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Double Skew-Dual Scaling:
A Conjoint Scaling of Two Sets of Objects

Related by a Dominance Matrix

Ehtibar N. Dzhafarov

Purdue University and Hanse-Wissenschaftskolleg

Consider two sets of objects, [:1 , ..., :n] and [;1 , ..., ;m], such as n
subjects solving m tasks, or n stimuli presented first and m stimuli presented
second in a pairwise comparison experiment. Let any pair (:i , ;j) be
associated with a real number aij , interpreted as the degree of dominance of
:i over ;j (e.g., the probability of : i relating in a certain way to ;j).
Intuitively, the problem addressed in this paper is how to conjointly, in a
``naturally'' coordinated fashion, characterize the :-objects and ;-objects in
terms of their overall tendency to dominate or be dominated. The gist of the
solution is as follows. Let A denote the n_m matrix of a ij values, and let
there be a class of monotonic transformations , with nonnegative codomains.
For a given ,, a complementary matrix B is defined so that ,(aij)+,(b ij)
=const, and one computes vectors D: and D; (the dominance values for
:-objects and ;-objects) by solving the equations ,(A) ,(D;)�7,(D;)=,(D:)
and ,(BT) ,(D:)�7,(D:)=,(D;), where T is transposition, 7 is the sum of
elements, and , applies elementwise. One also computes vectors S: and S;

(the subdominance values for :-objects and ;-objects) by solving the equa-
tions ,(B) ,(S ;)�7,(S;)=,(S:) and ,(AT) ,(S:)�7,(S :)=,(S ;). The rela-
tionship between S-vectors and D-vectors is complex: intuitively, D: charac-
terizes the tendency of an :-object to dominate ;-objects with large
dominance values, whereas S : characterizes the tendency of an :-objects to
fail to dominate ;-objects with large subdominance values. For classes
containing more than one ,-transformation, one can choose an optimal , as
the one maximizing some measure of discrimination between individual
elements of vectors ,(D:), ,(D;), ,(S:), and ,(S;), such as the product or
minimum of these vectors' variances. The proposed analysis of dominance
matrices has only superficial similarities with the classical dual scaling
(Nishisato, 1980). � 1999 Academic Press
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1. INFORMAL INTRODUCTION

The purpose of this paper is to introduce a new scaling (or measurement) proce-
dure that I call the double skew-dual scaling. The procedure provides numerical
values for any two sets of objets [:1 , ..., :n] and [;1 , ..., ;m] that are related to
each other by a matrix interpretable (at least loosely) as a dominance matrix. The
numerical values assigned to the objects reflect their overall tendency to dominate
or be dominated. The double skew-dual scaling is not based on and does not
constitute an empirical model of dominance matrices: it does not impose falsifiable
constraints on the relationship between the matrices' elements. Rather the logical
status of the procedure is similar to that of computing the mean values for probability
distributions: it is a quantitative descriptive language that provides a ``reasonable''
summary of the relationship between [:1 , ..., :n] and [;1 , ..., ;m] and can be
utilized in formulating falsifiable models for the structure of dominance matrices.
The double skew-dual scaling has certain similarities with the classical dual scaling
(Guttman, 1941; Nishisato, 1980, 1996), but as shown in the concluding section of
this paper, the similarities are more superficial than deep.

The three matrices below can be viewed as dominance matrices:

A4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7 A4_4 ;1 ;2 ;3 ;4 A3_3 ;1 ;2 ;3

:1 1 1 1 1 0 0 0 :1 0.50 0.57 0.67 0.80 :1 0 2 3
:2 1 0 0 1 0 1 1

,
:2 0.43 0.50 0.60 0.75

,
:2 &1 1 1

.:3 1 1 0 0 1 1 1 :3 0.33 0.40 0.50 0.67 :3 &2 0 2
:4 0 0 0 0 1 0 1 :4 0.20 0.25 0.33 0.50

A typical situation depicted by the left matrix could be one involving examinees,
[:1 , ..., :4], attempting to solve a set of problems, [;1 , ..., ;7], the entries of the
matrix being Boolean outcomes of these attempts. The middle matrix could repre-
sent a classical pairwise comparison experiment, with [:1 , ..., :4] and [;1 , ..., ;4]
being the same four stimuli when presented first and when presented second,
respectively, and the entries being the probabilities with which row stimuli are
preferred to column stimuli. The right matrix could represent a similar pairwise
comparison experiment, in which the judgments consist in indicating the degree or
confidence with which one prefers row stimuli (presented first within pairs) to
column stimuli (presented second), or vice versa (on a seven point scale, ranging
from &3, a strong preference for a stimulus presented first, to +3, a strong
preference for a stimulus presented second). The three matrices, however, might
also represent situations less readily interpretable in dominance terms. For instance,
[:1 , ..., :4] in the left matrix could be four observation conditions (e.g., sensory
adaptation states), while [;1 , ..., ;7] could be seven stimuli (say, colors), the
Boolean entries indicating whether a given color is detectable in a given adaptation
state.

From a substantive point of view, any matrix indicating the truth�falsity, probabil-
ity, or degree of a row object standing in a certain relationship to a column object can
be considered a dominance matrix. From a mathematical point of view, the
applicability of the double skew-dual scaling to a class of matrices only requires
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that all possible entries of these matrices are confined to a finite interval of reals
(but see Section 4.2 for a possible relaxation of this constraint).

Consider now the first of the three matrices above, A4_7 ,1 and let the problem
be how to ascribe to :-objects values reflecting their tendency to dominate
;-objects, and vice versa. It might seem that the simplest and natural way of assign-
ing a dominance value to a given :-object is by counting the number (or better still,
the proportion, to keep everything in the same range) of ;-objects that this :-object
dominates:

A4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7 :-dominance

:1 1 1 1 1 0 0 0 4�7
:2 1 0 0 1 0 1 1 4�7
:3 1 1 0 0 1 1 1 5�7 .

:4 0 0 0 0 1 0 1 2�7

Analogously, it might seem natural to assign a dominance value to a ;-object by
computing the proportion of :-objects that fail to dominate it. For our purposes,
it is convenient to present this computation by introducing a matrix complementary
to A4_7 :

B4_7=14_7&A4_7 ;

;-dominance is now computed from the columns of B4_7 in the same way
:-dominance is computed from the rows of A4_7 :

B4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7

:1 0 0 0 0 1 1 1
:2 0 1 1 0 1 0 0
:3 0 0 1 1 0 0 0 .
:4 1 1 1 1 0 1 0

;-dominance 1�4 2�4 3�4 2�4 2�4 2�4 1�4

Denoting the :-dominance and ;-dominance vectors by D:
4_1 and D;

7_1 , respec-
tively, the two computations can be presented as

_
A4_7

17_1

7
=D:

4_1

BT
7_4

14_1

4
=D;

7_1

.
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1 For the reader's convenience, all matrices in this paper are presented with their dimensions as
subscripts, Mn_m , and all vectors are presented as one-column matrices, Vn_1 . This notation makes the
customary boldfacing of matrices and vectors unnecessary. The transpose of Mn_m is denoted
as M T

m_n=(Mn_m)T. 1n_m and 0n_m are matrices with all entries equal to 1 and 0, respectively. 7Vn_1

denotes the sum of the elements of Vn_1 .



A closer look reveals, however, that when computed in this way, the vectors
D:

4_1 and D;
7_1 are not mutually consistent, in the following sense. Intuitively, the

dominance value of a ;-object should depend on how high the dominance values
of the :-objects it dominates are, and vice versa. Compare, for example, ;2 and ;5 .
Both have been assigned dominance values equal to 2�4, because they dominate
two :-objects each. But ;2 dominates :-objects whose dominance values are 4�7 and
2�7, whereas ;5 dominates :-objects whose dominance values are higher, 4�7 and
4�7. It seems more reasonable then to have ascribed a lower dominance value to ;2

than to ;5 . This can be achieved by means of weighting the dominated :-objects by
their own dominance values;

4�7_0+4�7_1+5�7_0+2�7_1
4�7+4�7+5�7+2�7

=
6

15

for ;2 , and

4�7_1+4�7_1+5�7_0+2�7_0
4�7+4�7+5�7+2�7

=
8

15

for ;5 . Analogously, it seems unfair to have ascribed equal dominance values to :1

and :2 . Even though they dominate four ;-objects each, :1 dominates ;-objects
with greater dominance values (1�4, 2�4, 2�4, 3�4) than does :2 (1�4, 1�4, 2�4, 2�4).
A more reasonable way of computing the :-dominance values would be

1�4_1+2�4_1+3�4_1+2�4_1+2�4_0+2�4_0+1�4_0
1�4+2�4+3�4+2�4+2�4+2�4+1�4

=
8

13

for :1 , and

1�4_1+2�4_0+3�4_0+2�4_1+2�4_0+2�4_1+1�4_1
1�4+2�4+3�4+2�4+2�4+2�4+1�4

=
6

13

for :2 .
Using this logic, one could compute a new pair of dominance vectors D:

4_1 and
D;

7_1 , but this would not eliminate the problem: although the new :-dominance
values would now depend on the old ;-dominance values, they would remain, as
one can easily verify, inconsistent with the new ;-dominance values (that, in turn,
depend on the old :-dominance values but are not consistent with the new
:-dominance values). These considerations lead one to a more sophisticated for-
mulation of the problem of how to assign dominance values to the two sets of
objects. The desideratum now is to make these assignments so that

(i) :-dominance values characterize the rows of matrix A4_7 in such a way
that the dominance value for :i (i=1, ..., 4) be the mean of the i th row of A4_7

weighted by the ;-dominance values;
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(ii) ;-dominance values characterize the columns of matrix B4_7 in such a
way that the dominance values for ; j ( j=1, ..., 7) be the mean of the j th column
of B4_7 weighted by the :-dominance values.

These requirements translate into the formula representing what I call a skew-

dual relationship between :-dominance and ;-dominance:

_
A4_7

D;
7_1

� D;
7_1

=D:
4_1

BT
7_4

D:
4_1

� D:
4_1

=D;
7_1

. (1)

If the numerical iterations described earlier continued indefinitely, the vectors
(D:

4_1 , D;
7_1) would have eventually converged to the solution of (1). As explained

in Section 2, this system of equations has one and only one pair of nonnegative vec-
tors (D:

4_1 , D;
7_1) as its solution:

A4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7 :-dominance

:1 1 1 1 1 0 0 0 .57
:2 1 0 0 1 0 1 1 .46
:3 1 1 0 0 1 1 1 .61
:4 0 0 0 0 1 0 1 .28

B4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7

:1 0 0 0 0 1 1 1
:2 0 1 1 0 1 0 0
:3 0 0 1 1 0 0 0 .
:4 1 1 1 1 0 1 0

;-dominance .15 .38 .70 .46 .54 .45 .30

I call these vectors the dominance vectors, and together they form a skew-dual
dominance scale for objects [:1 , ..., :4] and [;1 , ..., ;7].

The dominance vector D:
4_1 measures the objects [:1 , ..., :4] through the corre-

sponding rows of the matrix A4_7 , while the dominance vector D;
7_1 measures

the objects [;1 , ..., ;7] through the corresponding columns of the matrix B4_7 .
The two matrices are mutually complementary,

B4_7=14_7&A4_7 ,

and the complete symmetry of this relationship,

A4_7=14_7&B4_7 ,

suggests that one could also approach the situation in a symmetrically opposite
way. Namely, one could assign numerical values to [:1 , ..., :4] by characterizing
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the corresponding rows of the matrix B4_7 , while the numerical values for
[;1 , ..., ;7] could be computed from the corresponding columns of the matrix
A4_7 . The rows of B4_7 , when related to the :-objects, can be interpreted as these
objects' subdominance patterns (as opposed to the rows of A4_7 , interpreted as the
:-objects' dominance patterns): a larger entry here indicates a larger degree (or, in
the Boolean case, the fact) of failure of the corresponding :-object to dominate the
corresponding ;-object. Analogously, the ;-objects' subdominance patterns are
represented by the columns of A4_7 . The measurement problem, therefore, becomes
one of assigning to :-objects their subdominance values, reflecting their tendency to
be dominated by ;-objects, and vice versa. By a complete analogy with the
dominance-related procedure, the desideratum here is to assign subdominance
values so that

(iii) :-subdominance values characterize the rows of matrix B4_7 in such a
way that the subdominance value for :i (i=1, ..., 4) be the mean of the i th row of
B4_7 weighted by the ;-subdominance values;

(iv) ;-subdominance values characterize the columns of matrix A4_7 in such
a way that the subdominance value for ;j (i=1, ..., 7) be the mean of the j th
column of A4_7 , weighted by the :-subdominance values.

This translates into the formula representing the second skew-dual relationship,
this time between :-subdominance and ;-subdominance. Denoting the
:-subdominance and ;-subdominance vectors by S :

4_1 and S ;
7_1 , respectively,

_
B4_7

S ;
7_1

� S ;
7_1

=S :
4_1

AT
7_4

S :
4_1

� S :
4_1

=S ;
7_1

. (2)

Like (1), this system of equations has one and only one pair of nonnegative vectors
(S :

4_1 , S ;
7_1) as its solution:

B4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7 :-subdominance

:1 0 0 0 0 1 1 1 .47
:2 0 1 1 0 1 0 0 .36
:3 0 0 1 1 0 0 0 .23

,

:4 1 1 1 1 0 1 0 .64

A4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7

:1 1 1 1 1 0 0 0
:2 1 0 0 1 0 1 1
:3 1 1 0 0 1 1 1

.

:4 0 0 0 0 1 0 1
;-subdominance .62 .41 .28 .49 .51 .35 .72
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These are the subdominance vectors forming together a skew-dual subdominance
scale, (S :

4_1 , S ;
7_1). One could also combine D:

4_1 with S :
4_1 and consider the pair

(D:
4_1 , S :

4_1) as a double (dominance�subdominance) scale for the :-objects;
analogously, (D;

7_1 , S ;
7_1) is a double scale for the ;-objects. Figure 1 shows all

these relationships schematically.
Since the dominance and subdominance patterns of one and the same object (i.e.,

the corresponding rows, or columns, of the matrices A7_4 and B4_7) are mutually
complementary, one might have expected a priori that the dominance and sub-
dominance values assigned to the same objects would be mutually complementary
too,

D:
4_1+S :

4_1=14_1

D;
7_1+S ;

7_1=17_1

.

This is obviously not the case. As one can see in the double scales depicted in the
top two panels of Fig. 2, the relationship between dominance and subdominance
values for the same objects is not even monotonically decreasing. In accordance

FIG. 1. Relationships between two matrices and four vectors of the double skew-dual scaling.
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FIG. 2. Analysis of matrix A4_7 of Section 1.

with Section 2, the only mathematically predictable relationship between the
dominance and subdominance vectors in our example is

� D:
4_1� D;

7_1=� S :
4_1� S ;

7_1 .

This is unexpected and might even appear disappointing. I suggest, however, that
the lack of an apparent relationship between the two skew-dual scales,
(D:

4_1 , D;
7_1) and (S :

4_1 , S ;
7_1), has a plausible interpretation. Intuitively, a high

(low) dominance value for, say, a ;-object indicates its tendency to dominate (fail
to dominate) :-objects with high (low) dominance values of their own; analogously,
a low (high) subdominance value for the ;-object indicates its tendency to
dominate (fail to dominate) :-objects with low (high) subdominance values of their
own. There is no logical reason why a ;-object cannot, say, both dominate very
dominant :-objects and be dominated by very subdominant :-objects. Think about
;-objects as keys with which one tries to open a series of locks, :-objects.
Obviously, one can have a key that unlocks sufficient number of very difficult locks
(that few other keys can unlock) while failing to unlock several very simple locks
(that many other keys can unlock): this key would have simultaneously a high
dominance value and a high subdominance value. Figure 3 shows that if ``high''
means exceeding 0.5 (in the range from 0 to 1), then this is what characterizes
objects ;5 in our example.

The lack of an apparent relationship between the two skew-dual scales,
(D:

4_1 , D;
7_1) and (S :

4_1 , S ;
7_1), is also a desirable property of these scales, for two

reasons. First, in purely descriptive terms, two numbers provide a better summary
for entire rows or entire columns. If one so wishes, one can always compute a single
measure for an object from its dominance and subdominance values, as shown in
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FIG. 3. Demonstration of the four combinations, (low�high)_(low�high), for dominance and
subdominance values.

the bottom panels of Fig. 2: the algorithm used there is chosen to keep the com-
posite value in the range and has no deeper justification. A second and more impor-
tant reason stems from the fact that the double skew-dual scaling, not being a
model itself, is designed to allow one to formulate falsifiable models using it as a
quantitative language. That the measurement (computational) procedure itself does
not relate the two skew-dual scales in any restrictive way is significant, for it allows
one to impose such restrictions as falsifiable models. For instance, if :-objects are
examinees and ;-objects problems, one could hypothesize that both :-dominance
and :-subdominance are determined by a unidimensional property called ``ability''
and that as this ``ability'' increases, :-dominance increases while :-subdominance
decreases. This would restrict the class of empirically possible matrices, and A4_7

then would have provided a falsifying counterexample if obtained experimentally.2

One can now generalize (1) and (2) to apply to any matrix An_m whose elements
are confined to the interval [0, 1]:

_
An_m

D;
m_1

� D;
m_1

=D:
n_1

BT
m_n

D:
n_1

� D:
n_1

=D;
m_1

, _
Bn_m

S ;
m_1

� S ;
m_1

=S :
n_1

AT
m_n

S :
n_1

� S :
n_1

=S ;
m_1

. (3)

Applying these formulas to our pairwise comparison example,

A4_4 ;1 ;2 ;3 ;4

:1 0.50 0.57 0.67 0.80
:2 0.43 0.50 0.60 0.75
:3 0.33 0.40 0.50 0.67

.

:4 0.20 0.25 0.33 0.50
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2 A monotonically decreasing dependence (or some specific form thereof) between dominance and
subdominance, say, for :, can even be taken to be a criterion of the unidimensionality of the dominance�
subdominance characterization of :. It would be interesting to investigate the constraints on the
dominance matrix that imply and are implied by thus understood unidimensionality. No theory of such
constraints is known to me presently.



one can prove (see the next section) that they have one and only one quadruple of
nonnegative vectors [(D:

4_1 , D;
4_1), (S :

4_1 , S ;
4_1)] as their solution:

A4_4 ;1 ;2 ;3 ;4 :-dominance

:1 0.50 0.57 0.67 0.80 0.61
:2 0.43 0.50 0.60 0.75 0.54
:3 0.33 0.40 0.50 0.67 0.44

.

:4 0.20 0.25 0.33 0.50 0.29
;-subdominance 0.34 0.40 0.49 0.65

B4_4 ;1 ;2 ;3 ;4 :-subdominance

:1 0.50 0.43 0.33 0.20 0.34
:2 0.57 0.50 0.40 0.25 0.40
:3 0.67 0.60 0.50 0.33 0.49

.

:4 0.80 0.75 0.67 0.50 0.65
;-dominance 0.61 0.54 0.44 0.29

The results are graphically shown in Fig. 4. Since the matrix A4_4 is skew-sym-
metrical with respect to its main diagonal, that is,

aij+aji=1, i, j=1, 2, 3, 4

(which indicates the absence of a time error), the double scales for the :-objects
(stimuli presented first) and ;-objects (stimuli presented second) coincide:

(D:
4_1 , S :

4_1)=(D;
4_1 , S ;

4_1).

Figure 4 also shows that in this case the relationship between the dominance and
subdominance values happens to be monotonically decreasing (see footnote 2).

The generalization of (3) to matrices An_m whose elements belong to finite inter-
vals [u, v] other than [0, 1] is easy: all that is required is an appropriate redefini-
tion of the complementary matrix Bn_m (whose elements will also belong to [u, v]).
Observe that not any four vectors satisfying (3) are admissible as comprising the
two skew-dual scales: in addition, all elements of these vectors must be inter-
pretable as weighted means of the corresponding rows and columns of An_m and
Bn_m . In particular, all these elements should belong to [u, v]. According to the
theory presented in Section 2, the two skew-dual scales satisfying (3), (D:

n_1 , D;
m_1)

and (S :
n_1 , S ;

m_1), always exist and are determined uniquely if [u, v] contains only
positive values. It turns out that for intervals [u, v]=[0, v] (which includes [0, 1]
dealt with previously) two skew-dual scales satisfying (3) always exist, but in some
special cases they may not be determined uniquely (this may happen only if the
matrix products An_mBT

m_n , BT
n_mAm_n , Bn_m AT

m_n , AT
n_mBm_n all belong to the

class of so-called reducible matrices, discussed later). The situation is the worst
when (3) is applied to matrices with both positive and negative elements (i.e., with
u<0, v>0): neither uniqueness nor existence of skew-dual scales is guaranteed in
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FIG. 4. Analysis of matrix A4_4 of Section 1.

this case. Moreover, the concept of a weighted mean is not well defined in this
situation to begin with: if weights can be both positive and negative, the ``weighted
means'' can attain values beyond the range of the values being averaged and some-
times even be unrelated to these values completely (e.g., the ``weighted mean'' of 0
and 1 taken with respective weights &0.4 and 0.5 is 5, while the ``weighted mean''
of any set of numbers whose weights sum to zero is \�).

A way of dealing with these difficulties lies in observing that the main principles
of (and the basic intuition behind) the skew-dual scaling do not depend on the spe-
cial form of weighted averaging involved in (3). It turns out that one can guarantee
the existence and uniqueness of the skew-dual scales for any given class of matrices
by replacing, if necessary, the arithmetic weighted means computed in (3) by
appropriately chosen alternative forms of weighted averages. The principle of skew-
dual scaling (i�iv) can now be generalized to read:

(i*�ii*) :-dominance values are averages of the corresponding rows An_m

weighted by ;-dominance values, while ;-dominance values are averages of the
corresponding columns of Bn_m weighted by :-dominance values;

(iii*�iv*) :-subdominance values are averages of the corresponding rows of
Bn_m weighted by ;-subdominance values, while ;-subdominance values are
averages of the corresponding columns of An_m weighted by :-subdominance
values.

From an algebraic point of view (systematically developed in Section 2), the con-
struction of alternative weighted averages consists in replacing the operations of
addition and multiplication involved in the formula for weighted means by two
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other operations, � and � , with appropriately defined ``addition-like'' and ``multi-
plication-like'' properties, respectively. That is, the generalized weighted average x�
of x1 and x2 taken with respective weights c1 and c2 is computed as the value
satisfying

x� � (c1 �c2)=(c1 �x1)� (c2 �x2),

instead of the conventional

x� _(c1+c2)=(c1_x1)+(c2_x2).

As shown in Section 2, any suitable pair of operations � and � is associated with
a continuous monotonic transformations , in such a way that

x� � (c1 �c2)=(c�x1)� (c�x2) � ,(x� )=
,(c1) ,(x1)+,(c2) ,(x2)

,(c1)+,(c2)
.

The transformation , translates the interval [u, v] (to which all possible elements
of An_m belong) onto an interval of nonnegative reals. Given this transformation,
(3) can be generalized to the following formulas for the two skew-dual scales,

_
,(An_m)

,(D;
m_1)

� ,(D;
m_1)

=,(D:
n_1)

,(BT
m_n)

,(D:
n_1)

� ,(D:
n_1)

=,(D;
m_1)

, _
,(Bn_m)

,(S ;
m_1)

� ,(S ;
m_1)

=,(S :
n_1)

,(AT
m_n)

,(S :
n_1)

� ,(S :
n_1)

=,(S ;
m_1)

, (4)

where all matrices and vectors are transformed elementwise, and Bn_m is defined
from

,(An_m)+,(Bn_m)
,(u)+,(v)

=1n_m .

As an example, consider our second pairwise comparison matrix,

A3_3 ;1 ;2 ;3

:1 0 2 3
:2 &1 1 1 .
:3 &2 0 2

for which [u, v]=[&3, 3]. The transformation

,(x)=
x+3

6
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translates this interval onto [0, 1]. Using this transformation and applying (4) to
A3_3 , one can prove that the skew-dual scales (D:

n_1 , D;
m_1) and (S :

n_1 , S ;
m_1)

exist and are determined uniquely:

A3_3 ;1 ;2 ;3 :-dominance

:1 0 2 3 0.96
:2 &1 1 1 &0.17 ,
:3 &2 0 2 &0.90

;-subdominance &1.27 0.73 1.74

B3_3 ;1 ;2 ;3 :-subdominance

:1 0 &2 &3 &2.12
:2 1 &1 &1 &0.66 .
:3 2 0 &2 &0.59

;-dominance 0.79 &1.21 &2.13

An inspection of the skew-dual scales obtained would convince one that the
values do appear to be reasonable averages of the corresponding rows and
columns, and that they satisfy the principles (i*�iv*). One could, of course, use
other transformations translating [u, v]=[&3, 3] onto an interval of nonnegative
reals: the resulting skew-dual scales would be different from the ones above, but
they would be equally ``reasonable.'' There is no a priori, universally applicable
criterion for preferring one particular transformation to another. This observation
leads one to the idea of using (4) in conjunction with appropriately chosen classes of
transformations ,, rather than a single fixed transformation: then for any given matrix
An_m , one could select from this class a transformation that provides skew-dual scales
that are optimal in some well defined sense. This idea is taken on in Section 3.

2. A SYSTEMATIC CONSTRUCTION OF DOUBLE SKEW-DUAL SCALING

Double skew-dual scaling involves computing generalized weighted averages,
with respect to two operations, � and � , that replace the conventional addition
and multiplication in the formula for weighted means. The generalized weighted
average is defined as a function \ that translates vector [x1 , ..., xk], of an arbitrary
dimension, into its average by means of a vector of weights [c1 , ..., ck] (and the two
operations � , � ).

Definition 1. Let � and � be two binary operations defined and closed on
some interval I of reals, such that

(i) � is associative, continuous, and increasing in both arguments;

(ii) � is continuous, increasing in the second argument, and left- and right-
distributed over � , the distributivity meaning that

c� (x1 �x2)=(c�x1)� (c�x2), (c1 �c2)�x=(c1 �x)� (c2 �x).
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(Somewhat anticipating, the interval I is supposed to contain the interval [u, v]
within which the entries of the analyzed dominance matrices attain their values.
The purpose of introducing I is to extend [u, v] so that the operations � and �

performed on points of [u, v] are algebraically closed.)
Let \ be a function that, for any k=1, 2, ..., and any pair of vectors

([x1 , ..., xk], [c1 , ..., ck]) whose elements all belong to the interval I, maps this pair
of vectors into a value of I:

\: .
�

k=1

Ik_I k � I.

This function is said to be characterizing its first argument, [x1 , ..., xk], by means
of its second argument, [c1 , ..., ck] (and the operations � and � ) if there is a
function

*: .
�

k=1

I k � I,

such that

*(c1 , ..., ck)�\([x1 , ..., xk], [c1 , ..., ck])=(c1 �x1)� } } } � (ck �xk), (5)

and if, in addition, \ satisfies the ``unanimity'' property

\([x1=x, ..., xk=x], [c1 , ..., ck])=x. (6)

A conventional weighted mean, obviously, satisfies this definition:

(c1+ } } } +ck)

*(c1 , ..., ck)

_
c1 _x1+ } } } +ck _xk

c1+ } } } +ck
=(c1_x1)+ } } } +(ck_xk).

\([x1 , ..., xk], [c1 , ..., ck]) � �

Theorem 1. A function \([x1 , ..., xk], [c1 , ..., ck]) characterizes [x1 , ..., xk] by
means of [c1 , ..., ck] (and operations � and � ) if and only if there is a monotonic
continuous transformation ,: I � [q, �) (onto, q�0), such that

,(\)=
�k

i=1 ,(ci) ,(xi)
�k

i=1 ,(ci)
. (7)

The transformation , and the operation � and � are interrelated as

_x�y=,&1[,(x)+,( y)]
x�y=,&1[ p,(x) ,( y)]

, (8)

where p is a positive constant, and if q{0, p�q&1.

See the Appendix for the proof.
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The characterizing functions \ in the double skew-dual scaling are applied to
rows and columns of dominance matrices, and this makes necessary the following.

Definition 2. Let Xn_m , Um_1 , Vn_1 be a matrix and two vectors whose
elements all belong to I. Let \ be a characterizing function on I satisfying Defini-
tion 1, and let the operations � and � in (5) be determined by a transformation
,, according to Theorem 1. The vector Vn_1 is said to ,-characterize Xn_m (row-
wise) by means of Um_1 if

vi=\([xi1 , ..., x im], [u1 , ..., um]), i=1, ..., n.

I present this relationship symbolically as Vn_1[[Xn_m]], Um_1 . The vector Um_1

is said to ,-characterize Xn_m (column-wise) by means of Vn_1 if

uj=\([x1 j , ..., xnj], [v1 , ..., vn]), j=1, ..., m.

Symbolically, Um_1[[Xn_m]], Vn_1 .

Theorem 1 allows one to reformulate this definition in a more explicit way:

Vn_1[[Xn_m]], Um_1 � ,(Xn_m)
,(Um_1)

� ,(Um_1)
=,(Vn_1)

(9)

Um_1[[Xn_m]], Vn_1 � ,(X T
m_n)

,(Vn_1)
� ,(Vn_1)

=,(Um_1).

A matrix in the double skew-dual scaling is viewed as a multidimensional variable
whose entries can assume all possible values selected from a specified set of reals X.
The only restriction imposed on X is that it is bounded from above and from
below, i.e., it lies within a finite interval

[u, v]=[inf X, sup X].

This includes cases ranging from the one where X is an open set, and the matrices
cannot contain the values u, v precisely, to the one where (as in Boolean matrices)
u, v are the only attainable values. The interval I considered previously is supposed
to contain [u, v], and its only purpose is to extend [u, v] so that the operations
� and � performed on elements of X�[u, v]/I are algebraically closed. Since
the monotonic transformation , associated with � and � by Theorem 1 trans-
lates I onto some intervals [q, �), q�0, it translates [u, v] onto some subinterval
of [q, �). One can now view [q, �) as an extension of ,([u, v]) that is necessary
for algebraically closing the operations x+ y and pxy. It immediately follows from
the properties of these two operations that, with an appropriate choice of p, the
minimal [q, �) that contains ,([u, v]) is obtained by putting q=min ,([u, v]).
The lemma below follows from these considerations immediately.

Lemma. Let [u, v] be as above and given. Then the minimal domain for a trans-
formation , specified in Theorem 1 is either of the form [u, v*), v<v*, if , is
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increasing (in which case ,(v*)=�), or of the form [u*, v], u>u*, if , is decreasing
(in which case ,(u*)=�).

Hereafter, I assume that I is always given in its minimal version. The reason for
this convention is that the class of ,-transformations satisfying Theorem 1 is the
broadest when they are defined on the minimal versions of I. Thus, the transforma-
tion ,(x)=(x+3)�6 used in Section 1 for the matrix A3_3 satisfies Theorem 1 if I
is defined as [&3, �), but it does not satisfy Theorem 1 for any broader interval
(and narrower intervals will not have x+ y closed on them).

Definition 3. For a matrix An_m , let interval [u, v], transformation ,, and
interval I be as above and given. Matrix Bn_m is said to be ,-complementary to
An_m (or, simply, complementary) if

,(An_m)+,(Bn_m)=|1n_m , (10)

where

|=,(u)+,(v) (11)

(a finite value) is referred to as the ,-size (or simply, size) of An_m .

Obviously, the complementarity is a symmetrical relationship, and Bn_m is
associated with the same interval [u, v] and has the same size as An_m .

Now all preparations are completed for defining the notion of a skew-dual
scale.

Definition 4. Let , be fixed, and let An_m and Bn_m be mutually complemen-
tary. Vectors Um_1 and Vn_1 are said to form a skew-dual scale if simultaneously
Vn_1[[An_m]], Um_1 and Um_1[[Bn_m]], Vn_1 , that is, if

(i) Vn_1 characterizes An_m (row-wise) by means of Um_1 ,

(ii) Um_1 characterizes Bn_m (column-wise) by means of Vn_1 .

Since the complementarity is a symmetrical relationship, it immediately follows
from Definition 4 that one can define two skew-dual scales for one and the same
pair of complementary matrices: one for which simultaneously Vn_1[[An_m]],

Um_1 and Um_1[[Bn_m]], Vn_1 , and another for which simultaneously
Vn_1[[Bn_m]], Um_1 and Um_1[[An_m]], Vn_1 .

To distinguish between these two skew-dual scales, the following convention is
adopted. If An_m is interpreted as depicting the degree of dominance of row objects,
[:1 , ..., :n], over column objects, [;1 , ..., ;m], then the vectors forming the first
skew-dual scale are called dominance vectors (for :-objects and ;-objects) and are
denoted as D:

n_1 and D;
m_1 , respectively (with implicit reference to ,). These

vectors are defined by the simultaneous relationships

_D:
n_1[[An_m]], D;

m_1

D;
m_1[[Bn_m]], D:

n_1

.

498 EHTIBAR N. DZHAFAROV



The vectors forming the second skew-dual scale are called subdominance vectors (for
:-objects and ;-objects), and are denoted as S :

n_1 and S ;
m_1 , respectively (with

implicit reference to ,). They are defined by the simultaneous relationships

_S :
n_1[[Bn_m]], S ;

m_1

S ;
m_1[[An_m]], S :

n_1

.

Theorem 1 and formula (9) allow one to present the two skew-dual relationships
in extenso:

_D:
n_1[[An_m]], D;

m_1

D;
m_1[[Bn_m]], D:

n_1

�_,(An_m)
,(D;

m_1)
� ,(D;

m_1)
=,(D:

n_1)

,(BT
m_n)

,(D:
n_1)

� ,(D:
n_1)

=,(D;
m_1)

(12)

for the dominance vectors, and

_S :
n_1[[Bn_m]], S ;

m_1

S ;
m_1[[An_m]], S :

n_1

�_,(Bn_m)
,(S ;

m_1)
� ,(S ;

m_1)
=,(S :

n_1)

,(AT
m_n)

,(S :
n_1)

� ,(S :
n_1)

=,(S ;
m_1)

(13)

for the subdominance vectors.
These definitions, of course, do not tell us anything about the existence, unique-

ness, or relationships between the two skew-dual scales, and these are the issues
elucidated by the two theorems presented next.

The reader is reminded of the meaning of two terms from matrix analysis (see
Horn 6 Johnson, 1985) used in the first theorem. An eigenvalue of a square matrix
is said to be simple if all associated eigenvectors are multiples of each other. A
matrix, or a vector, is positive (nonnegative) if all of its elements are positive (non-
negative). It is always assumed below that a nonnegative matrix (vector) has some
non-zero elements.

Theorem 2. Let ,: I � Re+ be fixed, and let An_m and Bn_m be mutually
complementary, with elements in some [u, v]/I.

(a) If D:
n_1 , D;

m_1 , S :
n_1 , S ;

m_1 exist, then all elements of these vectors belong
to [u, v].

(b1) If dominance vectors D:
n_1 , D;

m_1 exist, then ,(D:
n_1) and ,(D;

m_1) are
eigenvectors of ,(An_m) ,(BT

m_n) and ,(BT
m_n) ,(An_m), respectively, associated with

one and the same positive eigenvalue $=� ,(D:
n_1) � ,(D;

m_1).

(b2) If subdominance vectors S :
n_1 , S ;

m_1 exist, then ,(S :
n_1) and ,(S ;

m_1) are
eigenvectors of ,(Bn_m) ,(AT

m_n) and ,(AT
m_n) ,(Bn_m), respectively, associated with

one and the same positive eigenvalue _=� ,(S :
n_1) � ,(S ;

m_1).

(c1) If the matrices ,(An_m) ,(BT
m_n) and ,(BT

m_n) ,(An_m) have nonnegative
eigenvectors associated with one and the same simple eigenvalue $, then dominance
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vectors D:
n_1 , D;

m_1 exist; if, in addition, at least one of the matrices ,(An_m)
,(BT

m_n) and ,(BT
m_n) ,(An_m) has no nonnegative eigenvectors associated with

positive eigenvalues other than $, then D:
n_1 , D;

m_1 are determined uniquely.

(c2) If the matrices ,(Bn_m) ,(AT
m_n) and ,(AT

m_n) ,(Bn_m) have nonnegative
eigenvectors corresponding to one and the same simple eigenvalue _, then
subdominance vectors S :

n_1 , S ;
m_1 exist; if, in addition, at least one of the matrices

,(Bn_m) ,(AT
m_n) and ,(AT

m_n) ,(Bn_m) has no nonnegative eigenvectors associated
with positive eigenvalues other than _, then S :

n_1 , S ;
m_1 are determined uniquely.

See the Appendix for the proof.
The next theorem utilizes the following several facts and definitions from matrix

analysis. Matrices Xn_n and X T
n_n have the same eigenvalues (and, consequently,

the same set of simple eigenvalues). Matrix products Xn_m Ym_n and Ym_nXn_m

have the same set of non-zero eigenvalues (and, consequently, the same set of
simple eigenvalues) (Horn 6 Johnson, 1985; p. 53). It follows that the sets of non-zero
eigenvalues (as well as the sets of simple eigenvalues) coincide for the four matrix
products of the type dealt with below, Xn_mYm_n , Ym_n Xn_m , Y T

m_nX T
n_m ,

XT
n_mY T

m_n (``the rule of four products'').
A nonnegative matrix Xn_n possesses a nonnegative eigenvalue, called the Perron

root of the matrix, whose modulus is not exceeded by that of any other eigenvalue
of the matrix. The Perron root is associated with at least one nonnegative eigen-

vector (Horn 6 Johnson, 1985; p. 503) (``the rule of Perron roots'').
A nonnegative matrix Xn_n is said to be reducible if, by some permutation of

its rows and columns, one can form a rectangle of zeros whose dimensions add
up to n:

Xn_n=_ } } }
0r_(n&r)

} } }
} } } & , 1�r�n.

Otherwise the matrix is irreducible, and then it has the following properties: its
Perron root is positive and simple, the associated eigenvectors are all positive (and
multiples of each other), and the matrix has no other nonnegative eigenvectors
(Seneta, 1973; pp. 20�21) (``the Perron�Frobenius rule'').

Obviously, all positive square matrices are irreducible and the inverse of an
irreducible matrix is irreducible. However, if Xn_mYm_n is irreducible, Ym_nXn_m

may be reducible.

Theorem 3. Let ,=I � Re+ be fixed, and let An_m and Bn_m be mutually com-
plementary. If at least one of the matrices ,(An_m) ,(BT

m_n), ,(BT
m_n) ,(An_m),

,(Bn_m) ,(AT
m_n), ,(AT

m_n) ,(Bn_m) is irreducible, then

(a) vectors D:
n_1 , D;

m_1 , S :
n_1 , S ;

m_1 exist and are determined uniquely;

(b) vectors ,(D:
n_1), ,(D;

m_1), ,(S :
n_1), ,(S ;

m_1) are eigenvectors of
,(An_m) ,(BT

m_n), ,(BT
m_n) ,(An_m), ,(Bn_m) ,(AT

m_n), ,(AT
m_n) ,(Bn_m), respec-

tively, associated with their common Perron root ?;

(c) � ,(D:
n_1) � ,(D;

m_1)=� ,(S :
n_1) � ,(S ;

m_1)=?.
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See the Appendix for the proof.
I summarize now the information provided by theorems 2 and 3 in the form of

an algorithm for computing skew-dual scales, given ,: I � Re+ and a dominance
matrix An_m with elements in some intervals [u, v]/I

(1) Compute ,(An_m) and determine |=,(u)+,(v).

(2) Compute ,(Bn_m)=|1n_m&,(An_m).

(3) Compute ,(An_m) ,(BT
m_n), ,(BT

m_n) ,(An_m), ,(Bn_m) ,(AT
m_n), and

,(AT
m_n) ,(Bn_m).

(4) (This step can be omitted if ,(An_m) is strictly positive.) Verify that at
least one of these matrix products, say, ,(An_m) ,(BT

m_n), is irreducible. (Then
,(Bn_m) ,(AT

m_n) is irreducible too.)

(5) Compute the Perron root ? of ,(An_m) ,(BT
m_n). (This is the Perron root

for all four matrix products.)

(6) Compute the Perron vectors for ,(An_m) ,(BT
m_n), ,(BT

m_n) ,(An_m),
,(Bn_m) ,(AT

m_n), ,(AT
m_n) ,(Bn_m), that is, the eigenvectors V :

n_1 , V ;
m_1 , W :

n_1 ,
W;

m_1 , of these matrices associated with the Perron root ? and normalized as
� V :

n_1=� V ;
m_1=� W :

n_1=� W ;
m_1=1.

(7) Compute

_,(D:
n_1)=,(An_m) V ;

m_1

,(D;
m_1)=,(BT

m_n) V :
n_1

.

(8) Compute

_,(S :
n_1)=,(Bn_m) W ;

m_1

,(S ;
m_1)=,(AT

m_n) W :
n_1

.

(9) (Optional) Apply the ,&1-transformation to ,(D:
n_1) and ,(D;

m_1) to
obtain the dominance skew-dual scale, (D:

n_1 , D;
m_1).

(10) (Optional) Apply the ,&1-transformation to ,(S :
n_1) and ,(S ;

m_1) to
obtain the subdominance skew-dual scale, (S :

n_1 , S ;
m_1).

The last two steps of the algorithm are labeled optional, because insofar as one
does not forget the identity of the ,-transformation used, one can describe the
objects being scaled, [:1 , ..., :n] and [;1 , ..., ;m], in terms of the ,-transformed
dominance and subdominance vectors directly.

A way of dealing with situations where all four matrix products,
,(An_m) ,(BT

m_n), ,(BT
m_n) ,(An_m), ,(Bn_m) ,(AT

m_n), and ,(AT
m_n) ,(Bn_m), are

reducible is discussed in the next section.

3. VARIABLE ,-TRANSFORMATIONS

The theory presented so far may appear unnecessarily complicated in the
following respect. Since the skew-dual relationships represented in (12)�(13),
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_D:
n_1[[An_m]], D;

m_1

D;
m_1[[Bn_m]], D:

n_1

, _S :
n_1[[Bn_m]], S ;

m_1

S ;
m_1[[An_m]], S :

n_1

,

are equivalent to the relationships

_,(D:
n_1)[[,(An_m)]] ,(D;

m_1)
,(D;

m_1)[[,(Bn_m)]] ,(D:
n_1)

, _,(S :
n_1)[[,(Bn_m)]] ,(S ;

m_1)
,(S ;

m_1)[[,(An_m)]] ,(S :
n_1)

(where the absence of a subscript at [[ } } } ]] indicates no transformation), why
would one not define the original dominance matrix as ,(An_m) at the outset?
Having done so, and having named this dominance matrix An_m , one would be
able to define the corresponding Bn_m (numerically coinciding with the ,(Bn_m)
above) and deal only with the simple relationships computed according to (3),

_D:
n_1[[An_m]] D;

m_1

D;
m_1[[Bn_m]] D:

n_1

, _S :
n_1[[Bn_m]] S ;

m_1

S ;
m_1[[An_m]] S :

n_1

.

The vectors D:
n_1 , D;

m_1 , S :
n_1 , S ;

m_1 then would be treated as dominance and
subdominance vectors per se, rather than ,-transformations thereof. In other words,
by appropriately defining the original dominance matrix, one could avoid, as it
seems, the necessity of dealing with any ,-transformations and any formulas other
than (3).

This argument is certainly valid in all cases when the original entries of An_m are
nonnumerical categories arbitrarily translated into numerical codes. This could be
the case, for example, with the pairwise comparison matrix A3_3 considered in
Section 1,

A3_3 ;1 ;2 ;3

:1 0 2 3
:2 &1 1 1 .
:3 &2 0 2

The numerical values [&3, &2, &1, 0, 1, 2, 3] could very well have been
arbitrarily assigned to seven verbal judgments [``strong preference for the second
stimulus'', ..., ``strong preference for the first stimulus''], in which case one could
instead have used some nonnegative numerical labels, say, [0, 1�6, 2�6, 3�6, 4�6,
5�6, 1], and subject the matrix to (3) directly, with no transformations involved.

Arbitrary numerical labeling, however, is confined to cases with a finite number
of distinct categories. No continuous or countably infinite set of numerical values
can be obtained without having a measurement or counting procedure producing
the numerical value of an object as its outcome. In such a case one cannot obtain
alternative numerical assignments other than through numerical transformations of
the original measurements, which means, in our present terminology, that the
,-transformations have to be performed explicitly. This can also be true when the
number of possible values is finite, notably, when the dependent variable is a count
or probability. In all such cases ,(An_m) is distinct from the original matrix An_m ,
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which makes the general formulas (12)�(13) necessary and the opening argument
of this section purely terminological.3

There is an even more compelling argument in favor of the generality of
(12)�(13). Since the choice of a ,-transformation for a given dominance matrix is
never unique, it is both reasonable and desirable, instead of making this choice a
priori, to try on this matrix a broad class of distinct ,-transformations in order to
choose one that produces optimal skew-dual scales, in some predefined sense. I call
this approach the double skew-dual scaling with variable ,-transformation, and it is
the focus of the present section. Obviously, this form of scaling precludes the
possibility of identifying ,(An_m) with the original dominance matrix, because
,(An_m) is no longer fixed. Observe that if An_m is viewed as a multidimensional
variable, with its entries attaining all possible combinations of values from some set
X, then, under the variable transformation approach, different realizations (values)
of this matrix may require different ,-transformations to produce optimal skew-
dual scales, for any given criterion of optimality. Observe also that for a fixed
An_m , its complement Bn_m will generally vary with ,.

In order for the variable transformation approach to work, the class of
,-transformations applied to matrix An_m should be appropriately parametrized,
that is, presented as a single transformation with free parameters,

,(x)= f (x; %1 , ..., %R).

For a fixed An_m , the ,-transformed dominance and subdominance vectors then
can be viewed as vectorial functions of these parameters,

_
,(D:

n_1)=X :
n_1(%1 , ..., %R)

,(D;
m_1)=X ;

m_1(%1 , ..., %R)
,(S :

n_1)=Y :
n_1(%1 , ..., %R)

,(S ;
m_1)=Y ;

m_1(%1 , ..., %R)

, (14)

and the problem can now be presented as one of maximizing a certain functional
defined on these vectorial functions,

V(X :
n_1 , X ;

m_1 , Y :
n_1 , Y ;

m_1),

generally subject to certain constraints imposed on parameters [%1 , ..., %R].
There is always a degree of arbitrariness involved in choosing an optimality

criterion, but this is more of a flexibility than impediment. A variety of reasonable
desiderata or normative relations can be readily proposed and the optimality
formulated in terms of maximizing the conformity of the vectors X:

n_1 , X ;
m_1 , Y :

n_1 ,
Y;

m_1 to these desiderata or normative relations. One such normative relation, for
example, can be the unidimensionality of the dominance�subdominance charac-
terization mentioned in Section 1 (see footnote 2). With this normative relation in

503DOUBLE SKEW-DUAL SCALING

3 The language and content of this paragraph are based on a general approach to the theory of
measurement (Dzhafarov, 1995) that differs from the more familiar representational approach. A deeper
discussion of measurement issues is, however, outside the scope of this paper.



mind one should seek the transformation ,(x)= f (x; %1 , ..., %R) that minimizes (i.e.,
brings as close as possible to &1) an appropriately chosen correlation coefficient
between X :

n_1 and Y :
n_1 and�or between X ;

m_1 and Y ;
m_1 . Another reasonable

approach can be to choose a certain metric on the space of columns and the space
of rows (so that one can compute a distance between any two columns or any two
rows) and to seek the transformation ,(x)= f (x; %1 , ..., %R) that maximizes the
conformity of the inter-element distances within the vectors X:

n_1 , X ;
m_1 , Y :

n_1 ,
Y;

m_1 to a certain monotonic function (say, linear) of the corresponding inter-
column and inter-row distances within the matrices ,(An_m) and ,(Bn_m).

In the examples given below, however, yet another optimization procedure is
used, based on the desideratum that the elements within each of the vectors X :

n_1 ,
X;

m_1 , Y :
n_1 , Y ;

m_1 be as distinct as possible. This approach can be realized
by maximizing across all possible transformations ,(x)= f (x; %1 , ..., %R) such
functionals as

min[Var[X :
n_1], Var[X ;

m_1], Var[Y :
n_1], Var[Y ;

m_1)]]

or

Var[X :
n_1] Var[X ;

m_1] Var[Y :
n_1] Var[Y ;

m_1],

where Var stands for variance (but could also be another measure of dispersion).
It is obvious from (12)�(13) that a multiplication of ,(An_m) by a positive constant
leads to the multiplication of the dominance and subdominance vectors by the same
constant, thereby increasing their variance. Therefore, to guarantee that maxima of
such functionals as above exist, one should constrain the free parameters
[%1 , ..., %R] so that ,(An_m) preserves some measure of its size. One can, for
example, use the technical meaning of matrix size defined in Section 2, (10)�(11),
and to seek maxima of the variance-based functionals above under the constraint
|=const.

A degree of arbitrariness, although substantially smaller than when choosing a
single ,-transformation, is also involved in the choice of a finitely parametrizable
class of such transformations. If the usual mixture of intuitive reasonableness and
mathematical simplicity considerations do not provide satisfactory guidance in this
choice, one can make use of the following simple but remarkable fact: although the
class of all ,: I � Re+ is too broad to allow for finite parametrization, the latter
can always be achieved for the specializations of all possible transformations on the
entries of a matrix An_m . Indeed, the matrix contains R�nm distinct entries, say,
a1< } } } <aR , and one can use them as free parameters [%1 , ..., %R] in (14), or map
them on these parameters by any one-to-one R-dimensional transformation

%i=%i (a1 , ..., aR), i=1, ..., R.

With reasonable constraints imposed on [a1 , ..., aR], an optimal solution can exist
and be computable, across all possible ,-transformations. The constraints should
include, obviously, the requirement that the ordering a1< } } } <aR be preserved
(for increasing ,) or reversed (for decreasing ,), combined with the size preservation
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requirement mentioned earlier. Once the optimal values of [a1 , ..., aR] are found,
however, there will be an infinity of functions ,: I � Re+ whose specializations on
the corresponding entries of An_m equal these optimal values.

Below I use Boolean matrices to construct a specific procedure of double skew-
dual scaling with variable ,-transformation: this procedure provides a simple
illustration for all the general considerations above, and it also provides a technique
for dealing with the situations involving reducible matrices (see step 4 of the
algorithm at the end of Section 2).

Consider again the matrix A4_7 used as an example in Section 1:

A4_7 ;1 ;2 ;3 ;4 ;5 ;6 ;7

:1 1 1 1 1 0 0 0
:2 1 0 0 1 0 1 1
:3 1 1 0 0 1 1 1

.

:4 0 0 0 0 1 0 1

Any monotonic transformation ,: I � Re+ translates this matrix into

,(A4_7) ;1 ;2 ;3 ;4 ;5 ;6 ;7

:1 b b b b a a a
:2 b a a b a b b
:3 b b a a b b b ,

:4 a a a a b a b

with a=,(0)�0, b=,(1)�0, and |=a+b. Since |=1 for the original matrix (corre-
sponding to ,(x)=x), the size-preservation constraint should be |=1, and we get

,(A4_7) ;1 ;2 ;3 ;4 ;5 ;6 ;7

:1 (1&=) (1&=) (1&=) (1&=) = = =
:2 (1&=) = = (1&=) = (1&=) (1&=)
:3 (1&=) (1&=) = = (1&=) (1&=) (1&=)

,

:4 = = = = (1&=) = (1&=)

where 0�=�1. The complementary matrix ,(B4_7)=14_7&,(A4_7) is obtained
by exchanging the two values for each other. By symmetry considerations, = can be
considered in the interval [0, 1�2] only. Using the second of the two variance-based
functionals mentioned earlier, the problem now can be formulated as one of finding

max
0�=<1�2

Var[X :
4_1(=)] Var[X ;

7_1(=)] Var[Y :
4_1(=)] Var[Y ;

7_1(=)],

where the vectors are ,(D:
4_1), ,(D;

7_1), ,(S :
4_1), ,(S ;

7_1) computed from the
matrix above according to (12)�(13). The maximum sought must exist because the
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functional being maximized is a continuous function of = attaining a finite value at
==0 and zero at ==1�2. This problem can be solved quite easily by, for example,
straightforward scanning of the interval 0�=<1�2 with sufficiently small steps. In
the case of A4_7 the optimal solution turns out to be at ==0, that is, the skew-dual
scales obtained in Section 1 (see Fig. 2) are optimal with respect to the set of all
possible transformations. (This outcome may be a consequence of the following
conjectured property: for Boolean matrices, whenever all four matrix products of
Theorem 3 are irreducible at ==0, the product of variances is a decreasing function
between ==0 and ==1�2.)

Consider now another matrix,

A4_5 ;1 ;2 ;3 ;4 ;5

:1 1 0 1 1 0
:2 1 1 1 1 0
:3 1 1 0 0 0

,

:4 1 0 0 0 0

It can be verified that all four matrix products A4_5BT
5_4 , BT

5_4A4_5 , B4_5AT
5_4 ,

AT
5_4 B4_5 are now reducible, but that they nevertheless satisfy the requirements of

Theorem 2(c1)�(c2). Because of the latter, the two skew-dual scales for A4_5 exist
and are determined uniquely:

A4_5 ;1 ;2 ;3 ;4 ;5 D:
4_1 B4_5 ;1 ;2 ;3 ;4 ;5 S:

4_1

:1 1 0 1 1 0 .24 :1 0 1 0 0 1 .17
:2 1 1 1 1 0 .41 :2 0 0 0 0 1 0
:3 1 1 0 0 0 .17

, :3 0 0 1 1 1 .24
.

:4 1 0 0 0 0 0 :4 0 1 1 1 1 .41
S;

5_1 1 .29 .21 .21 .21 D;
5_1 0 .29 .21 .21 1

One can notice, however, that these solutions, although formally acceptable, have
the following counter-intuitive property: a dominance or subdominance value of an
object may equal zero even if some of the entries in the corresponding row are non-
zero (see the dominance value for :4 and the subdominance value for :2).

Turning now to the problem of finding the optimal solution for A4_4 , by using
the same procedure as before, one arrives at the conclusion that the maximum of
the variance product is achieved at about ==0.01, the optimal ,-transformed
dominance and subdominance vectors being

,(A4_5) ;1 ;2 ;3 ;4 ;5 ,(D:
4_1) ,(B4_5) ;1 ;2 ;3 ;4 ;5 ,(S:

4_1)

:1 .99 .01 .99 .99 .01 .27 :1 .01 .99 .01 .01 .99 0.19

:2 .99 .99 .99 .99 .01 0.44 :2 .01 .01 .01 .01 .99 .02

:3 .99 .99 .01 .01 .01 .19
,

:3 .01 .01 .99 .99 .99 .27
.

:4 .99 .01 .01 .01 .01 .02 :4 .01 .99 .99 .99 .99 .44

,(S;
5_1) .99 .31 .23 .23 .01 ,(D;

5_1) .01 .31 .23 .23 .99

506 EHTIBAR N. DZHAFAROV



This would conclude the analysis if one forgoes the optional steps 9 and 10 of the
algorithm in Section 2 (the ,&1-transformations). If one does wish to perform these
steps however, one has to, essentially arbitrarily, choose a class of ,-transforma-
tions, with = as its free parameter, such that

,(0; =)==, ,(1; =)=1&=.

The simplest choice is clearly the class of linear functions

,(x; =)=(1&2=) x+=, 0�=�0.5,

and applying the inverse of ,(x; =) at ==0.01 to the optimal ,-transformed
dominance and subdominance vectors above, one arrives at

A4_5 ;1 ;2 ;3 ;4 ;5 D:
4_1 B4_5 ;1 ;2 ;3 ;4 ;5 S:

4_1

:1 1 0 1 1 0 .26 :1 0 1 0 0 1 .18
:2 1 1 1 1 0 .44 :2 0 0 0 0 1 .01
:3 1 1 0 0 0 .18

, :3 0 0 1 1 1 .26
.

:4 1 0 0 0 0 .01 :4 0 1 1 1 1 .44
S;

5_1 1 .31 .22 .22 0 D;
5_1 0 .31 .22 .22 1

Note that the optimal vectors do not possess the counter-intuitive property observed
in the vectors associated with the untransformed matrix: no row or column that
contains nonzero entries has a zero value of optimal dominance or subdominance.
The optimal double scales are graphically presented in Fig; 5.

As a final example of the variable-transformation double skew-dual scaling, con-
sider the matrix

GA4_5 ;1 ;2 ;3 ;4 ;5

:1 1 1 1 1 0
:2 1 1 1 1 0
:3 1 1 0 0 0

,

:4 1 0 0 0 0

where the prescript G indicates that the rows and columns of this matrix form
perfect scales in Guttman's sense (Guttman, 1950�1974): no 1's are preceded by 0's.
The four matrix products GA4_5

GBT
5_4 , GBT

5_4
GA4_5 , GB4_5

GAT
5_4 , GAT

5_4
GB4_5

here are all reducible, and even worse, have no nonzero eigenvalues. As a result, no
skew-dual scales can be computed for this matrix��certainly a disappointing result
when compared to Boolean matrices that do not form perfect Guttman's scales.

In our variable-= procedure, however, the four matrix products above can only
be reducible at ==0 (because all matrices are strictly positive for all other values
of =). One can, therefore, formally exclude ==0 from consideration and seek the
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FIG. 5. Analysis of matrix A4_5 of Section 3.

maximum of the variance product in the open interval 0<=<1�2. This maximum
turns out to be achieved at about ==0.05:

,(GA4_5) ;1 ;2 ;3 ;4 ;5 ,(D:
4_1) ,(GB4_5) ;1 ;2 ;3 ;4 ;5 ,(S:

4_1)

:1 .95 .95 .95 .95 .05 .41 :1 .05 .05 .05 .05 .95 .07

:2 .95 .95 .95 .95 .05 .41 :2 .05 .05 .05 .05 .95 .07

:3 .95 .95 .05 .05 .05 .14
,

:3 .05 .05 .95 .95 .95 .27
.

:4 .95 .05 .05 .05 .05 .08 :4 .05 .95 .95 .95 .95 .49

,(S;
5_1) .95 .46 .20 .20 .05 ,(D;

5_1) .05 .12 .24 .24 .95

Using the same linear function as above, ,(x; =)=(1&2=) x+=, 0�=�0.5, one
finally arrives at the following optimal dominance and subdominance vectors:

GA4_5 ;1 ;2 ;3 ;4 ;5 D:
4_1

GB4_5 ;1 ;2 ;3 ;4 ;5 S:
4_1

:1 1 1 1 1 0 .41 :1 0 0 0 0 1 .03
:2 1 1 1 1 0 .41 :2 0 0 0 0 1 .03
:3 1 1 0 0 0 .10

, :3 0 0 1 1 1 .24
.

:4 1 0 0 0 0 .03 :4 0 1 1 1 1 .49
S;

5_1 1 .46 .16 .16 0 D;
5_1 0 .07 .21 .21 1

The optimal double scales are graphically presented in Fig. 6.

FIG. 6. Analysis of matrix GA4_5 of Section 3.
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Summarizing, the three matrices used in this section to illustrate the variable-
transformation double skew-dual scaling have very different algebraic properties,
from the point of view of Theorems 2 and 3. These differences, however, become irrele-
vant and all three matrices produce interpretable dominance and subdominance
vectors when subjected to one and the same variable-transformation procedure. This
is a significant advantage of this procedure over a fixed-transformation one.

4. CONCLUSION

A summary of the double skew-dual scaling is provided in the paper's abstract.
In this concluding section I briefly discuss several generalizations (or modifications)
of this procedure, as well as its relation to the classical dual scaling.

4.1. Classical Dual Scaling (see Guttman, 1941; Nishisato, 1980, 1996)

Both dual scaling and the double skew-dual scaling are designed to assign
numerical values to two sets of objects related by a matrix, and in both procedures
the assignments received by the two sets are mutually interrelated. Here the
similarities end, however: the classical dual scaling quantifies the two sets of objects
in a different way, the duality of their quantification is of a different nature, and the
interpretation of the quantification in terms of overall tendency to dominate or be
dominated is not applicable. Also, the classical dual scaling would typically deal
with different kinds of matrices. To focus on the most essential aspects of the dif-
ferences between the two procedures, I assume here that they apply to one and the
same dominance matrix An_m , and I present the formula for the classical dual scal-
ing in the form most resembling (3):

_N(An_m) X ;
m_1='X :

n_1

N(AT
m_n) X :

n_1=&X ;
m_1

. (15)

Here, X :
n_1 and X ;

m_1 are the numerical values assigned to :-objects and ;-objects,
respectively, N( } } } ) is a normalization operator that divides each entry of a matrix
by the corresponding row sum, and ' is some positive constant.

Comparing this expression with, say, the dominance part of (3),

_An_m
D;

m_1

� D;
m_1

=D:
n_1

BT
m_n

D:
n_1

� D:
n_1

=D;
m_1

, (16)

one can observe the following. In (16) either of the two dominance vectors is the
weighted mean of the corresponding rows or columns, the other vector serving as
a set of weights. For example,

d:
1=

a11d;
1+ } } } +a1md;

m

d;
1+ } } } +d;

m

.
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In (15) the situation is, in a sense, opposite: either of the two vectors is (propor-

tional to) the weighted mean of the other, the corresponding rows or columns serving
as weights:

x:
1=

a11x;
1+ } } } +a1mx;

m

'(a11+ } } } +a1m)
.

Since the entries of An_m are interpreted as dominance values, this form of averaging
makes it impossible to interpret X :

n_1 and X ;
m_1 in dominance�subdominance

terms.
The second and obvious difference is that the two dominance vectors in (16) are

computed from two complementary matrices, whereas (15) involves only An_m .
This, too, indicates a considerable difference in the interpretation of the dual
vectors. The involvement of both An_m and Bn_m , due to the complete symmetry
of their relationship, necessitates the introduction of the second dual pair in the
double skew-dual scaling.

The difference between the two scaling procedures is best illustrated on the
following example.4 Consider the matrix of probabilities

A3_3 ;1 ;2 ;3

:1 0.7 0 0
:2 0 0.5 0 .
:3 0 0 0.1

Due to the involvement of the normalization operator N( } } } ), in the classical dual
scaling this matrix is indistinguishable from the identity matrix

U3_3 ;1 ;2 ;3

:1 1 0 0
:2 0 1 0 .
:3 0 0 1

Because of this, (15) yields no meaningful results: [:1 , :2 , :3] and [;1 , ;2 , ;3] can
be assigned any identical triads of numbers, X :

3_1=X ;
3_1 ('=1).

By contrast, the double-skew-dual scaling yields numerical assignments that seem
intuitively quite reasonable:

A3_3 ;1 ;2 ;3 D:
3_1 B3_3 ;1 ;2 ;3 S:

3_1

:1 0.7 0 0 .19 :1 0.3 1 1 .66
:2 0 .5 0 .16 :2 1 .5 1 .79
:3 0 0 .1 .04

, :3 1 1 .9 .98
.

S;
3_1 .19 .16 .04 D;

3_1 .66 .79 .98
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By symmetry, we have here (D:
3_1 , D;

3_1)=(S ;
3_1 , S :

3_1); the :-dominance values
decrease from :1 to :3 , while the ;-dominance values increase from ;1 to ;3 .

None of the comparisons above should be construed as indicating the inferiority
or insufficient generality of the classical dual scaling. A proper way of putting it is
that when applied to dominance matrices the classical dual scaling and the double
skew-dual scaling depict different aspects of these matrices. Unlike the double skew-
dual scaling, the classical dual scaling is not intended to quantify such intuitive
notions as ``one's ability to solve difficult problems,'' ``one's inability to solve easy
problems,'' ``the difficulty with which a problem is solved by good problem-solvers,''
and ``the easiness with which a problem is solved with poor problem-solvers.'' The
many intended uses of the classical dual scaling are comprehensively presented in
Nishisato (1980, 1996).

4.2. Generalizations�Modifications

The theory presented in Sections 2 and 3 views entries of a dominance matrix as
variables attaining all possible values selected from a set of reals X. The bounds of
this set, inf X and sup X, are to be finite and known in order to define the size
of a matrix, |=,(inf X)+,(sup X), and the complementarity relationship,
,(An_m)+,(Bn_m)=|1n_m . There might be situations, however, when the set of
theoretically possible values for the dominance matrix entries is not known or is
unbounded. The latter often happens, for example, when the matrix to be analyzed
is a model-guided transformation of a data matrix, such as the standard
Thurstonian translation of pairwise comparison probabilities into differences of
normal distributions' means. In such a case, one of the values, ,(inf X) or ,(sup X),
is necessarily infinite, and neither the complementarity relationship nor the size-
preservation constraint can be defined as they have been in this paper.

The only way of circumventing this difficulty seems to be the replacement of the
theoretical bounds inf X and sup X with the factual maximal and minimal elements
found in the matrix to be analyzed: |=,(maxAn_m)+,(minAn_m). This modifica-
tion is more serious than it might appear, and I would caution against using it
when the theoretical bounds inf X and sup X are finite and known. To appreciate
the difference, observe, for example, that according to the ``standard'' scheme, the
complement of the matrix of probabilities

A2_2 ;1 ;2

:1 0.1 0.1
:2 0.1 0.1

is

B2_2 ;1 ;2

:1 0.9 0.9
,

:2 0.9 0.9

whereas according to the modified scheme, the complement of A2_2 is A2_2 itself.
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Numerical values of dominance or subdominance assigned to an object in the
double skew-dual scaling are expressly context-dependent. A removal or addition of
a single object to either of the two sets of objects corresponds to a removal or addi-
tion of a row or column to an existing matrix, and may appreciably change numeri-
cal values for objects in both sets. It seems appealing, therefore, to think of a ``true''
dominance or subdominance value of, say, an :-object as the one that would be
assigned to it in a matrix relating all possible :-objects to all possible ;-objects.
Such a theoretical matrix would typically be infinitely large, and the question arises
whether the theory of the present paper could be applied to matrices with count-
ably infinite numbers of rows and�or columns. The answer to this questions seems
to be a qualified yes: most of the computational operations and concepts involved
in the double-skew-dual scaling (such as matrix products, eigenequations,
irreducibility, etc.), as well as some of the existence and uniqueness theorems, can
be directly extended or suitably modified to apply to infinite matrices (Seneta,
1973).

Finally, it should be pointed out that the basic equations of the double skew-dual
scaling, (12) and (13), can be generalization in a straightforward fashion from
matrices An_m=[a(i, j)] to arbitrary functions a(x, y), provided the integrals
below exist in the Lebesgue sense with respect to some suitably defined measures
on x and y:

_
� ,[a(x, y)] ,[d ; ( y)] dy

� ,[d ; ( y)] dy
=,[d : (x)]

� ,[b(x, y)] ,[d : (x)] dx
� ,[d : (x)] dx

=,[d ; ( y)]
,

_
� ,[a(x, y)] ,[s: (x)] dx

� ,[s: (x)] dx
=,[s; ( y)]

� ,[b(x, y)] ,[s; ( y)] dy
� ,[s; ( y)] dy

=,[s: (x)]
.

The function a(x, y) here is assumed to take its values in some bounded interval X,
the function b(x, y) is defined from

,[a(x, y)]+,[b(x, y)]=,(inf X)+,(sup X),

and d : (x), d ; ( y), s: (x), s; ( y) are dominance and subdominance functions for cer-
tain ``object-functions'' :(x) and ;( y).

APPENDIX: PROOFS

Proof of Theorem 1. As shown in Acze� l (1966, pp. 256�257), since � is closed,
associative, continuous, and increasing in both arguments on an interval I,

x�y=,&1[,(x)+,( y)],
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for some monotonic continuous function ,: I � Re, determined uniquely up to a
scaling coefficient, h,, h{0.

Using this function, the right-distributivity of � over � can be written as

,&1[,(c1)+,(c2)]�x=,&1[,(c1 �x)+,(c2 �x)],

or, equivalently,

,[,&1[,(c1)+,(c2)]�x]=,[,&1[,(c1)]�x]+,[,&1[,(c2)]�x].

Fixing x and denoting Fx(u)=,[,&1 (u)�x], the identity above can be presented
as

Fx[,(c1)+,(c2)]=Fx[,(c1)]+Fx[,(c2)],

which is the fundamental Cauchy equation with respect to an unknown function
defined and continuous on ,(I ). The closedness of � on I implies that + is closed
on ,(I ), because of which ,(I ) can only be an interval of one of the three types,
[q, �), (&�, &q], or (&�, �), where q�0 (the finite end can always be closed
by continuity). With another reference to Acze� l (1966; pp. 31�49), the solution of
the Cauchy equation above for any of these three intervals is Fx[,(c)]=#(x) ,(c),
which, due to the definition of Fx , means that

,(c�x)=,(c) #(x).

By analogous reasoning, we obtain from the left-distributivity of � over � that

,(c�x)=$(c) ,(x).

Combining these two identities,

,(c�x)=,(c) #(x)=$(c) ,(x).

Observe that ,(x), being monotonic, cannot vanish at more than one point; #(x)
cannot vanish at more than one point either, because c�x is assumed to increase
with x. Fixing x at a value where both #(x) and ,(x) are nonzero, and denoting
#(x)�,(x)= p, we get

$(c)= p,(c),

from which it immediately follows that $ and # are identical. We conclude that

x�y=,&1[ p,(x) ,( y)].

Observing that

,(x�y)= p,(x) ,( y) � &,(x�y)=[&p][&,(x)][&,( y)],

513DOUBLE SKEW-DUAL SCALING



any two pairs ( p, ,) and (&p, &,) correspond to one and the same operation � .
Since it is also true that , and &, correspond to one and the same operation � ,
one can assume that p>0 without any loss of generality.

It is easy to show that , cannot change its sign as its argument changes. Indeed,
assume otherwise, and let x and y be chosen so that ,(x)<0 and ,( y)>0. Due to
the continuity of ,, these signs must be preserved in sufficiently small
neighborhoods of x and y. Therefore, whether , is increasing or decreasing, a small
increment in y should lead to a decrement in x�y=,&1[ p,(x) ,( y)], which
cannot be the case because x�y is postulated to increase in y. This excludes
(&�, �) as a possibility for ,(I ).

Of the two remaining possibilities,5 ,: I � Re+ and ,: I � Re&, the latter is
immediately excluded by the agreement that p>0, because the identity ,(x�y)=
p,(x) ,( y) cannot be satisfied with all three quantities being negative. We conclude
that ,: I � Re+, and, for some p>0,

_x�y=,&1[,(x)+,( y)]
x�y=,&1[ p,(x) ,( y)]

.

It is obvious that given a pair of operations � , � , the pair ( p, ,) is determined
uniquely, up to reciprocal similarity transformations ( p�h, h,), h>0. A pair ( p, ,)
determines ( � , � ) uniquely, provided that the two operations exist. Now, �

exists for any ,, because, for any x, y # ,(I )=[q, �) (q�0), ,&1[,(x)+,( y)] is
well defined and belongs to I. Since ,&1[ p,(x) ,( y)] is also well defined, the only
concern is that it may fail to belong to I, or equivalently, that p,(x) ,( y) may fall
below q. To prevent this from happening, obviously, it is sufficient and necessary
that

p�q&1 if q{0.

The definitional formula for \, (5), can now be written as

p,(*) ,(\)= p,(c1) ,(x1)+ } } } + p,(ck) ,(xk).

Due to the ``unanimity'' property, (6),

p,(*) ,(x)= p,(c1) ,(x)+ } } } + p,(ck) ,(x),

from which it follows that

,(*)=,(c1)+ } } } +,(ck).

Substituting this in the definitional formula for \ we derive (7). Observe that p
plays no role in this expression, so that all pairs of operations � , � corresponding
to the same , (up to a scaling transformation) yield the same function \.

514 EHTIBAR N. DZHAFAROV

5 Symbols Re+ and Re& in this paper stand for nonnegative and nonpositive reals, respectively.



Proof of Theorem 2. (a) This immediately follows from (12) and (13): any
element of the vectors ,(D:

n_1), ,(D;
m_1), ,(S :

n_1), ,(S ;
m_1) is a weighted mean of

a row or a column of the matrices ,(An_m) and ,(Bn_m), whose elements all belong
to ,([u, v]).

(b1) and (b2) These are proved by straightforward algebra. In (12),

_,(An_m)
,(D;

m_1)
� ,(D;

m_1)
=,(D:

n_1)

,(BT
m_n)

,(D:
n_1)

� ,(D:
n_1)

=,(D;
m_1)

,

substitute the left-hand side of the first equation for ,(D:
n_1) in the second, and

substitute the left-hand side of the second equation for ,(D;
m_1) in the first, to

obtain

_
[,(An_m) ,(BT

m_n)] ,(D:
n_1)

[,(BT
m_n) ,(An_m)] ,(D;

m_1)

=[� ,(D:
n_1) � ,(D;

m_1)] ,(D:
n_1)

=$,(D:
n_1)

=[� ,(D:
n_1) � ,(D;

m_1)] ,(D;
m_1)

=$,(D;
m_1)

.

Analogously, (13) yields

_
[,(Bn_m) ,(AT

m_n)] ,(S :
n_1)

[,(AT
m_n) ,(Bn_m)] ,(S ;

m_1)

=[� ,(S :
n_1) � ,(S ;

m_1)] ,(S :
n_1)

=_,(S :
n_1)

=[� ,(S :
n_1) � ,(S ;

m_1)] ,(S ;
m_1)

=_,(S ;
m_1)

.

(c1) By hypothesis, there exist vectors V :
n_1 and V ;

m_1 such that

_[,(An_m) ,(BT
m_n)] V :

n_1=$V :
n_1

[,(BT
m_n) ,(An_m)] V ;

m_1=$V ;
m_1

.

Since they are nonnegative, we can assume � V :
n_1=� V ;

m_1=1. Premultiplying
both sides of the first equation by ,(BT

m_n) and denoting X ;
m_1=,(BT

m_n) V :
n_1 ,

_[,(BT
m_n) ,(An_m)] X ;

m_1=$X ;
m_1

[,(BT
m_n) ,(An_m)] V ;

m_1=$V ;
m_1

.

Since the eigenvalue is simple, X ;
m_1 must be a multiple of V ;

m_1 , and we have

,(BT
m_n) V :

n_1=*V ;
m_1 , *>0.
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Analogously, by premultiplying the second eigenvalue�eigenvector equation by
,(An_m) we get

,(An_m) V ;
m_1=}V :

n_1 , }>0.

Multiplying the first equation by } and the second with *,

_,(BT
m_n)[}V :

n_1]=}[*V ;
m_1]

,(An_m)[*V ;
m_1]=*[}V :

n_1]
.

Observe that � [}V :
n_1]=} and � [*V ;

m_1]=*. Thus the vectors [}V :
n_1] and

[*V ;
m_1] satisfy the requirements (12) for ,(D:

n_1) and ,(D;
m_1), respectively. This

proves the existence.
According to part (b1), if some dominance vectors Z:

n_1 , Z;
m_1 exist, then

,(Z:
n_1), ,(Z;

m_1) are nonnegative eigenvectors of ,(An_m) ,(BT
m_n), ,(BT

m_n)
,(An_m), respectively, associated with their common eigenvalue $$=� ,(Z:

n_1)
� ,(Z;

m_1)>0. If one of the two matrices has no nonnegative eigenvectors
associated with positive eigenvalues other than $, then $$=$. Since $ is simple,
,(Z:

n_1) and ,(Z;
m_1) must be multiples of ,(D:

n_1) and ,(D;
m_1), respectively, and

by simple algebra, (12) implies that ,(Z:
n_1)=,(D:

n_1) and ,(Z;
m_1)=,(D;

m_1).
This proves the uniqueness.

(c1) This is proved analogously.

Proof of Theorem 3. It follows from the ``rule of four products'' and the
``Perron�Frobenius rule'' that the matrices ,(An_m) ,(BT

m_n), ,(BT
m_n) ,(An_m),

,(Bn_m) ,(AT
m_n), ,(AT

m_n) ,(Bn_m) all share the same positive and simple Perron
root ?. Without loss of generality, assume that ,(An_m) ,(BT

m_n) is irreducible.
Then it has a positive eigenvector associated with ? and no nonnegative eigenvec-
tors corresponding to other eigenvalues (the ``Perron�Frobenius rule''). By the ``rule
of Perron roots,'' ,(BT

m_n) ,(An_m) has a nonnegative eigenvector associated with
?. The conditions of theorem 2(c1) are satisfied, and we conclude that dominance
vectors D:

n_1 , D;
m_1 exist and are determined uniquely. The analogous statement

for subdominance vectors S :
n_1 , S ;

m_1 follows from the fact that ,(Bn_m) ,(AT
m_n),

being the inverse of ,(An_m) ,(BT
m_n), is irreducible. This proves (i). The

statements (ii) and (iii) now trivially follow from Theorem 2(b1�b2).
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