn �Da0nb0n

Da0nan +Dbnb
0
n � Da0nb

0
n �Danbn:

Due to the symmetry condition, the two inequalities can be combined as

jDa0nb0n �Danbnj � Dana
0
n +Dbnb

0
n;

8That D3 follows from this statement is obvious. To see the reverse implication, assume there is an " > 0 such that for

any � > 0 one can �nd a� ;a0� ;b� ;b
0
� for which Da�a

0
� < � and Db�b0� < � but

��Da0�b0� �Da�b�
�� � ": Then choosing any

sequence �n ! 0 and denoting a�n = an; a0�n = a0n; etc., one would arrive at a contradiction with D3. We often formulate

limit propositions in terms of sequences and reformulate them in "-� terms when convenient, omitting a proof of equivalence

which is always analogous to the one just given.
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and D3 follows. It is easy to see that if D is an oriented metric, then it is a deviation function if and only if

it additionally satis�es the condition

Dana
0
n ! 0 =) Da0nan ! 0:

Example 1 If S is represented by interval [1; 2] of R, the following are symmetric deviation functions for

p > 0: jx� yjp, jx�yjp
min(x;y) : Examples of asymmetric deviations: jx� yj e

x�y; jey�x � 1j : Consider the latter

function. Properties D1 and D2 being obvious, observe that jey�x � 1j is continuous on a compactum, hence

uniformly continuous:
��eb�a � 1�� � ���eb0�a0 � 1��� ! 0 whenever ja� a0j ! 0 and jb� b0j ! 0: Property D3

now follows from the observation that jx� x0j ! 0 if and only if
���ex�x0 � 1���! 0:

We now can de�ne the notion of convergence induced by D on S.

Definition 2 an $ bn i¤Danbn ! 0.

The notation is unambiguous because of the following theorem.

Theorem 1 Convergence $ is an equivalence relation.

Proof. Re�exivity is obvious. Symmetry is obtained by

(Danbn ! 0) ^ (Danan ! 0) =) Danan �Dbnan ! 0:

Transitivity:

(Danbn ! 0) ^ (Dbncn ! 0) =) (Danbn ! 0) ^ (Dcnbn ! 0) =) Dancn �Dbnbn ! 0:

In particular, an $ a means both Daan ! 0 and Dana! 0 (because of which it is perfectly meaningful

to write a$ an).

The convergence
�
a1n; :::;a

k
n

�
$
�
b1n; :::;b

k
n

�
can be de�ned by maxiDainb

i
n ! 0.

2.2. Topology and Uniformity on (S; D)

A topological basis on S is a family of subsets of S satisfying the following property (Kelly, 1955, p. 47): if

a and b are within the basis, then for any x 2 a \ b the basis contains a set c which contains x:

Given a topological basis on S, the topology on S (a family of open sets �based�on this basis) is obtained

by taking all possible unions of the subsets comprising the basis (including the empty set, which is the union

of an empty class of such subsets).

Theorem 2 Deviation D induces on S a topology based on

BD (x;") = fy 2 S : Dxy < "g

taken for all x 2 S and all real " > 0:
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Proof. We have to show that if x 2 BD (a;�) \ BD (b;�) ; then one can �nd an " > 0 such that

BD (x;") � BD (a;�) \BD (b;�) : If, for every "n in a sequence "n ! 0 one could �nd an xn 2 BD (x;"n)

such that xn =2 BD (a;�)\BD (b;�) ; then we would have xn $ x but, for every n, Daxn � � or Dbxn � �:

This contradicts xn $ x =) (Daxn ! Dax < �) ^ (Dbxn ! Dbx < �) :

We call the topology just de�ned (based on BD-balls) the D-topology.

Theorem 3 The D-topology is also based on �reverse balls�

B�1
D (x; ") = fy 2 S : Dyx < "g

taken for all x 2 S and all real " > 0:

Proof. That B�1
D (x; ") balls form a basis for a topology is shown by essentially repeating the proof of

Theorem 2. That the bases B�1
D (x; ") and BD (x;") re�ne each other (i.e., every BD (x;") contains some

B�1
D (x; �) ; and vice versa)9 follows from the symmetry of convergence (Theorem 1).

Comment Although we do not need closed balls in this paper, it is useful to note that

BD [x;"] = fy 2 S : Dxy � "g

is a closed set, and BD (x;") � BD [x;"] (where the overbar indicates topological closure). The two latter

sets are not necessarily equal. Consider, e.g., S = N; with Dxy = jx� yj : Here, BD (10;1) = f10g ; while

BD [10;1] = f9;10;11g :

Both previous theorems, as it turns out, can be strengthened: D induces on S not only a topology but

a more restrictive structure, called uniformity.

Recall (Kelly, 1955, p. 177), that a family of subsets of S�S forms a basis for a uniformity on S if it

satis�es the following four properties: if A and B are members of the basis, then

1. A includes as its subset � = f(x;x) : x 2 Sg ;

2. A�1 = f(y;x) : (y;x) 2 Ag includes as its subset a member of the basis;

3. for some member C of the basis,
�
(x; z) 2 S2 : for some y; (x;y) 2 C^ (y; z) 2 C

	
� A;

4. A \B includes as its subset a member of the basis.

Given a uniformity basis on S, the uniformity on S (�based� on this basis) is obtained by taking

each member of the basis and forming its unions with all subsets of S�S. A member of a uniformity is

called an entourage. A uniformity satis�es the separation axiom if the intersection of all its entourages is

� = f(x;x) : x 2 Sg :
9 If the proposition in the parentheses holds, then every BD (x;") contains a B

�1
D (y; �) for every y 2 BD (x;") (since

BD (x;")-balls form a basis), and vice versa. In general, a topological basis A is said to re�ne a topological basis B if for any

x 2 a 2 A there is a b 2 B such that b � a: If A and B re�ne each other, they de�ne one and the same topology.
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Theorem 4 Deviation D induces on S a uniformity based on entourages

UD (") =
�
(x;y) 2 S2 : Dxy < "

	
taken for all real " > 0: The D-uniformity satis�es the separation axiom:

\"UD (") =
�
(x;y)2 S2 : x = y

	
:

Proof. (1) � =
�
(x;y)2 S2 : x = y

	
is a subset of every UD (") ; obviously. (2) For any " > 0 one can

always �nd a � > 0 such that UD (�) � U�1D (") =
�
(x;y)2 S2 : Dyx < "

	
; for otherwise we would be able

to create sequences xn $ yn with Dynxn � ": (3) For any " > 0 one can always �nd a � > 0 such that

(Dxy < �) ^ (Dyz < �) =) Dxz < "; for otherwise we would have xn $ yn and yn $ zn but Dxnzn � ":

(4) Finally, UD (") \ UD (�) = UD (min f�; "g) : The last statement is obvious.

We call the uniformity just de�ned the D-uniformity. The D-topology is precisely the topology induced

by the D-uniformity (Kelly, 1955, p. 178):

BD (x;") = fy 2 S : (x;y) 2 UD (")g :

is the restriction of the basic entourage UD (") to the pairs (x = a;y) :

Theorem 5 The D-uniformity is also based on �reverse entourages�

U�1D (") =
�
(x;y) 2 S2 : Dyx < "

	
taken for all real " > 0:

Proof. That U�1D (") entourages form a basis for a uniformity is shown by essentially repeating the proof

of Theorem 4. That the bases U�1D (") and UD (") re�ne each other thereby determining one and the same

uniformity (i.e., each UD (") contains some U
�1
D (�) and vice versa) follows from the symmetry of convergence

(Theorem 1).

2.3. Chains

Finite chains in space S are sequences of elements written as strings : ab; abc; x1:::xk, etc. Note that the

elements of a chain need not be pairwise distinct. A chain of cardinality k (a k-chain) is the chain with k

elements (vertices), hence with k� 1 links (edges). For completeness, we also admit an empty chain, of zero

cardinality.

We use the notation

Dx1:::xk =
k�1X
i=1

Dxixi+1: (18)
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and call it the D-length of the chain x1:::xk:

If the elements of a chain are not of interest, it can be denoted by a boldface capital, such as X; with

appropriate ornaments. Thus,X andY are two chains,XY is their concatenation, aXb is a chain connecting

a to b: The cardinality of chain X is denoted jXj : Unless otherwise speci�ed, within a sequence of chains,

Xn, the cardinality jXnj generally varies: Xn = x
n
1 :::x

n
kn
:

2.4. Uniform Dissimilarity Function

Definition 3 A uniform deviation function D on S is a uniform dissimilarity (or, simply, dissimilarity)

function on S if it has the following property (see Fig. 9):

D4: for any sequence of chains anXnbn with distinct elements and jXnj ! 1;

DanXnbn ! 0 =) Danbn ! 0:

...

Figure 9. An Illustration for Property D4. Consider an in�nite sequence of chains a1X1b1; a2X2b2; :::; arbitrarily situated

with respect to each other but such that jXnj increases beyond bounds with n!1; and DanXnbn gradually vanishes. Then

anbn (the D-length of the dotted arrow) gradually vanishes too.

Example 2 This example shows that D4 does not follow from D1 � D3: Let S be represented by [1; 2]

and, for p > 1; Dxy = jx� yjp : This is a deviation function (Example 1). Consider the sequence of chains

aXnb where the numerical values of Xn divide the interval [a; b] into n equal parts. It is easy to see that

DaXnb =n
�
b�a
n

�p ! 0 while Dab, obviously, remains equal to (b� a)p :

The simple theorem below shows that the condition jXnj ! 1 in the formulation of Property D4 can

be dropped.

Theorem 6 Condition D4 is equivalent to statements

D4a: for any sequence of chains anXnbn; DanXnbn ! 0 =) Danbn ! 0;

D4b: for any " > 0 one can �nd a � > 0 such that for any chain aXb; if DaXb < �; then Dab < ":
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Proof. That D4b is merely a restatement of D4a, and that D4a =) D4 is obvious. It remains to show

that D4 =) D4a, even if jXnj 6! 1: Assume the contrary: D satis�es D4 but there is a sequence anXnbn

with DanXnbn ! 0 and Danbn 6! 0. Then, for some subsequence ankXnkbnk with distinct elements, we

have DankXnkbnk ! 0 and Dankbnk ! p > 0 (�nite or in�nite). If lim supk!1 jXnk j = 1; then there

must exist a subsequence anklXnkl
bnkl with

���Xnkl

��� ! 1; DanklXnkl
bnkl ! 0; but Danklbnkl ! p > 0 �

which contradicts D4: If lim supk!1 jXnk j <1; then jXnk j are less than some natural N for all k; and one

can rede�ne Xnk to have jXnk j = N , for all k (e.g., by replicating the last element of Xnk a requisite number

of times). The assumption DankXnkbnk ! 0 then implies ank $ xnk1 $ ::: $ xnkN $ bnk ; and ank $ bnk

is obtained by the transitivity of convergence (Theorem 1), in a contradiction to Dankbnk ! p > 0:

If D is a conventional metric or an oriented metric which is a deviation function (i.e., satis�es Dana0n !

0 =) Da0nan ! 0; as we know from Section 2.1), then D is a dissimilarity function as a trivial consequence

of the triangle inequality:

DanXnbn � Danbn � 0

whence DanXnbn ! 0 implies Danbn ! 0:

Example 3 In reference to the previous example, the same function Dxy = jx� yjp on [1; 2] but with

0 < p � 1 is a dissimilarity function because it is a metric. The function Dxy = jey�x � 1j of Example 1 is

not a metric, but it is an asymmetric dissimilarity function because DanXnbn, as will be clear from the next

section, never falls below bn � an if an � bn or below 1 � ebn�an if an > bn: In either case DanXnbn ! 0

implies Danbn =
��ebn�an � 1��! 0:

The last example, with Dxy = jey�x � 1j ; makes an implicit use of the oriented distance induced by D:

This topic is taken on next.

2.5. Distance

The set of all possible chains in S is denoted by CS, or simply C. We de�ne function Gab by

Gab = inf
X2C

DaXb: (19)

Theorem 7 Gab is an oriented metric, and G�ab = Gab+Gba is a metric (called overall, or symmetric).

Proof. Clearly, Gab � 0: That Gaa = 0 is obvious. If Gab = 0; then there is a sequence of chains

DaXnb ! 0; and this implies a = b by De�nition 3. Finally, the triangle inequality follows from the fact

that the set of all chains aXbYc is a subset of the set of all chains aZc: The statement about G� is obvious.
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Due to this theorem we say that the oriented metric G and the overall (symmetric) metric G� are induced

by the dissimilarity D: Clearly, G�ab can also be de�ned by (see Fig. 7)

G�ab = inf
(X;Y)2C2

DaXbYa = inf
(X;Y)2C2

DbXaYb: (20)

Example 4 Let S be represented by [1; 2] : Since Dxy = jx� yjp is a metric for p � 1; we have Gxy = Dxy

and G�xy = 2Dxy: If Dxy = jx�yj
min(x;y) ; Gxy can be shown to be

��ln y
x

�� : To outline the proof: we �rst
show, by straightforward algebra, that for any x < m < y; Dxmy < Dxy (i.e., m�xx + y�m

m < y�x
x ); it

follows that the denser the sequence of intermediate points covering the interval between x and y the closer

the D-length of the corresponding chain to the in�mum;10 the in�mum therefore is the Riemann integralR y
x
(u+du)�u

u = ln y
x ; symmetry considerations yield the formula for x > y: G�xy here equals 2

��ln y
x

�� : By
analogous reasoning one can show that in the case Dxy = jey�x � 1j ; for x � y the in�mum is achieved at

Gxy =
R y
x

d(ev�u�1)
dv

����
v=u+

du = y � x: For x > y; Dxy = 1 � ey�x is easily shown to be a metric, whence

Gxy = Dxy = 1 � ey�x: The overall (symmetric) distance in this case is G�xy = jy � xj + 1 � e�jy�xj: In

the �entomological�metaphor of Section 1.2 this example was discussed for x = 1; y = 2:

2.6. Topology and Uniformity on (S; G)

We proceed now to consider the topology and uniformity induced by the oriented metric G on S, the main

result being that they coincide with those induced by the dissimilarity D which induces G:

Theorem 8 Danbn ! 0() Ganbn ! 0

Proof. Danbn ! 0 =) Ganbn ! 0 follows from 0 � Ganbn � Danbn:

Ganbn ! 0 implies that for every n one can �nd a chain Xn such that

Ganbn � DanXnbn < Ganbn +
1

n

whence DanXnbn ! 0: Since D is a dissimilarity, this implies Danbn ! 0:

Theorem 9 an $ bn () Ganbn ! 0() Gbnan ! 0() G�anbn = G�bnan ! 0:

Proof. A simple consequence of Theorems 8 and 1.

Theorem 10 G induces on S a topology based on any of the three following sets: the set of

BG (x;") = fy 2 S : Gxy < "g ;
10This is an example of an important special case in the DC theory, a space �with intermediate points.� Such spaces are

arc-connected, and with the length of continuous paths appropriately de�ned, the paths replace �nite chains in the computation

of distances. The specialization of the DC theory to arc-connected spaces is considered in Dzhafarov (2007).
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the set of

B�1
G (x; ") = fy 2 S : Gyx < "g ;

and the set of

BG� (x;") = fy 2 S : G�xy < "g ;

taken for all x 2 S and positive ": This topology coincides with the D-topology.

Proof. A simple consequence of Theorems 8 and 9.

Theorem 11 G induces on S a uniformity based on on any of the three following sets: the set of

UG (") =
�
(x;y)2 S2 : Gxy < "

	
;

the set of

U�1G (") =
�
(x;y)2 S2 : Gyx < "

	
;

and set of

UG� (") =
�
(x;y)2 S2 : G�xy < "

	
taken for all positive ": This uniformity coincides with the D-uniformity.

Proof. Again, follows from Theorems 8 and 9 on observing that UG ("), U
�1
G (") ; and UG� (") are standard

metric entourages.

The space (S; D) being uniform and metrizable, we get its standard topological characterization (see,

e.g., Hocking &Young, 1961, p. 42): it is a completely normal space, meaning that its singletons are closed

and any its two separated subsets A and B (i.e., such that A\B = A\B = ?) are contained in two disjoint

open subsets. This characterization is much stronger than the Urysohn property established in Dzhafarov

& Colonius (2005a): a completely normal space is Urysohn (hence also Hausdor¤).

In conclusion we establish two basic properties of the oriented metric G: its uniform continuity and its

intrinsicality with respect to our standard procedure (all possible chains, in�mum of D-lengths).

Theorem 12 Gxy is uniformly continuous in (x;y) ; i.e., if a0n $ an and b0n $ bn; then Ga0nb
0
n�Ganbn !

0:

Proof. Follows from Ga0nb
0
n � Ga0nan +Ganbn +Gbnb

0
n; and Ganbn � Gana

0
n +Ga

0
nb

0
n +Gb

0
nbn (by

the triangle inequality), using the symmetry of convergence to zero (Theorem 9).

The following is an important fact which can be interpreted as that of internal consistency of the metric G

induced by means of our standard construction: once Gab is computed as the in�mum of the D-length across

all chains from a to b, the in�mum of the G-length across all chains from a to b equals Gab: By analogy
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with the traditional terminology, this means that G is an intrinsic metric.11 The notation for cumulated

G-length is analogous to that for D-length:

Gx1:::xk =
k�1X
i=1

Gxixi+1: (21)

Theorem 13 DaXnb! Gab =) GaXnb! Gab:

Proof. GaXnb � DaXnb; so lim supn!1GaXnb � Gab: On the other hand, GaXnb � Gab (triangle

inequality), whence lim infn!1GaXnb � Gab:

The reverse is obviously not true: thus, choosing any a;b for which Gab < Dab and any xn $ a; we

have (by the uniform continuity of both G and D) Gaxnb! Gab; but Daxnb! Dab > Gab.

2.7. A Comment on Weak Dissimilarity Functions

The main function of Property D4 (D4a; D4b) is to ensure that Gab for distinct a;b never vanishes (Theorem

7). This goal alone, however, can be achieved more directly, by means of a weaker constraint.

Definition 4 A uniform deviation function D on S is a weak dissimilarity function on S if it has the

following property:

D40: for any sequence of chains aXnb with distinct elements and jXnj ! 1;

DaXnb! 0 =) Dab = 0:

Here too we have two equivalent reformulations of the de�ning property:

D40a: for any sequence of chains aXnb; DaXnb! 0 =) Dab = 0 (stipulation jXnj ! 1 not necessary);

D40b: for any a;b; and " > 0 one can �nd a � > 0 such that for any chain X; if DaXb < �; then Dab < "

(compare to D4b; uniformity lost).

A version of De�nition 4 was adopted in our preliminary exposition of the DC theory (Dzhafarov &

Colonius, 2005c).12 Some of the results given in this paper, as well as many results pertaining to special

cases of the DC theory (to be presented separately), only require the weak form of a dissimilarity function.

11Traditionally the notion requires the existence of paths (continuous images of segments of reals) and their lengths (see, e.g.,

Dzhafarov & Colonius, 2001, 2005a), so our present usage is not standard. There are, however, special cases of DC where the

in�ma of the D-lengths taken across a certain class of paths coincide with those taken across all �nite chains. In such cases

(considered in Dzhafarov, 2007) the intrinsicality of G acquires its traditional meaning.
12Dissimilarity functions with bounded codomains were de�ned in that work by Properties D1; D2; D3; and (an equivalent

of) D40: The treatment of unbounded codomains there was erroneous.
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We do lose, however, the equivalence of the topologies and uniformities induced by D and by G (the last

statements of Theorems 10 and 11), due to the fact that with a weak dissimilarity we only have

Danbn ! 0 =) Ganbn ! 0

rather than the equivalence stated in Theorem 8. There are special cases (e.g., spaces compact in D-topology,

wherein any in�nite sequence contains a D-converging subsequence) when a weak dissimilarity is always a

uniform dissimilarity too (i.e., D4 and D40 are equivalent). As the following example shows, however, D40

generally does not imply D4:

0 1 2 3 4

(x−y)2
x y

Figure 10. A space representation in which D40 holds but D4 does not. The representation consists of isolated points shown

by ticks on the number line. The dissimilarity function is Dxy = (x� y)2 :

Example 5 (See Fig. 10.) Consider a discrete space numerically represented by all rational numbers of

the form n � 1 + kn
n+1 ; n = 1; 2; ::: and kn = 0; 1; :::; n: In other words, the numbers include all nonnega-

tive integers and the intermediate points dividing every interval [n� 1; n] into n + 1 equal parts. Let the

dissimilarity function be Dxy = (x� y)2 : It is easy to see that the geodesic (shortest) chain exists be-

tween any two distinct points and consists of all points in between. The D-length of such a geodesic is

clearly nonzero, and we conclude that D40 is satis�ed. Consider, however, the sequence anbn with numer-

ical values (0; 1) ; (1; 2) ; :::; (n� 1; n) ; :::. Denoting by Sn the geodesic chain between an and bn, we have

DanSnbn =
1

n+1 ! 0: At the same time, Danbn = 1 for all n: We conclude that D4 is not satis�ed.

2.8. Universal Fechnerian Scaling

We are ready now to introduce UFS, the application of the DC theory to discrimination probabilities. The

material presented in Section 1.3 is an integral part of UFS. We brie�y recapitulate the main points.

1. We start with stimuli in two observation areas, (S�1;S
�
2;  

�).

2. We �lump together�(label identically) psychologically equal stimuli, obtaining
�
S1;S2; ~ 

�
:

3. We postulate the law of Regular Minimality.

4. We subject S1;S2 to a canonical transformation to get a canonical space (S;  ).

5. We de�ne (canonical) psychometric increments of the �rst and second kind, 	(1)ab =  ab� aa; and

	(2)ab =  ba�  aa:
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We now add to the law of Regular Minimality the only other postulate of UFS:

	(1) and 	(2) are uniform dissimilarity functions.

The application of the DC theory now yields functions G1; G2 de�ned by

G1ab = infX2C 	
(1)aXb

G2ab = infX2C 	
(2)aXb

(22)

and called the oriented Fechnerian metrics on S (recall that C denotes the set of all �nite chains in S). The

notation 	(1)aXb, 	(2)aXb has the same meaning as DaXb; since 	(1); 	(2) are merely special versions of

D: with X = x1:::xk;

	(1)aXb = 	(1)ax1 +	
(1)x1x2 + :::+	

(1)xkb

	(2)aXb = 	(2)ax1 +	
(2)x1x2 + :::+	

(2)xkb:
(23)

The function

G�ab = G1ab+G1ba = G2ab+G2ba (24)

is called the overall (symmetric) Fechnerian metric on S. It can also be presented as

G�ab = inf
(X;Y)2C2

	(1)aXbYa = inf
(X;Y)2C2

	(2)aXbYa: (25)

A formal proof for the equality of the two in�ma is straightforward.

Theorem 14 For any stimuli a;b;

inf
(X;Y)2C2

	(1)aXbYa = inf
(X;Y)2C2

	(2)aXbYa:

Proof. For any two chains x1x2:::xk�1xk and y1y2:::yl�1yl; consider the closed chains

L1 = ax1x2:::xkbylyl�1:::y1a

L2 = ay1y2:::ylbxkxk�1:::x1a;

i.e., L1 and L2 include the same elements but traversed in opposite directions. Denoting x0 = y0 = a and

xk+1 = yl+1 = b;

	(1)L1 =
kX
i=0

	(1)xixi+1 +
lX
i=0

	(1)yi+1yi =
kX
i=0

( xixi+1 �  xixi) +
lX
i=0

( yi+1yi �  yi+1yi+1)

	(2)L2 =
kX
i=0

	(2)xi+1xi +
lX
i=0

	(2)yiyi+1 =
kX
i=0

( xixi+1 �  xi+1xi+1) +
lX
i=0

( yi+1yi �  yiyi)

and

	(1)L1 �	(2)L2 =
kX
i=0

( xi+1xi+1 �  xixi) +
lX
i=0

( yiyi �  yi+1yi+1)

= ( xk+1xk+1 �  x0x0) + ( y0y0 �  yl+1yl+1)

= (b� a) + (a� b) = 0
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Now, the set of all possible pairs of chains (x1x2:::xk;ylyl�1:::y1), for all k and l; is the same as the set

of all possible pairs of chains (y1y2:::yl;xkxk�1:::x1) ; for all k and l: in both cases the set is C2: Whence

the statement of the theorem follows immediately.

We now proceed to establish the basic topological properties of the discrimination probability function.

Theorem 15 	(1)anbn ! 0 i¤ 	(2)anbn ! 0.

Proof. Follows from

	(1)anbn +	
(1)bnan = 	

(2)anbn +	
(2)bnan

and the fact that, for � = 1; 2,

	(�)anbn ! 0() 	(�)bnan ! 0:

Because of this theorem we can write an $ bn unambiguously, meaning any of (and therefore all of) the

relations

	(1)anbn ! 0()  anbn �  anan ! 0

	(1)bnan ! 0()  bnan �  bnbn ! 0

	(2)anbn ! 0()  bnan �  anan ! 0

	(2)bnan ! 0()  anbn �  bnbn ! 0

Theorem 16 Function  ab is uniformly continuous: if a0n $ an and b0n $ bn; then  a0nb
0
n �  anbn ! 0:

Proof. Since a0n $ an means both

	(1)ana
0
n =  ana

0
n �  anan ! 0

and

	(2)a0nan =  ana
0
n �  a0na0n ! 0;

it implies

 a0na
0
n �  anan ! 0:

Consequently a0n $ an and b0n $ bn imply

 a0nb
0
n �  anbn =

h
	(1)a0nb

0
n +  a

0
na

0
n

i
�
h
	(1)anbn +  anan

i
=

h
	(1)a0nb

0
n �	(1)anbn

i
+ [ a0na

0
n �  anan]! 0:
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3. Conclusion

Universal Fechnerian Scaling is a theory dealing with the computation of subjective distances from pair-

wise discrimination probabilities. The theory is applicable to all possible stimulus spaces subject to the

assumptions that

(A) discrimination probabilities satisfy the law of Regular Minimality, and

(B) the two canonical psychometric increments of the �rst and second kind, 	(1) and 	(2), are dissimilarity

functions.

A dissimilarity function Dab (where D can stand for either 	(1) or 	(2)) for pairs of stimuli in a canonical

representation is de�ned by the following properties:

D1: a 6= b =) Dab > 0;

D2: Daa = 0;

D3: If Dana0n ! 0 and Dbnb0n ! 0, then Da0nb
0
n �Danbn ! 0; and

D4: for any sequence anXnbn; where Xn is a chain of stimuli, DanXnbn ! 0 =) Danbn ! 0:

The overall (symmetric) Fechnerian distance G�ab between a and b is de�ned as the in�mum of

DaXb+DbYa across all possible chains X and Y inserted between a and b: This computation does not

depend on whether one uses 	(1) or 	(2) in place of D:

The canonical psychometric increments 	(1) or 	(2) impose on stimulus space one and the same topology

and uniformity structure, which also coincide with the topology and uniformity induced by the Fechnerian

metric G�: The discrimination probability function is uniformly continuous with respect to the uniformity

just mentioned. Stimulus space is topologically characterized as a completely normal space.

Some of the important special cases of the DC theory and the corresponding cases of UFS will be discussed

in follow-up papers. This prominently includes the specialization of DC/UFS to the previously published

Multidimensional Fechnerian Scaling, and more general cases where the logic of DC leads us from �nite

connecting chains to continuous connecting paths.
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