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Abstract

This paper continues the development of the Dissimilarity Cumulation theory and its main psycho-

logical application, Universal Fechnerian Scaling (Dzhafarov & Colonius, 2007). In arc-connected spaces

the notion of a chain length (the sum of the dissimilarities between the chain�s successive elements) can

be used to de�ne the notion of a path length, as the limit inferior of the lengths of chains converging to

the path in some well-de�ned sense. The class of converging chains is broader than that of converging

inscribed chains. Most of the fundamental results of the metric-based path length theory (additivity,

lower semicontinuity, etc.) turn out to hold in the general dissimilarity-based path length theory. This

shows that the triangle inequality and symmetry are not essential for these results, provided one goes

beyond the traditional scheme of approximating paths by inscribed chains. We introduce the notion of a

space with intermediate points which generalizes (and specializes to when the dissimilarity is a metric)

the notion of a convex space in the sense of Menger. A space is with intermediate points if for any distinct

a;b there is a di¤erent pointm such that Dam+Dmb � Dab (where D is dissimilarity). In such spaces

the metric G induced by D is intrinsic: Gab coincides with the in�mum of lengths of all arcs connecting

a to b: In Universal Fechnerian Scaling D stands for either of the two canonical psychometric increments

 ab�  aa and  ba�  aa ( denoting discrimination probability). The choice between the two makes

no di¤erence for the notions of arc-connectedness, convergence of chains and paths, intermediate points,

and other notions of the Dissimilarity Cumulation theory.

Keywords: arc length, convexity, dissimilarity, discrimination probability, Fechnerian Scaling, Menger-

convex space, oriented distance, path length, Regular Minimality, same-di¤erent judgements, stimulus

space.

1. Introduction

This paper continues a systematic development of the Dissimilarity Cumulation (DC) theory and its main

psychological application, Universal Fechnerian Scaling (UFS). Both were introduced in Dzhafarov and

Colonius (2007) and represent an extension as well as signi�cant streamlining of a set of ideas previously
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address: ehtibar@purdue.edu (E.N. Dzhafarov).
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presented under the rubric of Generalized Fechnerian Scaling (Dzhafarov, 2001a-b, 2002a-d, 2003a-b, 2004,

2006; Dzhafarov & Colonius, 1999a-b, 2001, 2005a-b, 2006a-c). A familiarity with Dzhafarov and Colonius

(2007) may be helpful in understanding the present paper, although the main de�nitions and �ndings will

be recapitulated below.

Fechnerian Scaling was initially built on the notion of arc length for stimulus spaces representable by

regions in Euclidean n-space (Dzhafarov & Colonius, 1999a, 2001), such as the CIE or Munsell color systems,

a frequency-amplitude space of tones, or a space of weights placed on one�s palm. This theory, called

Multidimensional Fechnerian Scaling, underwent foundational changes in Dzhafarov (2002d, 2003a), on the

introduction of the notions of distinct observation areas, psychometric increments of two kinds, and the law

of Regular Minimality (see Dzhafarov, 2006; Dzhafarov & Colonius, 2006a). The derivation of Fechnerian

(�subjective�) distances from the arc length, however, remained unchanged, even though in Dzhafarov and

Colonius (2005a) the arc-length-based computations were extended to a broader class of arc-connected spaces.

t5= bt1

x(t1)

a = t0 t2 t3 t4

x(t2) x(t3)

x(t4)
a = x(t0)

x(t5) = b

Figure 1. Under several assumptions stipulated in Dzhafarov and Colonius (2005a) about the type of stimulus space and the

type of paths connecting a to b, the length of such a path is approximated by the sum of the dissimilarities between successive

points x (t0) ;x (t1) ; : : : ;x (tk) leading from a to b. As the partition t0; t1; : : : tk gets denser, the cumulated dissimilarity tends

to the length of the path. The inset indicates that one has to compute the lengths for all paths (of the mentioned special

type) connecting a to b, the in�mum of these lengths being taken for the oriented distance from a to b (called so because it

is not generally symmetrical). The symmetrical distance between a and b is obtained by adding the oriented distances from

a to b and from b to a. In the theory of Generalized Fechnerian Scaling, the dissimilarity between two elements is de�ned

by psychometric increments (as explained in Section 3) computed from probabilities with which two stimuli are judged to be

di¤erent.
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Figure 1 illustrates certain features of these computations, those relevant to the present paper. Paths are

continuous mappings of intervals of reals into stimulus spaces. The �special type of paths�mentioned in the

legend refers to smooth paths, for which the computation of length can be performed by means of Riemann

integration, as one does in Finsler geometry and variational calculus (Dzhafarov & Colonius, 1999a, 2001).

In Dzhafarov and Colonius (2005b, 2006b-c) we introduced a di¤erent variant of Fechnerian Scaling,

aimed at discrete spaces, such as a space of color names or other categories (see Dzhafarov & Colonius,

2006a, for the meaning of the discrimination probabilities in this kind of spaces). A space is discrete if for

every point a in it there is an � > 0 such that the dissimilarity from a to any other element of the space

does not fall below �. Figure 2 illustrates the computation of Fechnerian distances in discrete spaces.

a = x0

x6 = b

x1

x2

x3

x4

x5

Figure 2. Given a chain of points x0;x1; :::;xk leading from a to b, the dissimilarities between its successive elements are

summed (cumulated). In a discrete space, the oriented distance from a to b is computed as the in�mum of the cumulated

dissimilarities over all chains leading from a to b. The symmetrical distance between a and b is computed as in the arc-connected

spaces (Fig. 1).

In DC, the new mathematical foundation of Fechnerian Scaling (Dzhafarov & Colonius, 2007), the com-

putation of Fechnerian distances follows the logic of that in discrete spaces but is applied to spaces of entirely

arbitrary nature. One considers all possible �nite chains of points leading from a to b and takes the in�mum

of their cumulated dissimilarities to be the oriented distance from a to b. Adding together the oriented dis-

tances �to and from�one gets the overall (symmetric) Fechnerian distance. This computation is universally

applicable, provided the dissimilarity function is properly de�ned (i.e., satis�es the four axioms stipulated

in Section 2). The notion of a dissimilarity function is a specially constructed generalization of an oriented
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metric: in particular, it does not have to satisfy the triangle inequality.

It is apparent from this brief description that even if the stimulus space under consideration is arc-

connected, the basic logic of the computations in the DC theory does not involve continuous paths. The

latter are nevertheless of considerable interest. In the conceptually simplest case, when the dissimilarity D is

a metric, oriented or symmetric, for every pair of points a;b there may exist a sequence of paths from a to b

whose lengths converge to the distance from a to b. In the traditional terminology this would mean that the

metric D is an intrinsic metric (also called inner, or internal ; see Dzhafarov, 2002b). If D is not a metric,

it may happen that any sequence of chains of points leading from a to b, such that their lengths converge

to the distance from a to b, should have a progressively increasing number of links and gradually vanishing

dissimilarities between successive elements (see Fig. 3). Intuitively, this situation suggests substituting

continuous paths for �nite chains in the computation of metrics from dissimilarities (as discussed in Section

7).

0 1 0 1

0 1 0 1

Figure 3. A space in which a sequence of chains from a to b whose cumulated dissimilarities converge to the oriented distance

from a to b has to have the number of elements increasing beyond bounds and the dissimilarity between successive elements

converging to zero.

The following two questions arise therefore, to be addressed in the present paper.

1. Can a comprehensive and general theory of path length be constructed based on the notion of dis-

similarity rather than that of metric? We answer this question in the a¢ rmative, while imposing

no restrictions on paths except for their existence. The basic properties of the metric-based classical

theory of path length (as found, e.g., in Blumenthal, 1953; Blumenthal & Menger, 1970; Busemann,
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2005) turn out to be preserved in the dissimilarity-based theory, the properties including the lower

semicontinuity of length in a sequence of converging paths, the continuity of a path�s length along the

path, the additivity of path length for concatenated paths, the excess of a path length over the length

of an arc it contains, and others. This is a signi�cant �nding from a mathematical point of view, as

it demonstrates that the triangle inequality and symmetry properties of a metric, prominently used in

the proofs of the classical theory, are not essential. To achieve this generalization, however, one has to

abandon the scheme of approximating paths by inscribed chains, such as we see in Fig. 1. This scheme

has to be substituted for by a more general one in which a path�s length is de�ned as the limit inferior

for the length of chains converging to the path in some well speci�ed meaning. This computation

properly specializes to the classical one when the dissimilarity is a metric: then (although not only

then) the consideration can be con�ned to the inscribed chains only.1

2. What (not overly restrictive) conditions can be imposed on a space endowed with a dissimilarity

function for the oriented distance from one point to another to be computable as the in�mum of the

lengths for all paths connecting these points? Put di¤erently, in what kind of spaces the metrics

computed in accordance with the DC theory are intrinsic? We will see that this is the case in complete

spaces with intermediate points, which generalize the complete convex spaces introduced by K. Menger

for the classical, metric-based theory (see Blumenthal, 1953; Busemann, 2005; we follow Papadopoulos,

2005, in calling this notion of convexityMenger convexity). Again, it is signi�cant from a mathematical

point of view that the theory of Menger convexity can be generalized beyond the use of the triangle

inequality and symmetry.

A terminological note. The terms DC and UFS are by no means interchangeable. We use the term

DC (Dissimilarity Cumulation) to refer to the abstract mathematical theory of dissimilarity functions. UFS

(Universal Fechnerian Scaling) is the main psychological application of the DC theory, obtained by positing

that psychometric increments of the �rst and second kind (see Sections 3 and 8) are dissimilarity functions.

This paper�s primary focus is on the mathematical details of how the general DC theory specializes to arc-

connected spaces. The applications of this development to UFS are textually separated. For a detailed

account of how UFS motivates the theoretical (and terminological) choices made in DC the reader is referred

to Dzhafarov and Colonius (2007). UFS is not the only possible application of DC: as stated in Dzhafarov

and Colonius (2007), one may reasonably hypothesize that many �dissimilarity-type�measures, in particular

those used in Cluster Analysis and Multidimensional Scaling, are dissimilarity functions too.

1Another class of situations where this is possible includes �smooth� paths: these are considered in the follow-up paper

(Dzhafarov, 2007).
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1.1. Plan of the Paper and Notation

We will begin (in Sections 2 and 3) with a brief and by necessity schematic recapitulation of the main

de�nitions and �ndings presented in Dzhafarov and Colonius (2007): the reader should refer to that paper

for justi�cations, explanations, and examples.2 In Sections 4, 5, and 6 we de�ne and establish basic properties

of the path length as derived from the notion of dissimilarity. In Section 7 we introduce the spaces with

intermediate points and establish the intrinsicality of the induced metrics in such spaces. In Section 8 we

translate the notions of DC into the language of UFS.

We will observe the notation conventions adopted in Dzhafarov and Colonius (2007). The target sets

in DC (interpreted as stimulus sets in UFS) are denoted by Gothic letters, S, A, s, ...; their elements

(interpreted as stimuli in UFS) are denoted by boldface lowercase letters, a, b0, x, yn, and so on. Functions

whose values lie in the target (stimulus) sets are also denoted by boldface lowercase letters, f , g�, fn, and so

on.

Chains are �nite sequences of points (stimuli) presented as strings, x1 : : :xk, k being referred to as the

chain�s cardinality. Chains are often denoted by uppercase boldface letters, X, Yn, and so on. The cardi-

nality of X is denoted by jXj. If X = x1 : : :xk, Y = y1 : : :yl, then XY = x1 : : :xky1 : : :yl, appropriately

renumbered. In particular, aXb is a chain connecting a to b:

A real-valued function of two or more points (stimuli) is indicated by a symbol for the function followed

by a string of points without parentheses:  ab, Dabc, DXn, 	(�)ab, and so on.

If fab is de�ned for some function f , then fabc: : : yz is always understood as

fab+ fbc+ : : :+ fyz:

Thus, for X = x1 : : :xk,

DX =
k�1X
i=1

Dxixi+1;

DaXb = Dax1+Dxkb+
k�1X
i=1

Dxixi+1:

In�nite sequences fxngn2N, fxngn2N, fXngn2N, : : : are indicated by their generic elements: sequence

xn, sequence xn, etc. We use the square-bracket notation for intervals of reals (closed, open and half-open):

[a; b], [a; b[, ]a; b], and ]a; b[ :

We also introduce the following convention. If the codomain S for a class of functions is �xed, a function

f : A 7! S, where A is some set, can be denoted by f jA. For a subset B of A, the specialization of f jA to B

is denoted by f jB:

2For broader psychological context, the reader is also referred to Dzhafarov & Colonius (2006a), and the introductory part

of Dzhafarov & Colonius (2005a).
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2. Basics of DC

Given an arbitrary set S, a function

D : S�S 7! R

is called a (uniform) dissimilarity function if it satis�es the following properties:

D1: a 6= b =) Dab > 0;

D2: Daa = 0;

D3: (Uniform Continuity) if Dana0n ! 0 and Dbnb0n ! 0, then Da0nb
0
n �Danbn ! 0;

D4: for any sequence of chains anXnbn,

DanXnbn ! 0 =) Danbn ! 0:

(Refer to Section 1.1 for notation conventions.)

A function

M : S�S 7! R

is an oriented metric (or simply metric, if confusion is unlikely) ifMab is nonnegative, vanishing if and only

if a = b, and satisfying the triangle inequality,

Mac �Mab+Mbc:

If, in addition, M is symmetric,

Mab =Mba;

it is called a symmetric metric.3

We now list the main mathematical facts established in Dzhafarov and Colonius (2007).

Proposition 1 If M is a symmetric metric, it is a dissimilarity function. If M is an oriented metric, then

it is a dissimilarity function if and only if

Mana
0
n ! 0 =)Ma0nan ! 0:

All remaining propositions in our list are predicated on the assumption that D is a dissimilarity function

on S.

For any chainX, the cumulated dissimilarityDX is referred to as theD-length of this chain. In particular,

DaXb is the D-length of a chain connecting a to b. We de�ne

Gab = infXDaXb;

G�ab = Gab+Gba:
(1)

3Traditionally, the term metric is used to mean a symmetric metric. Our use of the term is closer to that in Finsler geometry

(historically, the initial theoretical framework for Generalized Fechnerian Scaling, see Dzhafarov & Colonius, 1999a-b) where

the symmetry requirement is often dropped.
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Proposition 2 Gab is an oriented metric, and G�ab is a symmetric metric (also called �overall�).

Proposition 3 G is a dissimilarity function. (G� is a dissimilarity function trivially, as any symmetric

metric.)

We de�ne an $ bn as meaning Danbn ! 0.

Proposition 4 The convergence$ is an equivalence relation (i.e., it is re�exive, symmetric, and transitive).

A dissimilarity D and the metric G derived from it induce on S one and the same topology and uniformity

with respect to which both D and G are (uniformly) continuous.

Proposition 5 Dissimilarity D induces on S a topology based on open sets

BD (x;") = fy 2 S : Dxy < "g

taken for all x 2 S and all real " > 0: (D is continuous with respect to this topology.)

Proposition 6 Dissimilarity D induces on S a uniformity based on entourages

UD (") =
�
(x;y) 2 S2 : Dxy < "

	
taken for all real " > 0: (D is uniformly continuous with respect to this uniformity.)

Proposition 7 Danbn ! 0 () Ganbn ! 0. The topology (uniformity) induced on S by G coincides

with the topology (uniformity) induced on S by D:

Proposition 8 Space (S; D), or equivalently (S; G), is topologically a completely normal space: its single-

tons are closed and any two separated subsets A and B (i.e., such that A \B = A \B = ?) are contained

in two disjoint open subsets. It follows that (S; D) is Urysohn and Hausdor¤.

Proposition 9 Gab is uniformly continuous in (a;b), i.e., if a0n $ an and b0n $ bn, then Ga0nb
0
n �

Ganbn ! 0:

Note that the uniform continuity of D itself is postulated as Property D3:

For the last proposition in our list recall that according to our notational conventions, if X = x1 : : :xk,

GaXb = Gax1 +Gxkb+

k�1X
i=1

Gxixi+1:

Proposition 10 DaXnb! Gab =) GaXnb! Gab:
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3. Basics of UFS

Here, we recapitulate the basic notions and mathematical facts pertaining to UFS (Dzhafarov & Colonius,

2007), including the motivation for de�ning the symmetric metric G�ab as the sum Gab+Gba. The reader

primarily interested in the abstract mathematical development of DC may skip this section and proceed to

Section4.

Two stimuli being compared formally belong to two di¤erent sets, S1 and S2, referred to as observation

areas (e.g., the stimuli presented on the left and those presented on the right). The discrimination probability

function

~ xy = Pr [x and y are judged to be di¤erent] (2)

is therefore

S1 �S2 7! [0; 1] :

UFS is a purely psychological theory, in the following sense: x 2 S1 is entirely characterized by the function

y 7! ~ xy, while y 2 S2 is entirely characterized by x 7! ~ xy. In other words, physical descriptions of

stimuli are irrelevant, and

if ~ ay = ~ by, for all y, then a = b;

if ~ xa = ~ xb, for all x, then a = b:
(3)

The law of Regular Minimality says that

h (x) = argmin
y
~ xy (4)

and

g (y) = argmin
x
~ xy (5)

are well-de�ned functions, and

h � g�1: (6)

This is equivalent to stating the (non-unique) existence of bijections f1 : S1 7! S, f2 : S2 7! S such that

f1 (x) = f2 (y) if and only if y = h (x), x = g (y). Under such a mapping the space
�
S1;S2; ~ 

�
can be

presented in a canonical form, (S;  ), where

 xy = ~ f�11 (x) f�12 (y) :

The corresponding canonical form of Regular Minimality is

 xx < min f xy; yxg (7)

(equivalently,  xy > max f xx; yyg), for all distinct x;y 2 S:

The canonical psychometric increments of the �rst and second kind are de�ned as, respectively,

	(1)ab =  ab�  aa;

	(2)ab =  ba�  aa:
(8)
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It is postulated (as the only other postulate of UFS besides the law of Regular Minimality) that 	(1) and 	(2)

are dissimilarity functions. This means that when the DC theory is applied to discrimination probabilities,

D can be replaced with either 	(1) or 	(2):

Proposition 11 	(1)anbn ! 0 i¤ 	(2)anbn ! 0 (i.e., both mean an $ bn).

Proposition 12 The discrimination probability function  ab is uniformly continuous: if a0n $ an and

b0n $ bn, then  a0nb
0
n �  anbn ! 0:

We denote

G1ab = infX	
(1)aXb;

G2ab = infX	
(2)aXb:

(9)

We call G1 and G2, which are oriented metrics by Proposition 2, Fechnerian metrics (or oriented Fechnerian

metrics). The symmetric metric

G�ab =G1ab+G1ba =G2ab+G2ba (10)

is called the overall Fechnerian metric. The equality of the two sums is ensured by the following proposition.

Proposition 13 For any a;b;

G1ab+G1ba = inf
(X;Y)

	(1)aXbYa = inf
(X;Y)

	(2)aXbYa = G2ab+G2ba:

That is, the overall Fechnerian metric G�ab is the same for the two kinds of psychometric increments.

We say that f is a symmetrization scheme for G1 and G2 if it satis�es the following properties:

f (G1ab;G1ba) = f (G2ab;G2ba) (11)

and

f (x; x) = kx; (12)

where k is some positive number. The previous proposition says that f (x; y) = x + y is a symmetrization

scheme. The next proposition says that this is the only possible symmetrization scheme (up to positive

scaling). This fact provides the motivation for our de�nition of G�ab as Gab +Gba in the general theory

of DC.

Proposition 14 The only universally applicable symmetrization scheme (i.e., applicable to all possible

spaces satisfying Regular Minimality) is f (x; y) = k
2 (x+ y) :
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4. Trails, Paths, and Their Lengths

We return now to the general theory of DC. Recall that Properties D1-D4 are the only assumptions posited

for the dissimilarity space (S; D), and that these assumptions su¢ ce to unambiguously impose on (S; D)

topological and uniform structures (Propositions 5 and 6). In particular, since the notion of uniform con-

vergence in the space (S; D) is well-de�ned,

an $ bn () Danbn ! 0;

we can meaningfully speak of continuous and uniformly continuous functions from reals into S.

Let S denote an arbitrary subset of [a; b] with a; b 2 S. Let f : S 7! S, or f jS, be some uniformly

continuous function with f (a) = a, f (b) = b, where a and b are not necessarily distinct. We call such a

function a trail connecting a to b. Note that if S is �nite, any function f jS is a trail (see Fig. 4).

If S = [a; b], any continuous function f j [a; b] is a trail, and such a trail is called a path.

a

b

b

a

a

b

b

a

a

b

b

a

a

b

b

a

Figure 4. Trails of di¤erent kinds. The trail at the bottom right is a path.

Choose an arbitrary net on S,

� = (a = x0 � x1 � : : : � xk � xk+1 = b) ; (13)

where all xi�s belong to S (but need not be all pairwise distinct). We call the Hausdor¤ distance � (�; S)

between S and � the net�s mesh. The Hausdor¤ distance in this case is de�ned as

� (�; S) = sup
y2S

min
xi2�

fjxi � yjg : (14)
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Intuitively, as � (�n; S)! 0, the nets �n provide a progressively better approximation for S:

Given a net � = (x0; x1; : : : ; xk; xk+1), any chain X = x0x1 : : :xkxk+1 (with the elements not necessarily

pairwise distinct, and x0 and xk+1 not necessarily equal to a and b) can be used to form a chain-on-net

X� = ((x0;x0) ; (x1;x1) ; : : : ; (xk;xk) ; (xk+1;xk+1)) : (15)

Denote the class of all such chains-on-nets X� (for all possible pairs of a chain X and a net � of the same

cardinality) byMS . If S = [a; b], we also writeMb
a:

Note that a chain-on-net is not a function from fx : x is an element of �g into S, for it may include pairs

(xi = x;xi) and (xj = x;xj) with xi 6= xj . Note also that within a given context X� and X� denote one

and the same chain on two nets, whereas X�, Y� denote two chains on the same net.

We de�ne the separation of the chain-on-net X� = ((x0;x0) ; : : : ; (xk+1;xk+1)) 2MS from a trail f jS as

�f (X
�) = max

xi2�
Df (xi)xi: (16)

For a sequence of trails fnjSn, any sequence of chains-on-nets X�n
n 2 MSn with � (�n; Sn) ! 0 and

�fn
�
X
�n
n

�
! 0 will be referred to as a sequence converging with fn. We denote such convergence by

X
�n
n ! fn. In particular, X

�n
n ! f for a �xed trail f jS means that � (�n; S)! 0 and �f

�
X
�n
n

�
! 0: in this

case we can say that X�n
n converges to f :

It is easy to see that if S = [a; b] (so the trail is a path), then � (�n; S) ! 0 is equivalent to ��n ! 0,

where

�n =
�
a = xn0 � xn1 � : : : � xnkn � xnkn+1 = b

�
;

��n = maxi=0;1:::;kn
�
xni+1 � xni

�
:

(17)

See Fig. 5 for an illustration.

a
b

b

a

s

d
a

b

b

a

s

d

Figure 5. A chain-on-net X� is converging to a path f as � = �f (X�)! 0 and � = ��! 0:
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We de�ne the D-length of f jS as

Df = lim inf
X�2MS
X�!f

DX = lim inf
X�2MS

�(�;S)!0
�f (X

�)!0

DX (18)

If the domain of f is to be explicated in Df , we use the notation Df (S) instead of the more correct but

less convenient Df jS or D (f jS). One should keep in mind, however, that the D-length of a trail is not a

function of its image f (S) alone but of the function f : S 7! S. Figure 6 illustrates this point.

b
a

b
a

b
a

b

a

b

a

Figure 6. Length is not a function of a path�s image, but of how this image is �traversed� (i.e., of how an interval of reals

is mapped onto it). The three top panels show three di¤erent ways of traversing a curve with loops. The two bottom panels

illustrate the fact that even a curve without loops can be traversed in an in�nity of di¤erent ways.

Given a trail f jS, the class of the chains-on-nets X� such that � (�; S) < � and �f (X�) < " is nonempty

for all positive � and ", because this class includes appropriately chosen inscribed chains-on-nets

((a;a) ; (x1; f (x1)) ; : : : ; (xk; f (xk)) ; (b;b)) : (19)

Here, obviously, �f (X�) is identically zero. Note however: even though

lim inf
X�2MS

�(�;S)!0
�f (X

�)!0

DX = lim inf
�!0

lim inf
X�2MS

�(�;S)=�
�f (X

�)!0

DX;

we generally have

lim inf
X�2MS

�(�;S)=�
�f (X

�)!0

DX � lim inf
X�2MS

�(�;S)=�
�f (X

�)=0

DX;

that is, with our de�nition of D-length one generally cannot con�ne one�s consideration to the inscribed

chains-on-nets only. We illustrate this by an example involving a trail which is a path.

Example. Consider Fig. 7 for which we assume that S = R2 and that, given a =(a1; a2), b =(b1; b2),

Dab = ja1 � b1j+ ja2 � b2j+min fja1 � b1j ; ja2 � b2jg :
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......

......

(1,0)

(0,1)(0,0)

(1,0)

(0,1)(0,0)

Figure 7. A demonstration that inscribed chains are not su¢ cient for D-length computations. The space is
�
R2; D

�
, where

D from (a1; a2) to (b1; b2) is de�ned as ja1 � b1j + ja2 � b2j + min fja1 � b1j ; ja2 � b2jg. Top left: D (a1; a2)
�
a01; a

0
2

�
and

D (b1; b2)
�
b01; b

0
2

�
converge to zero if and only if points (a1; a2) and

�
a01; a

0
2

�
converge to each other in the Euclidean sense, and

the same is true for (b1; b2) and
�
b01; b

0
2

�
; then D (a1; a2) (b1; b2) � D

�
a01; a

0
2

� �
b01; b

0
2

�
tends to zero (Property D3). Top right:

the dissimilarity between two successive elements of a chain is not less than jx1;i � x1;i+1j+ jx2;i � x2;i+1j, whence the sum of

all these dissimilarities cannot fall below ja1 � b1j+ ja2 � b2j; this implies Property D4: Bottom left: the staircase chain has the

cumulated dissimilarity 2, and 2 is the true D-length of the hypotenuse. Bottom right: the inscribed chain has the cumulated

dissimilarity 3.
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D trivially satis�es Properties D1-D2. On observing that Dab is uniformly continuous with respect to the

Euclidean norm k�k, and that

Dana
0
n ! 0() kan � a0nk ! 0;

Dbnb
0
n ! 0() kbn � b0nk ! 0;

it is clear that D satis�es D3. Finally, since for any chain aXb;

DaXb � ja1 � b1j+ ja2 � b2j ;

D4 is satis�ed too:

DanXnbn ! 0 =) kan � bnk ! 0() Danbn ! 0:

D therefore is a (symmetric) dissimilarity function.

Consider now the hypotenuse of the isosceles right-angle triangle in the bottom panels of Fig. 7. To make

this hypotenuse a path, assume that each point on it is the image of, say, its abscissa value. Two chains are

shown, a staircase one and an inscribed one. The nets for both these chains can be chosen, again, as the

abscissa values of their elements. Clearly, as the chained elements get progressively denser, the two chains

converge to the hypotenuse in the sense of our de�nition. It is easy to calculate that the D-lengths of the

converging chains in both cases remain constant: equal to 2 for all the staircase chains, and to 3 for all the

inscribed ones. This shows that the D-length of the hypotenuse cannot be approached by the lengths of

the inscribed chains. The value 2 is the true D-length of the hypotenuse because, by the argument used in

establishing the property D4, no chain connecting the endpoints of the hypotenuse can have the D-length

less than 2:

5. Basic Properties of Trail Length

We need a lemma �rst which shows that in considering chains-on-nets converging to a trail one always can

con�ne one�s consideration to only those chains-on-nets which connect the endpoints of the trail.

Lemma 1 If

X�n
n =

�
(a;xn0 ) ; (x

n
1 ;x

n
1 ) ; : : : ;

�
xnkn ;x

n
kn

�
;
�
b;xnkn+1

��
! f jS

with a trail f connecting a to b, and

Y�n
n =

�
(a;a) ; (xn1 ;x

n
1 ) ; : : : ;

�
xnkn ;x

n
kn

�
; (b;b)

�
(so all Yn connect a to b), then

Y�n
n ! f jS

and

lim inf
n!1

DXn= lim inf
n!1

DYn:
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Proof. Clearly,

�f (X
�n
n ) = max

�
�f (Y

�n
n ) ; Dax

n
0 ; Dbx

n
kn+1

	
;

and �f
�
X
�n
n

�
! 0 implies �f

�
Y
�n
n

�
! 0. Since � (�; S) does not change, we have Y�n

n ! f jS. Also,

�f
�
X
�n
n

�
! 0 implies Daxn0 ! 0, Dbxnkn+1 ! 0. By the uniform continuity of D then Daxn1 �Dxn0xn1 ! 0

and Dxnknb�Dx
n
kn
xnkn+1 ! 0. Since

DYn = DXn + (Dax
n
1 �Dxn0xn1 ) +

�
Dxnknb�Dx

n
knx

n
kn+1

�
;

DYn �DXn ! 0, and the equality of the lower limits follows.

It follows that Df can be de�ned as lim infDY taken over all Y� ! f with Y connecting a to b. That

is, given a trail f connecting a to b, one can always �nd a sequence of X�n
n ! f with DXn ! Df , such that

((a;a) ; (b;b)) � X�n
n .

Theorem 1 For any trail f jS connecting a to b,

Df � Gab:

Proof. Gab = infDaXb across all possible chains X, so Gab � lim infn!1DYn for any sequence of

chains Yn connecting a to b. But by Lemma 1, Df = lim infn!1DYn for at least one such sequence.

That is, the D-length of a trail is bounded from below by Gab. There is no upper bound for Df , this

quantity need not be �nite. Thus, it will be shown below that when f is a path and D a metric, the notion

of Df essentially coincides with the traditional notion of path length; and examples of paths whose length,

in the traditional sense, is in�nite, are well-known (see, e.g., Chapter 1 in Papadopoulos, 2005). We call a

trail D-recti�able if its D-length is �nite.

The next theorem establishes the additivity property for trail length. In its proof we use the operation

of concatenation of chains-on-nets. If X� = ((x1;x1) ; : : : ; (xk;xk)) and Y� = ((y1;y1) ; : : : ; (yl;yl)), with

xk � y1, then

X� [Y� = ((x1;x1) ; : : : ; (xk;xk) ; (xk+1;xk+1) ; : : : ; (xk+l;xk+l)) ; (20)

where xk+i = yi and xk+i = yi (i = 1; : : : ; l).

Theorem 2 For any trail f jS with a; b 2 S � [a; b], and any point z 2 S,

Df (S) = Df ([a; z] \ S) +Df ([z; b] \ S) :

Proof. If z = a or z = b, the theorem holds trivially, so we assume z 2 ]a; b[. We denote [a; z] \ S

and [z; b] \ S by S1 and S2, respectively. Consider two sequences X�n
n ! f jS1 and Y�n

n ! f jS2 with

DXn ! Df (S1) and DYn ! Df (S2). Let (z;xnz ) be the last element of X
�n
n , and (z;y

n
z ) the �rst element

of Y�n
n . Clearly, the sequence of pairwise concatenated chains-on-nets X�n

n [Y�n
n converges to f , and

Df (S) � lim
n!1

DXnYn = lim
n!1

DXn + lim
n!1

Yn + lim
n!1

Dxnzy
n
z = Df (S1) +Df (S2) + lim

n!1
Dxnzy

n
z :
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Since �f jS1 (X
�n
n ) ! 0 and �f jS2

�
Y
�n
n

�
! 0, we have Df (z)xnz ! 0, and Df (z)ynz ! 0, and then, by the

uniform continuity of dissimilarity functions, Dxnzy
n
z ! 0. This proves

Df (S) � Df (S1) +Df (S2) :

(This also proves that Df (S1) <1 and Df (S2) <1 imply Df (S) <1.)

To prove that the inequality can be reversed, take any sequence Znn ! f jS such that DZn ! Df . In

the net n �nd z
n
in
< z � znin+1 and the corresponding z

n
in
, znin+1 in the chain Zn. As � (n; S) ! 0, at

least one of the quantities znin � z, z � z
n
in+1

must tend to zero, and we have (both f and D being uniformly

continuous)

Df
�
znin
�
f
�
znin+1

�
�Df

�
znin
�
f (z)�Df (z) f

�
znin+1

�
! 0:

Since �f jS
�
Z
n
n

�
! 0, we have, using again the uniform continuity of f and D;

Dzninz
n
in+1

�Df
�
znin
�
f
�
znin+1

�
! 0;

Dzninf (z)�Df
�
znin
�
f (z)! 0;

Df (z) znin+1 �Df (z) f
�
znin+1

�
! 0;

whence

Dzninz
n
in+1 �Dz

n
inf (z)�Df (z) z

n
in+1 ! 0:

Hence DZ0n ! Df , where Z0n is Zn with f (z) inserted between z
n
in
and znin+1. It is easy to see that

U�n
n = Z

n\[a;z[
n [ (z; f (z))! f jS1;

V
�n
n = (z; f (z)) [ Zn\[z;c]n ! f jS2;

whence lim infn!1DUn � Df (S1) and lim infn!1DVn � Df (S2). Since

lim inf
n!1

DUn + lim inf
n!1

DVn � lim
n!0

DUnVn = lim
n!0

DZ0n = Df ;

it follows that Df (S1) + Df (S2) � Df (S). (This also proves that Df (S) < 1 implies Df (S1) < 1 and

Df (S2) <1.)

Theorem 3 Df for any trail f jS is nonnegative, and Df = 0 if and only if f is constant on its domain S

(i.e., f (S) is a singleton).

Proof. The nonnegativity of Df follows from Theorem 1. If f (x) = a for all x 2 S, any sequence of

chains-on-nets X�n
n with all points of every chain identically equal to a and with � (�n; S)! 0 converges to

f , with DXn � 0. Conversely, if Df (S) = 0, then, by the property of additivity (Theorem 2) and by the

nonnegativity of Df , Df ([x; y] \ S) = 0 for any x; y 2 S, and then, by Theorem 1, f (x) = f (y) :

The quantity

�f (g) = sup
x2S

Df (x)g (x) (21)
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is called the separation of trail gjS from trail f jS. Since D is (uniformly) continuous, if S = [a; b] (or more

generally, if S is closed),

�f (g) = max
x2S

Df (x)g (x) : (22)

Two sequences of trails fnjSn and gnjSn are said to be (uniformly) converging to each other if �fn (gn)!

0. Due to the symmetry of the convergence in S (Proposition 4), this implies �gn (fn)! 0, so the de�nition

and terminology are well-formed. We symbolize this situation by fn $ gn.4

In particular, if f jS is �xed then a sequence fnjS converges to f if �f (fn)! 0. We present this convergence

in symbols as fn ! f , even though one could also write fn $ f . Note that if fn ! f , the endpoints an = fn (a)

and bn = fn (b) generally depend on n and di¤er from, respectively a = f (a) and b = f (b) :

The following very important property is called the lower semicontinuity of D-length (as a function of

trails). It is obtained as almost immediate consequence of our de�nition of D-length.

Theorem 4 For any sequence of trails fnjS ! f jS,

lim inf
n!1

Dfn � Df :

Proof. Consider any sequence of chains-on-nets X�n
n 2 MS such that � (�n; S) ! 0, �fn

�
X
�n
n

�
! 0,

jDXn �Dfnj ! 0. It follows from the uniform continuity of D that

[�fn (X
�n
n )! 0] ^ [�f (fn)! 0] =) �f (X

�n
n )! 0:

Indeed, for any " > 0 one can �nd a � > 0 such that if Df (zn) fn (zn) < � and Dfn (zn) zn < �,

then Df (zn) zn < ", where (zn; zn) is an arbitrarily chosen element of X
�n
n . Then X�n

n ! f , whence

lim infn!1DXn � Df . But lim infn!1DXn = lim infn!1Dfn.

It is worth observing that similar argument cannot be applied to the convergence fn $ gn. The reason for

this is that even though the convergence of the type X�n
n ! gn is a well-de�ned concept, it di¤ers from the

convergence X�n
n ! f in one important respect: in the latter case lim infn!1DXn � Df by the de�nition

of Df , but in the former case there is no de�nitive ordering of lim infn!1DXn and lim infn!1Dgn:

We conclude this section with a useful theorem which says that, given a trail f , one can choose for every

n = 1; 2; : : : an arbitrary inscribed chain-on-net, and then a sequence of X�n
n ! f with DXn ! Df can

be constructed so that each chain-on-net X�n
n includes (�passes through�) the corresponding inscribed one.

Refer to Fig. 8 for a crude illustration (with f a path).

Theorem 5 Let Z�nn be a sequence of chains-on-nets inscribed in a trail f jS,

Z�nn = f(xni ; f (xni ))gi=0;:::;kn+1 :

4This convergence e¤ectively imposes a uniformity (hence also topology) on the space of all trails on a given domain. We

will not pursue this topic in this paper.
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a
b

b

a

Figure 8. Illustration to Theorem 5. Open circles represent an inscribed chain. The chain shown by the point line �passes

through� the inscribed chain and approximates the path.

Then there is a sequence of X�n
n ! f with DXn ! Df such that

Z�nn � X�n
n ;

for every n:

Proof. By the additivity property (Theorem 2),

Df (S) =

knX
i=0

Df
��
xni ; x

n
i+1

�
\ S

�
;

for every n. By Lemma 1, for each f j
�
xni ; x

n
i+1

�
\S one can �nd a chain-on-net X�i;n

i;n connecting (xni ; f (x
n
i ))

to
�
xni+1; f

�
xni+1

��
and such that

�
�
�i;n;

�
xni ; x

n
i+1

�
\ S

�
< 1

n ;

�f j[xni ;xni+1]\S

�
X
�i;n
i;n

�
< 1

n ;���DX�i;n
i;n �Df

��
xni ; x

n
i+1

�
\ S

���� < 1
n(kn+1)

:

Putting

X�n
n = X

�1;n
1;n [ : : : [X�kn;n

kn;n
;

it is easy to check that X�n
n satis�es the statement of the theorem.

6. DC in Arc-connected Spaces

A space is called arc-connected (or path-connected) if any two points in it can be connected by a path. Even

though arcs have not yet been introduced in this paper, the terms �arc-connected�and �path-connected�
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are synonymous, because if two points are connected by a path they are also connected by an arc (see, e.g.,

Hocking &Young, 1961, pp. 116-117).

Hereafter we will assume that (S; D) is an arc-connected space, and we will focus on trails which are

paths (except in Section 7 where non-path trails will be invoked as auxiliary constructs). Recall that when

dealing with a path we can write �� ! 0 instead of � (�; [a; b]) ! 0, and that the set of all chains-on-nets

whose nets connect a to b in [a; b] is denoted byMb
a.

6.1. Metric Dissimilarities

We begin with the case when the dissimilarity D is a metric (recall that the term is used here in the sense

of an oriented metric). If D is a metric, the traditional de�nition of the length of a path f is

Dinsf = supDZ; (23)

with the supremum taken over all inscribed chains-on-nets Z� . This is seemingly di¤erent from our de�nition

of Df , but the theorem below shows that Dinsf and Df coincide.

Theorem 6 If D is a metric, then

Df = Dinsf

for any path f :

Proof. Let Z�nn be a sequence of inscribed chains-on-nets with ��n ! 0 and DZn ! Dinsf . Since

�f (Z
�n
n ) � 0, we have Z�nn ! f . By the de�nition of D-length then, Df � Dinsf :

According to Theorem 5, one can construct a sequence ofX�n
n ! f withDXn ! Df such that Z�nn � X�n

n .

For a given n, let z; z0 be any two successive elements of Zn and zx1 : : :xkz0 be the subchain ofXn connecting

them. By the triangle inequality, Dzx1 : : :xkz0 � Dzz0. It follows that DXn � DZn, whence Df � Dinsf :

We conclude that in the case of a metric D our dissimilarity-based de�nition of path length specializes

to the classical one (as presented, e.g., in Blumenthal, 1953; Blumenthal & Menger, 1970; Busemann, 2005),

except for not assuming that D is symmetric.

The next result is one of the most basic in the classical theory (see, e.g., Busemann, 2005, p. 20). We

present the proof in extenso to make sure that it does not require that metric D be symmetric.

Theorem 7 If D is a metric, f is any path, and X�n
n is any sequence of inscribed chains-on-nets with

��n ! 0, then

DXn ! Df :

Proof. Assume the contrary: let there be some X�n
n such that ��n ! 0 but DXn 6! Df . Since

Df =supDZ across all possible inscribed chains-on-nets, DXn � Df for all n. Then there is a � > 0 and a
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subsequence of X�n
n (with no loss of generality, let it be X�n

n itself) such that DXn ! Df ��. Let Z� be a

chain-on-net with DZ > Df ��=2 and

� = (a = z0 < z1 < : : : < zl < zl+1 = b) :

For every zi and every n, choose two successive elements xnki;n ; x
n
ki;n+1

of �n such that x
n
ki;n

� zi � xnki;n+1.

For a su¢ ciently large n, ��n will be su¢ ciently small to ensure that x
n
ki;n
, xnki;n+1 are uniquely determined

by i, and that zi is the only member of � falling between them. Denote by �[�n the nets (ordered sequences)

formed by the elements of � and �n. Consider the chains f (� [ �n), with f applying to the nets elementwise.

Clearly,

Df (� [ �n) = DXn +
lX
i=0

n
Df
�
xnki;n

�
f (zi) +Df (zi) f

�
xnki;n+1

�
�Df

�
xnki;n

�
f
�
xnki;n+1

�o
:

By the uniform continuity of f , the right-hand sum tends to zero, whence

Df (� [ �n)�DXn ! 0;

implying

Df (� [ �n)! Df ��:

But by the triangle inequality, for all n,

Df (� [ �n) � Df (�) = DZ > Df ��=2:

This contradiction proves the theorem.

Note that the convergence in this theorem is uniform across the inscribed chains-on-nets X�: restated

in the "-� language, the theorem says that, given a path f , for every " > 0 one can �nd � > 0 such that

DX > Df � " whenever �� < �. Indeed, otherwise one could �nd an " > 0 and a sequence of inscribed

chains-on-nets X�n
n such that ��n ! 0 but DXn 6! Df .

6.2. G-lengths

Returning to general dissimilarities D, since the metric G induced by D in accordance with

Gab = inf
X
DaXb

is itself a dissimilarity function (Proposition 3), the G-length of a path f : [a; b] 7! S should be de�ned as

Gf = lim inf
X�2Mb

a

X� G!f

GX; (24)

where (putting X = x0x1 : : :xkxk+1),

GX =
kX
i=0

Gxixi+1; (25)
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and the convergence X� G! f (where � is the net a = x0; x1; : : : ; xk; xk+1 = b corresponding to X) means

the conjunction of ��! 0 and

��f (X
�) = max

i=0;:::;k+1
Gf (xi)xi ! 0:

It is easy to see, however, that X� G! f and X� ! f are interchangeable.

Theorem 8 For any path f ,

X� ! f () X� G! f :

Proof. ��! 0 has the same meaning in both cases, and

max
i=0;:::;k+1

Gf (xi)xi ! 0 () max
i=0;:::;k+1

Df (xi)xi ! 0

due to the uniform equivalence of D and G (Proposition 7).

So we can write unambiguously

Gf = lim inf
X�2Mb

a
X�!f

GX: (26)

Since G is a metric, we also have, by Theorem 6,

Gf = supGZ (27)

with the supremum taken over all inscribed chains-on-nets Z� ; and by Theorem 7,

Gf = lim
n!1

GZn (28)

for any sequence of inscribed inscribed chains-on-nets Z�nn with ��n ! 0:

What is the relationship between the D-length and G-length of a path? A remarkable and somewhat

surprising (at least to the author) fact is that the two are always equal.

Theorem 9 For any path f ,

Df = Gf :

Proof. That Df � Gf is obvious, as the corresponding inequality holds for any sequence of chains-on-nets

converging to f . To prove Df � Gf (where we can assume that Gf is �nite, for otherwise the inequality is

satis�ed trivially), we consider a sequence of inscribed chains-on-nets

Z�nn =
�
(zn0 = a; zn0 = a) ; (z

n
1 ; z

n
1 ) ; :::;

�
znkn ; z

n
kn

�
;
�
znkn+1 = b; znkn+1 = b

��
;

such that ��n ! 0, and Gf is the limit of GZn. By the de�nition of G, for any (zni ; z
n
i ),

�
zni+1; z

n
i+1

�
in Z�nn

one can �nd a chain Xn
i such that

0 � Dzni X
n
i z

n
i+1 �Gzni zni+1 �

1

n (kn + 1)
:



Dissimilarity Cumulation in Arc-Connected Spaces 23

Denoting

Un = z
n
0X

n
0z

n
1 : : : z

n
knX

n
knz

n
kn+1;

it follows that

0 � DUn �GZn �
1

n
;

i.e., DUn ! Gf . For every n and i = 0; : : : ; kn, we pair all elements of Xn
i = x

i;n
1 : : :xi;nli;n in z

n
i X

n
i z

n
i+1 with

zni to create chains-on-nets

U�n
n =

�
: : : ; (zni ; z

n
i ) ;

�
zni ;x

i;n
1

�
; : : : ;

�
zni ;x

i;n
li;n

� �
zni+1; z

n
i+1

�
; : : :

�
:

Since DUn ! Gf , to prove Df � Gf it will su¢ ce to show that U�n
n ! f . The latter is equivalent to

�f
�
U
�n
n

�
! 0, because, clearly, ��n = ��n ! 0. For every n, let

�
znin ;m

n
in

�
be an element of U�n

n such that

�f (U
�n
n ) = Df

�
znin
�
mn
in = Dzninm

n
in :

f being uniformly continuous,

Gzninz
n
in+1 = Gf

�
znin
�
f
�
znin+1

�
! 0

as ��n = ��n ! 0. By the construction of Un, this implies

DzninX
n
inz

n
in+1 ! 0;

and then, on denoting by zninY
n
in
mn
in
the subchain of zninX

n
in
connecting znin to m

n
in
;

DzninY
n
inm

n
in ! 0:

The convergence

�f (U
�n
n ) = Dzninm

n
in ! 0

now follows by Property D4 of dissimilarity functions.

6.3. Basic Properties of D-Length for Paths and Arcs

The properties established in this section parallel the basic properties of path length in the traditional,

metric-based theory. All of them can be proved �directly,� in terms of dissimilarity D alone. Theorem 9,

however, o¤ers a more economic way of dealing with them, based on the following �meta-proposition�:

A proposition formulated entirely in terms of D-lengths of paths, for an arbitrary dissimilarity

function D, is true if and only if the same proposition is true with D being an arbitrary (oriented)

metric.
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Unfortunately, it is not possible to simply formulate a proposition, invoke the identity Df = Gf , and refer

the reader to the literature, because in the relevant literature known to the author metric is always taken

to be symmetric. In some cases the symmetry requirement is critical. Even when it is not, it is often more

di¢ cult to convince the reader that an existing proof can be modi�ed (generalized) not to rely on symmetry

than to present an explicit proof, with or without reliance on Theorem 9.

The �rst issue to be considered is the (in)dependence of the D-length of a path on the path�s parame-

trization. In Section 4 we emphasized in relation to Fig. 6 that the D-length of a path is not determined

by its image f ([a; b]) alone but by the function f : [a; b] 7! S. Nevertheless two paths f j [a; b] and gj [c; d]

with one and the same image do have the same D-length if they are related to each other in a certain way.

Speci�cally, this happens if f and g are each others�reparametrizations, by which we mean that for some

nondecreasing and onto (hence continuous) mapping � : [c; d] 7! [a; b],

g (x) = f (� (x)) ; x 2 [c; d] : (29)

Note that we use a �symmetrical�terminology (each other�s reparametrizations) even though the mapping

� is not assumed to be invertible (see Fig. 9). If it is invertible, then it is an increasing homeomorphism,

and then it is easy to show that Df = Dg. The theorem stated next shows this for the general case.

a
b

b

a

c

d

φ

f

Figure 9. Illustration to Theorem 10. f is a path with respect to [a; b] ; and it is also a path with respect to [c; d] mapped onto

[a; b] by a nondecreasing function �:

Theorem 10 Given two functions gj [c; d] and f j [a; b] such that

g (x) = f (� (x))
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for some nondecreasing and onto (hence continuous) mapping

� : [c; d] 7! [a; b] ;

if one of the functions f ;g is a path then so is the other, and

Dg = Df :

Proof. The functions f and g are paths if and only if they are continuous (hence uniformly continuous).

That the continuity of f implies the continuity of g is obvious: g is the composition of two continuous

functions, � and f . The converse is proved by observing that if s is a closed subset of f ([a; b]), f�1 (s) is

closed in [a; b]: indeed, g�1 (s) is closed (hence compact) in [c; d], and then f�1 (s) = �
�
g�1 (s)

�
is compact

(hence closed) in [a; b].

The equality Dg = Df is equivalent to Gg = Gf , and we prove the latter by considering the set P dc of

all nets on [c; d], and the set P ba = �
�
P dc
�
of the nets on [a; b] obtained by applying � to each element of

each net in P dc . It is clear that P
b
a contains all possible nets on [a; b], and that for any two nets � 2 P dc and

� (�) 2 P ba , the corresponding chains f (�) and f (� (�)) (where f is applied elementwise) are identical. It

follows that the suprema taken across the G-lengths of the inscribed chains f
�
P dc
�
and f

�
P ba
�
(where, again,

f is applied to each element of each net) should be identical.

We establish next the uniform continuity of length traversed along a path (see Fig. 10).

a

b

x
y

m

Figure 10. Illustration to Theorem 11. As x and y get closer to m; the length of the corresponding piece of the path gradually

vanishes.
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Theorem 11 For any D-recti�able path f j [a; b] and [x; y] � [a; b], Df ([x; y]) is uniformly continuous in

(x; y), nondecreasing in y and nonincreasing in x.

Proof. By the additivity property (Theorem 2), the (nonstrict) increase-in-y and decrease-in-x ofDf ([x; y])

is obvious. To prove the uniform continuity of Df ([x; y]) = Gf ([x; y]) it su¢ ces to show that Gf ([x; y])! 0

as y � x! 0. We create a net

� = (a = x0; x1; : : : ; xk = x; y = y1; : : : ; yk; yk+1 = b) :

By the uniform continuity of f , and by Theorem 7 (see the remark following its proof), for any " > 0, ��

can be chosen su¢ ciently small to ensure both

Gf (x) f (y) < "

and

GX+Gf (x) f (y) +GY > Gf ([a; b])� ";

where X = f (x0; x1; : : : ; xk), Y = f (y1; : : : ; yk; yk+1) (elementwise). At the same time,

GX � Gf ([a; x]) ;

GY � Gf ([x; b]) ;

and combining this with the previous inequality,

Gf ([a; x]) + "+Gf ([x; b]) > Gf ([a; b])� " = Gf ([a; x]) +Gf ([x; y]) +Gf ([x; b])� ":

Then

Gf ([x; y]) < 2";

and this completes the proof.

We observe next that any D-recti�able path f j [a; b] can be reparametrized into nj [0; D0], where D0 =

Df ([a; b]), so that f (x) for any x 2 [a; b] corresponds to the D-length Df ([0; x]) in its new domain [0; D0]. By

analogy with the traditional terminology, we call this reparametrization of f its natural D-parametrization.

Theorem 12 Any path f j [a; b] with Df ([a; b]) = D0 <1 permits the (unique) natural D-parametrization

nj [0; D0], with

f (x) = n (� (x)) ;

for any x 2 [a; b], and

Dn ([u; v]) = v � u;

for any 0 � u � v � D0:
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Proof. By Theorem 11, � : x 7! Df ([a; x]) is a nondecreasing continuous mapping with � (a) = 0

and � (x) = Df ([a; x]). Hence � maps [a; x] onto [0; � (x)]. By Theorem 10, nj [0; � (x)] de�ned by f (u) =

n (� (u)) is a path with Dn ([0; � (x)]) = Df ([a; x]) = � (x). Since � (x) takes on all values on [0; D0], we have

n : [0; D0] 7! S withDn ([0; v]) = v. By additivity (Theorem 2),Dn ([u; v]) = Dn ([0; v])�Dn ([0; u]) = v�u:

We de�ne an arc as a path which can be reparametrized into a homeomorphic path. In other words,

gj [c; d] is an arc if one can �nd a nondecreasing and onto (hence continuous) mapping � : [c; d] 7! [a; b], such

that, for some one-to-one and continuous (hence homeomorphic) function f : [a; b] 7! S,

g (x) = f (� (x)) ; (30)

for any x 2 [c; d]. The following lemma provides a simple characterizations of arcs.

Lemma 2 A path gj [c; d] is an arc if and only if, for any x 2 g ([c; d]), g�1 (fxg) is an interval (necessarily

closed) in [c; d]. If g is a D-recti�able arc, its natural D-parametrization is a homeomorphism.

Proof. If f j [a; b] is a homeomorphism, and g (x) = f (� (x)) for all x 2 [c; d], then

g�1 (fxg) = ��1
�
f�1 (fxg)

�
;

where f�1 (fxg) is a singleton fyg in [a; b]. Since � is onto and nondecreasing, � (fyg) is either a singleton

or a nondegenerate interval on which � is constant (a closed interval, because � is continuous). Conversely,

if g�1 (fxg) for any x 2 g ([c; d]) is an interval (closed, because g is continuous), then all the nondegenerate

intervals g�1 (fxg) are pairwise non-intersecting, and their set therefore is at most denumerable (choose

in each of these intervals a rational point, establishing thereby a bijection between them and a subset of

rationals). Any continuous nondecreasing function � : [c; d] 7! [a; b] which is constant on each of these

intervals will reparametrize g into a homeomorphism. Such a � can be constructed in a variety of well-

known ways.5 The last statement of the lemma now immediately follows from the fact that D ([a; x]) is a

nondecreasing continuous function constant on each of the nondegenerate intervals g�1 (fxg).

We show next that any path contains an arc with the same endpoints and a smaller D-length (Fig. 11).

This is one case when the classical theory (see, e.g., Blumenthal, 1953, p. 69) does not help us at all, as

it critically relies on the symmetry requirement. The result is important, in particular, in the context of

5Here is one. Having enumerated the intervals arbitrarily [u1; v1] ; [u2; v2] ; : : :, put � (x) = uk if x 2 [uk; vk], k = 1; 2; : : :. For

x =2
[

i
[ui; vi], let xv = supk fvk : vk < xg, xu = infk fuk : uk > xg. Clearly, xv � x � xu. Put � (xv) = limvk!xv� � (vk) =

limvk!xv� uk. It is easy to check that this quantity either equals uk, for some k (if there is a maximal vk < x), or it equals xv (if

every left-hand neighborhood of xv contains an interval [uk; vk]). Analogously, put � (xu) = limuk!xu+ � (uk) = limuk!xu+ uk

(which equals either uk, for some k, or xu). Finally, determine � (x) by the linear interpolation between (xv ; � (xv)) and

(xu; � (xu)): � (x) = � (xv) + (� (xu)� � (xv)) x�xv
xu�xv , with the understanding that � (x) = � (xv) = � (xu) if xu = xv . The

function is clearly nondecreasing and continuous.
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searching for shortest paths connecting one point to another (see Section 7): in the absence of additional

constraints this search can be con�ned to arcs only.

Figure 11. Illustration to Theorem 13. One can remove closed loops from a path and be left with a shorter arc.

Theorem 13 Let f j [a; b] be a D-recti�able path connecting a to b. Then there is an arc gj [a; b] connecting

a to b, such that

g ([a; b]) � f ([a; b]) ;

and

Dg ([a; b]) � Df ([a; b]) ;

where the inequality is strict if f j [a; b] is not an arc.

Comment If Df ([a; b]) = 1, we can invoke the topological theorem (Hocking &Young, 1961, pp. 116-

117) that guarantees the existence of an arc gj [a; b] with fa;bg � g ([a; b]) � f ([a; b]). The inequality

Dg ([a; b]) � Df ([a; b]) =1 then holds trivially, but the equality, Dg ([a; b]) =1, may hold even if f j [a; b]

is not an arc.

Proof. Let us begin by assuming the existence (to be proved later) of an at most denumerable set

L� = f[u1; v1] ; [u2; v2] ; : : :g

of closed intervals in [a; b] with the following properties:

(A) the intervals are nondegenerate, and for any k, f (uk) = f (vk);

(B) if k 6= l, [uk; vk] \ [ul; vl] = ?;

(C) for any distinct x; y outside
[

i
[ui; vi], f (x) 6= f (y);

(D) if x =2
[

i
]ui; vi[ and x =2 fuk; vkg, then f (x) 6= f (uk).

De�ne gj [a; b] as

g (x) =

8<: f (x) if x =2
[

i
[ui; vi]

f (uk) if x 2 [uk; vk] , for some k.

Then, for any x 2 g ([a; b]), g�1 (fxg) is either a singleton or one of the intervals [uk; vk]. By Lemma 2,

gj [a; b] is an arc. Consider any sequence of nets �n on [a; b] with ��n ! 0, and modify them as follows:
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for any two successive elements xni ; x
n
i+1 in �n, if x

n
i 2 ]uk; vk[ and xni+1 > vk, for some k, insert vk in �n

after xni ; analogously, if x
n
i+1 2 ]uk; vk[ and xni < uk, for some k, insert uk in �n before x

n
i+1. Denoting the

modi�ed nets by �n, clearly, ��n � ��n, so ��n ! 0. Denoting, as before, the inscribed chains corresponding

to �n by f (�n) and g (�n) (elementwise), by Theorem 7,

Gf (�n) ! Gf ([a; b]) ;

Gg (�n) ! Gg ([a; b]) :

It is easy to see that, for any two successive elements yni ; y
n
i+1 in �n, the corresponding links f (y

n
i ) f

�
yni+1

�
and g (yni )g

�
yni+1

�
are identical, except when yni ; y

n
i+1 2 [uk; vk], for some k. In the latter case,

Gf (yni ) f
�
yni+1

�
� Gg (yni )g

�
yni+1

�
= 0;

so we conclude that

Gf (�n) � Gg (�n) ;

for all n. But then

Gf ([a; b]) � Gg ([a; b]) :

Now, if f (x) is constant on each of the intervals [uk; vk], then f is an arc, and g � f . Suppose that f (x) is

not constant in, say, [u1; v1]. Applying the above reasoning to f j [a; u1] and gj [a; u1], we have

Gf ([a; u1]) � Gg ([a; u1]) ;

and analogously,

Gf ([v1; b]) � Gg ([v1; b]) :

But, by Theorem 3, Gf ([u1; v1]) > 0 while Gg ([u1; v1]) = 0. It follows, using the additivity property

(Theorem 2), that

Gf ([a; b]) > Gg ([a; b]) :

whenever f j [a; b] is not an arc.

It remains to show that the set L� of closed intervals satisfying the properties A-D above does exist.6

Let us call an open interval ]s; t[ � [a; b] a loop interval if s < t and f (s) = f (t). We assume that the

set of loop intervals is nonempty (otherwise f is an arc, and no further considerations are needed). One

can always choose an at most denumerable subset L of the loop intervals, such that the intervals in L are

pairwise nonoverlapping, and any loop interval outside L overlaps with the union
[
L of the intervals in L.

To show this, let us call any set of pairwise nonoverlapping loop intervals a simple set (of loop intervals).

Let (�;�) be the set of all simple sets, partially ordered by inclusion. Since at least one loop interval exists,

� is nonempty. Let � be any subset of � such that (�;�) is a linear order. The union
[
� of all elements

of � is clearly a simple set, hence it is an upper bound for (�;�). By Zorn�s Lemma, (�;�) contains a
6The remainder of the proof is suggested by D. Dzhafarov.
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maximal element �a simple set L that cannot be included in a larger simple set. But this means that any

loop interval outside L overlaps with some of the intervals in L.

Let us call this L a basic set (of loop intervals). L is not generally uniquely determined by f j [a; b], so let

(
;�) be the set of all basic sets, partially ordered in the following way: L � L0 means that every interval in

L is strictly contained within an interval of L0. (Note that this implies that the endpoints of every interval in

L0 lie outside
[
L.) We already know that 
 is nonempty. Denoting by � a subset of 
 such that (�;�) is a

linear order, consider the set S =
[

L2�

[
L. Clearly, S is an open set in [a; b], such that, for every L 2 �,

every interval in L is contained within a component (maximal open subinterval) of S. Choosing arbitrary

L 2 �, since every loop interval ]s; t[ either belongs to L (in which case it is included in a component of

S) or is outside L (in which case it overlaps with
[
L, hence also with S), the set of the components of S

is a basic set which is an upper bound for (�;�). Invoking Zorn�s Lemma again, we establish that (
;�)

contains a maximal element �a basic set L� that cannot be included in a larger basic set. This means that

no component of L� can be included in a larger loop interval whose endpoints lie outside
[
L�.

Let the set of the loop intervals in L� be arbitrarily enumerated,

L� = f]u1; v1[ ; ]u2; v2[ ; : : : ; g :

Put

L� = f[u1; v1] ; [u2; v2] ; : : :g :

The property A holds for L� trivially. Deny B, and let for some k 6= l, [uk; vk] \ [ul; vl] 6= ?. Let, for

de�niteness, uk � ul. Since ]uk; vk[ \ ]ul; vl[ = ? (L� being a basic set), we must have uk < vk = ul < vl.

Then f (vk) = f (ul), and ]uk; vk[ and ]ul; vl[ being loop intervals, f (uk) = f (vl). But then ]uk; vl[ is a loop

interval with endpoints outside
[
L�, such that ]uk; vk[ � ]uk; vl[, which contradicts the maximality of L�

in (
;�). The properties C and D are demonstrated by analogous arguments. This completes the proof.

6.4. Arclength Metric

In relation to Question 2 posed in Introduction, we are also interested in the following metric induced by

the dissimilarity function D. We call it the arclength metric, and we denote it AD. It is de�ned as

ADab = inf
f2Ab

a

Df ; (31)

where Aba is the class of all arcs connecting a to b:

Note that if we allow the class Aba in this de�nition to include paths rather than arcs only, the value of

ADab will not change: every path f contains an arc with the same endpoints which is not longer than f (see

Theorem 13).

That AD is a metric is shown in the theorem below. Strictly speaking, it is not a metric proper but a

metric with extended range,

AD : S�S 7! R+ [ f1g :
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In other words, for some pairs a;b the value of ADab may be 1.

Theorem 14 AD is a metric (oriented, with extended range).

Proof. The implication a = b =) ADab = 0 is obvious. To show the reverse implication, for any

sequence of arcs fn (connecting a to b) with Dfn ! 0 choose a sequence of chains-on-nets X�n
n (connecting

a to b) with jDXn �Dfnj ! 0 to obtain DXn ! 0 and, since D is dissimilarity, Dab = 0. Finally, the

triangle inequality follows from the fact that for any arc f connecting a to b and any arc g connecting b

to c, f [ g (with the domain of g shifted, if necessary, to ensure that its lower endpoint coincides with the

upper endpoint of the domain of f) is a path connecting a to c. By Theorem 13, f [ g contains an arc h

connecting a to c with Dh � D (f [ g) = Df +Dg:

The AD-length of a path f is de�ned as

ADf = lim inf
X�2Mb

a
X�!f

ADX; (32)

where (putting X = x0x1 : : :xkxk+1)

ADX =
kX
i=0

ADxixi+1: (33)

Since AD is a metric (it is easy to check that its extended range makes no di¤erence),

ADf = supADZ = lim
n!1

ADZn; (34)

where the supremum is taken over all inscribed chains-on-nets Z� , and the limit is taken for any sequence

of inscribed Z�nn with ��n ! 0:

Due to Theorem 9, the relationship between Df , Gf , and ADf is simple.

Theorem 15 For any path f ,

Gf = ADf = Df :

Proof. Consider any chain-on-net Z� inscribed in f , and choose in it two successive elements (zi; zi) (zi+1; zi+1).

Clearly,

Gzizi+1 � ADzizi+1 � Df ([zi; zi+1]) :

This implies

GZ � ADZ � Df ;

whence

Gf � ADf � Df :

The statement of the theorem now follows from Theorem 9.
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We see that AD and G coincide as far as the path length is concerned. At the same time, generally,

ADab � Gab: (35)

We can now reformulate Question 2 posed in Introduction as that about conditions under which (kinds of

spaces in which)

ADab = Gab; (36)

for all a;b. This equality can be taken as the formal de�nition of the intrinsicality of the metric G (induced

by dissimilarity D). We take on this question in the next section.

7. Complete Dissimilarity Spaces With Intermediate Points

Refer to Fig. 12. A dissimilarity space (S; D) is said to be a space with intermediate points if for any distinct

a;b one can �nd an m such that m =2fa;bg and Damb � Dab:

a
b

m

a
bm

Figure 12. Point m is intermediate to a and b if Damb � Dab: Thus, if D is Euclidean distance (right panel), any m on the

straight line segment connecting a to b is intermediate to a and b:

The notion of a space with intermediate points generalizes the notion of Menger convexity (Blumenthal,

1953, p. 41; the term itself is due to Papadopoulos, 2005). If D is a metric, the space is Menger-convex if,

for any distinct a;b, there is a point m =2fa;bg with Damb = Dab.7

Recall that a space is called complete if every Cauchy sequence in it converges to a point. Adapted to

(S; D), the completeness means that given a sequence of points xn such that

lim
k!1
l!1

Dxkxl = 0;

there is a point x in S such that

xn $ x:

Blumenthal (1953, pp. 41-43) provides a proof attributed to N. Aronszajn that if a Menger-convex space

is complete then a can be connected to b by a geodesic arc, that is, an arc h with Dh = Dab (where D

is a metric).8 The main idea of this proof is adopted in the proof of Theorem 16 below. We need some

preliminaries �rst, however.
7The original de�nition is given for symmetric rather than oriented metrics.
8This theorem was originally proved by K. Menger, but by di¤erent means.
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Recall the de�nition of a trail f jS for an arbitrary subset S of [a; b] (Section 4). A trail gjT is called an

extension of f jS, in symbols f � g, if S � T and f (x) = g (x) for all x 2 S:

Lemma 3 If (S; D) is complete, any trail f jS can be uniquely extended into the trail gjS with

g
�
S
�
� f (S);

where the overbar indicates the topological closure operation.

Proof. Let p 2 S, and let xn ! p (xn 2 S). Since xn is a Cauchy sequence in [a; b] � S and f is

uniformly continuous, we have Df (xn) f (xm) ! 0 as n ! 1 and m ! 1; and since the space S is

complete, f (xn) ! p for some p 2 f (S). This limit point does not depend on the sequence xn ! p: if

S contained a sequence x0n ! p with f (x0n) ! p0 6= p, we would have had x1; x
0
1; x2; x

0
2; : : : ! p with

Df (xn) f (x
0
n)! Dpp0 > 0 which would contradict jx0n � xnj ! 0. We can therefore put p = g (p). Having

done so for every p 2 S we form a continuous mapping g : S 7! S with g (x) = f (x) for every x 2 S. The

uniform continuity of g is obvious.

The trail gjS constructed in this theorem is referred to as the closure of the trail f jS and is denoted by

f (or f jS).

Lemma 4 If f jS is a trail and f jS its closure, then

Df (S) = Df
�
S
�
:

Proof. It is evident that for any chain-on-net X�= f(xi;xi)gi=1;:::;k, xi 2 S, one can form a chain-on-net

X�= f(ri;xi)gi=1;:::;k, ri 2 S (and vice versa) with maxi jri � xij chosen so small that
��� ��; S��� (�; S)�� is

arbitrarily close to zero, and so is the di¤erence
����f jS (X�)� �f jS (X�)

���. The latter follows from the uniform
continuity of D and f : irrespective of x; r;x, for every " > 0 one can �nd a � > 0 such that

Df (x) f (r) < � =)
��Df (x)x�Df (r)x�� < ";

and for every � one can �nd a � > 0 such that

jx� rj < � =) Df (x) f (r) = Df (x) f (r) < �:

Hence for any sequence X�n
n ! f jS we have X�n

n ! f jS, and vice versa. Since DXn is the same in both

sequences, the statement of the theorem follows.

A trail f jS will be called contractive if for any x; y 2 S,

Df ([x; y] \ S) � jx� yj : (37)

By Theorem 1, any contractive f jS has the property

Gf (x) f (y) � jx� yj ; (38)
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for all x; y 2 S:

We are ready now to prove the generalization of the Menger-Aronszajn theorem mentioned earlier.

Theorem 16 In a complete space with intermediate points, any a can be connected to any b by an arc f

with

Df � Dab:

Proof. Let Dab = D0. Form the two-element contractive trail f1j�1 = ((0;a) ; (D0;b)) and de�ne the

sequence of contractive trails fnj�n by induction, as follows. Once contractive f1j�1 � : : : � fnj�n have

been formed, consider the set Sn of all contractive trails f j� � fnj�n. (This class is nonempty as it includes

fnj�n.) Subdivide [0; D0] into successive adjacent intervals In1 ; : : : ; I
n
2n of length 1=2

n each, and for every

f j� 2 Sn count the number #n (�) of the intervals which contain elements of �. Choose any f j� 2 Sn with

the maximal #n (�) to be fn+1j�n+1. On the completion of the induction, we have a sequence of contractive

trails f1j�1 � : : : � fnj�n � : : : which de�ne a mapping h :M 7!M with

M =
1[
i=1

�i; M =
1[
i=1

fi (�i) :

To see that this mapping is uniformly continuous (i.e., it is a trail), consider any sequences xn; yn in M with

xn� yn ! 0�. For every xn; yn there is a contractive fkn j�kn (and all contractive trails with higher indices)

in which xn; yn 2 �kn . Then

Gh (xn)h (yn) = Gfkn (xn) fkn (yn) � Dfkn
�
[xn; yn] \ �kn

�
� yn � xn;

whence h (xn)$ h (yn) as xn � yn ! 0�. For xn � yn ! 0+ the consideration is similar. To show that the

trail h is contractive, observe that any x < y in M belong to all �n beginning with some value of n. Clearly,

�h (fn) � 0;

� ([x; y] \ �n; [x; y] \M)! 0;

so

fnj ([x; y] \ �n)! hj ([x; y] \M) :

By the lower semicontinuity property (Theorem 4),

Dh ([x; y] \M) � lim inf
n!1

Dfn ([x; y] \ �n) � y � x:

By Lemma 3 we extend hjM into the trail hjM and observe that it is contractive too, for, by Lemma 4,

Dh
�
[x; y] \M

�
= Dh ([x; y] \M) � y � x:

We conclude that hjM 2 Sn for all n. To prove that h is a path we have to show that M = [0; D0].

Assume the contrary: [0; D0] contains a q =2M . SinceM is closed, q 2 [q0; q00] such thatM\[q0; q00] = fq0; q00g.

Then, denoting q0 = h (q0), q00 = h (q00),

Dq0q00 = Dh
�
M \ [q0; q00]

�
� q00 � q0:
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De�ne now a pair (m;m) as follows. If q0 = q00, put m = q0 and m = 1
2 (q

0 + q00). If q0 6= q00, by the

de�nition of the space with intermediate points there is a point m =2fq0;q00g such that Dq0mq00 � Dq0q00.

Let m = q0 + Dq0m
Dq0q00 (q

00 � q0). It is easy to check that Dq0m � m� q0 and Dmq00 � q00 �m. Then the trail

h� =
�
hjM \ [0; q0]

�
[ (m;m) [

�
hjM \ [q00; D0]

�
is contractive, so h� 2 Sn for all n. But for a su¢ ciently large n, one of the intervals In1 ; : : : ; In2n used in the

construction of f1j�1 � : : : � fnj�n � : : : will contain m while itself contained in ]q0; q00[. This means that

#n (�) for any f j� 2 Sn is at least by 1 less than #n
�
M [ fmg

�
for h�. This contradicts the criterion used

for choosing fn+1j�n+1 and proves M = [0; D0] :

It remains to observe that Dh ([0; D0]) � D0 and that by Theorem 13, if h is not an arc it can be made

one by removing its loops and ending up with an even smaller D-length.

An important consequence and the central point of this section is that Gab in this space can be viewed

as the in�mum of lengths of all arcs connecting a to b. Thus, in a complete space with intermediate points

the metric G induced by D is intrinsic.

Recall that

ADab = inf
f2Ab

a

Df ;

where Aba is the class of all arcs connecting a to b:

Theorem 17 In a complete space with intermediate points,

Gab = ADab:

Proof. This is a corollary to Theorem 16. For any sequence of chains-on-nets Xn connecting a to b

with DXn ! Gab, each chain can be replaced with an at least as D-short a path fn, by replacing each link

xinxin+1 in each chain Xn with an appropriately chosen arc. Then each fn can be transformed into an arc

by Theorem 13. This establishes Gab � ADab, and the equality follows from Theorem 1.

8. UFS in Arc-Connected Spaces

The application of the DC theory for arc-connected spaces to discrimination probabilities is straightforward:

simply substitute 	(1) or 	(2) for D. It is important, however, to establish that the main notions of DC

have the same meaning, and that the main computations yield the same values, whether one uses 	(1) or

	(2) (see the section on the logic of Fechnerian Scaling in Dzhafarov & Colonius, 2007).

Theorem 18 If f is a trail, path, or arc in
�
S;	(1)

�
then it has the same designation in

�
S;	(2)

�
. The

meaning of convergence X�n
n ! f or fn ! f is also the same in

�
S;	(1)

�
and

�
S;	(2)

�
:
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Proof. Follows from the equivalence of the topologies and uniformities induced by 	(1) and 	(2):

The notion of the space with intermediate points is also precisely the same for 	(1) and 	(2):

Theorem 19
�
S;	(1)

�
is a space with intermediate points if and only if so is

�
S;	(2)

�
.
�
S;	(1)

�
is

complete if and only if so is
�
S;	(2)

�
.

Proof. For distinct a;b, the existence of an m =2fa;bg such that 	(1)amb � 	(1)ab translates into

( am�  aa) + ( mb�  mm) � ( ab�  aa) ;

or

 am+ mb�  mm �  ab:

But the latter is equivalent to

( am�  mm) + ( mb�  bb) � ( ab�  bb) ;

or

	(2)bma � 	(1)ba

Since the choice of a;b is arbitrary, the �rst statement is proved. The second statement follows from the

equivalence of the uniformities induced by 	(1) and 	(2):

To continue we need to deal with chains, trails, and chains-on-nets �traversed in the opposite direction.�

For a chain X = x1: : :xk, the reverse chain eX = x01: : :x
0
k is de�ned by x

0
i = xk+1�i (i = 1; : : : ; k). For

a trail f : S 7! S (S � [a; b]), the reverse trail ef : eS 7! S is de�ned by eS = fx : (a+ b� x) 2 Sg andef (x) = f (a+ b� x). If f is a path [a; b] 7! S then ef is also a path [a; b] 7! S, with ef (x) = f (a+ b� x) :
For a chain-on-netX�=(x1; x1): : :(xk; xk), with x1 = a, xk = b, the reverse chain-on-net fX�=(x01; x

0
1): : :(x

0
k; x

0
k)

is de�ned by x0i = xk+1�i and x
0
i = a+ b� x:

Theorem 20 For any chain X connecting a to b;

	(1)X�	(2) eX =  bb�  aa:

Proof. For X = ax1: : :xkb, putting, as always, x0 = a, xk+1 = b,

	(1)X =
kX
i=0

( xixi+1 �  xixi) =
kX
i=0

 xixi+1 �
kX
i=0

 xixi

and

	(2) eX =
kX
i=0

�
 x0i+1x

0
i �  x0ix0i

�
=

kX
i=0

 xixi+1 �
k�1X
i=0

 xi+1xi+1;

whence the result obtains by subtraction.
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Theorem 21 If f is a path connecting a to b, then

	(1)f �	(2)ef =  bb�  aa:

Proof. It is evident that X�n
n ! f if and only if gX�n

n ! ef . Assume, with no loss of generality (Lemma
1), that all Xn connect a to b. By Theorem 20, 	(1)Xn �	(2)fXn =  bb�  aa, whence the result obtains

immediately.

Theorem 22 For any paths f ;g connecting a to b,

	(1)f +	(1)~g = 	(2)ef +	(2)g:
Proof. A corollary to Theorem 21.

Note that with appropriately chosen parametrization, f [ ~g can be viewed as a closed path containing

a and b; and ef [ g can be viewed as the same closed path but traversed in the opposite direction. The
statement of Theorem 22 then can also be presented as

	(1) (f [ ~g) = 	(2)
�ef [ g� : (39)

Recall that we denote by AD the arclength (oriented) metric induced by D, and that we use asterisks to

designate symmetric, or overall distances obtained by adding together the oriented distances �to and from.�

Thus,

A�
	(1)ab = A	(1)ab+A	(1)ba;

A�
	(2)ab = A	(2)ab+A	(2)ba:

(40)

Theorem 23 For any a;b,

A	(1)ab�A	(2)ba =  bb�  aa

and

A�	(1)ab = A�	(2)ba

Proof. The �rst statement is a corollary to Theorem 21. Adding the equations

A	(1)ab�A	(2)ba =  bb�  aa

A	(1)ba�A	(2)ab =  aa�  bb

we obtain the second statement.

In the previously published versions of Fechnerian Scaling (beginning with Dzhafarov, 2002d) the equation

A�
	(1)ab = A�

	(2)ba has been referred to as the �second main theorem of Fechnerian Scaling.�
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9. Conclusion

We have established that the DC theory can be specialized to arc-connected spaces with no additional

constraints imposed either on these spaces or on the type of paths. In this respect the new theory proposed

in Dzhafarov and Colonius (2007) has a de�nite advantage in generality over the one presented in Dzhafarov

and Colonius (2005a). We have shown that the path length can be de�ned in terms of a dissimilarity function

as the limit inferior of the lengths of appropriately chosen chains converging to paths. Unlike in the classical

metric-based theory of path length, the converging chains generally are not con�ned to inscribed chains

only: the vertices of the converging chains are allowed to �jitter and meander� around the path they are

converging to. Given this di¤erence, however, most of the basic results of the metric-based theory are shown

to hold true in the dissimilarity-based theory.

The dissimilarity-based length theory properly specializes to the classical one when the dissimilarity in

question is itself a metric (in fact without assuming that this metric is symmetric). In this case the limit

inferior over all converging chains coincides with that computed over the inscribed chains only. It is also

the case that the length of any path computed by means of a dissimilarity function remains the same if the

dissimilarity function is replaced with the metric it induces.

We have introduced a class of spaces in which the metric induced by the dissimilarity function de�ned

on these spaces are intrinsic: which means that the distance between two given points can be computed as

the in�mum of the lengths of all arcs connecting these points. We call them spaces with intermediate points,

the concept generalizing that of the metric-based theory�s Menger convexity (see Section 7).

All of this shows that the properties D3 and D4 of a dissimilarity function (see Section 2) rather than

the symmetry and triangle inequality of a metric are essential in dealing with the notions of path length and

intrinsic metrics.
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