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Abstract

Dissimilarity is a function that assigns to every pair of stimuli a nonnegative number vanishing if and
only if two stimuli are identical, and that satisfies the following two conditions called the intrinsic uniform
continuity and the chain property, respectively: it is uniformly continuous with respect to the uniformity
it induces, and, given a set of stimulus chains (finite sequences of stimuli), the dissimilarity between
their initial and terminal elements converges to zero if the chains’ length (the sum of the dissimilarities
between their successive elements) converges to zero. The four properties axiomatizing this notion are
shown to be mutually independent. Any conventional, symmetric metric is a dissimilarity function. A
quasimetric (satisfying all metric axioms except for symmetry) is a dissimilarity function if and only if it
is symmetric in the small. It is proposed to reserve the term metric (not necessarily symmetric) for such
quasimetrics. A real-valued binary function satisfies the chain property if and only if whenever its value
is sufficiently small it majorates some quasimetric and converges to zero whenever this quasimetric does.
The function is a dissimilarity function if, in addition, this quasimetric is a metric with respect to which
the function is uniformly continuous.

Keywords: asymmetric metric, categorization, discrimination, dissimilarity, Fechnerian Scaling, met-
ric, quasimetric, stimulus space, subjective metric.

This note aims at filling in certain conceptual and terminological gaps in the theory of dissimilarity as
presented in Dzhafarov and Colonius (2007) and Dzhafarov (2008a, b). The axioms defining dissimilarity are
proved to be mutually independent. A convenient criterion is given for the compliance of a function with the
chain property (D4 below). Psychophysical applications of the notion of dissimilarity were previously confined
to discrimination judgments, “same-different” and “greater-less.” Here, an example is given of an application
of the notion to the categorization paradigm. As a terminological improvement, it is suggested that the
term “oriented” (i.e., asymmetric) metric should be reserved for quasimetrics (functions satisfying all metric
axioms except for symmetry) which are symmetric in the small: then any metric is a dissimilarity function.
A familiarity with the dissimilarity cumulation theory and its main psychophysical application, Fechnerian
Scaling (at least as they are presented in Dzhafarov & Colonius, 2007), is desirable for understanding the
context of this note.

Notation conventions. Let S be a set stimuli (points), denoted by boldface lowercase letter x,y, . . .. A
chain, denoted by boldface capitals, X,Y, . . ., is a finite sequence of points. The set

⋃∞
k=0 Sk of all chains

with elements in S is denoted by S. It contains the empty chain and one-element chains (identified with
their elements, so that x ∈ S is also the chain consisting of x). Concatenations of two or more chains are
presented by concatenations of their symbols, XY, xYz, etc. Binary real-valued functions S×S→ R are
presented as Dxy, Mxy, γxy, ....

Given a chain X = x1, . . .xn and a binary (real-valued) function F , the notation FX stands for

n−1∑
i=1

Fxixi+1,

with the obvious convention that the quantity is zero if n is 1 (one-element chain) or 0 (empty chain). The
notation ∆FX stands for

max
i=1,...,n−1

Fxixi+1.
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All limit statements for sequences, such as Fana → 0, Fanbn → 0, or FXn → 0 are implicitly predicated
on n→∞.

If stimuli x,y, etc. are characterized by numerical values of a certain property (e.g., auditory tones are
characterized by their intensity), these numerical values may be denoted by x, y, etc. (possibly with indices
or ornaments), and by abuse of notation we can say x = x, y = y, etc. Analogously, if the stimuli are
characterized by numerical vectors, we can write x = (x1, . . . xk).

1. Dissimilarity: Definition and Applications

1.1 Definition. Function D : S×S→ R is a dissimilarity function if it has the following properties:

D1(positivity) Dab > 0 for any distinct a,b ∈ S;

D2 (zero property) Daa = 0 for any a ∈ S;

D3 (intrinsic uniform continuity) for any ε > 0 one can find a δ > 0 such that, for any a,b,a′,b′ ∈ S,

if Daa′ < δ and Dbb′ < δ, then |Da′b′ −Dab| < ε;

D4 (chain property) for any ε > 0 one can find a δ > 0 such that for any chain aXb,

if DaXb < δ, then Dab < ε.

1.2 Remark. The intrinsic uniform continuity and chain properties can also be presented in terms of
sequences, as, respectively,

if (Dana′n → 0) and (Dbnb′n → 0) then Da′nb′n −Danbn → 0,

and
if DanXnbn → 0 then Danbn → 0,

for all sequences of points {an}, {a′n, } {bn}, {b′n} in S and sequences of chains {Xn} in S. (For the
equivalence of these statements to D3 and D4 see Dzhafarov & Colonius, 2007, footnote 8.)

1.3 Remark. A simple but useful observation: in the formulation of D4 “for any chain aXb” can be replaced
with “for any chain aXb with DaXb < m,” where m is any positive number. Indeed, the δ to be found for
a given ε can always be redefined as min {δ,m}. In this class of chains we also have ∆aXb < m, where ∆
stands for ∆D (see Notation Conventions above). Stated in terms of sequences, if

if DanXnbn → 0 then ∆anXnbn → 0,

so one can only consider the sequences anXnbn with sufficiently small DanXnbn and ∆anXnbn.

The convergence Dxnyn → 0 is easily shown to be an equivalence relation on the set of all infinite sequences
in S (Dzhafarov & Colonius, 2007, Theorem 1).

1.4 Theorem. Each of the properties D1−D4 is independent of the remaining three.

Proof. (1) Let S be a two-element set {a,b}. If

Dab = Dba = Daa = Dbb = 0,

then D1 is violated while D2−D4 hold trivially.

(2) With the same S, if
Dab = Dba = Daa = Dbb = 1,
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then D2 is violated while D1,D3,D4 hold trivially.

(3) Let S be represented by R, and let

Dxy =
{
|x− y| if |x− y| < 1
|x− y|+ e|x−y| − e if |x− y| ≥ 1

.

Then D obviously satisfies D1 − D2. To see that D4 holds too, we use Remark 1.3 and only consider
chains aXb with ∆aXb ≤ DaXb < 1. Since DaXb ≥ |a− b|, we have then Dab = |a− b| < ε whenever
DaXb < δ = ε. But D does not satisfy D3, which can be shown by choosing, e.g., a = a′ = 0 and b′ = b+ δ
(b > 1, δ > 0): then

Da′b′ −Dab = δ + eb
(
eδ − 1

)
considered as a function of b can be arbitrarily large for any choice of δ = Dbb′ > Daa′ = 0.

(4) Let S be represented by a finite interval of reals and Dxy = (x− y)2. Then D satisfies D1 − D3
(obviously) but not D4: subdivide a nondegenerate interval [a, b] within S into n equal parts and observe
that the length of the corresponding chain is

DaXb = n

(
a− b
n

)2

→ 0

as n→∞, while Dab is fixed at (a− b)2 > 0.

The following three examples show how the notion of dissimilarity appears in the contexts of perceptual
discrimination and categorization.

1.5 Example. Let the stimulus set S be represented by [1, U ] (e.g., the set of intensities of sound between
an absolute threshold taken for 1 and an upper threshold U), and let γxy be the probability with which y
is judged to be greater than x in some respect (e.g., loudness). Let

γxy = Φ
(
y − x
x

)
,

where Φ is a continuously differentiable probability distribution function on R with Φ (0) = 1
2 and Φ′ (0) > 0.

Then the quantity

Dxy =
∣∣∣∣Φ(y − xx

)
− 1

2

∣∣∣∣
is a dissimilarity function.1 Indeed, its compliance with D2 is clear, and D1 follows from the fact that Φ is
nondecreasing on R and increasing in an open neighborhood of zero. To demonstrate the intrinsic uniform
continuity, D3, observe that the convergence Dxnx′n → 0 on [1, U ]× [1, U ] is equivalent to the conventional
convergence |xn − x′n| → 0, and that on this compact area Dxy is uniformly continuous in the conventional
sense. Finally, to demonstrate the chain property, D4, we use Remark 1.3 to conclude that DanXnbn → 0
implies (assuming, without loss of generality, an ≤ bn)

ˆ bn

an

∣∣∣∣Φ(dx
x

)
− 1

2

∣∣∣∣ =
ˆ bn

an

∣∣∣∣Φ′ (0)
dx
x

∣∣∣∣ = Φ′ (0) log
bn
an
→ 0,

and the latter is equivalent to

Danbn =
bn − an
an

→ 0.

1.6 Example. Consider a set of probability vectors

S0 =
{

(p1, . . . , pk) ∈ [0, 1]k :
∑

pi = 1
}

1This is a special case of the “mirror-reflection” procedure described in Dzhafarov and Colonius (1999).
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The value of pi can be interpreted as the probability with which a stimulus is classified into the ith category
among an exhaustive list of k mutually exclusive categories. Two stimuli corresponding to one and the same
vector (p1, . . . , pk) are treated as indistinguishable, so one can speak of the vector as a stimulus. Define a
measure of “difference” of a point q = (q1, . . . , qk) from a point p = (p1, . . . , pk) as2

Dpq =

√√√√ k∑
i=1

(qi − pi) log
qi
pi
.

Then, for any c ∈
]
0, 1

k

[
, D is a (symmetric) dissimilarity function on

Sc =
{

(p1, . . . , pk) ∈ [c, 1− (k − 1) c]k :
∑

pi = 1
}
.

The properties D1 − D2 are verified trivially. The intrinsic uniform continuity, D3, follows from the fact
that D is uniformly continuous in the conventional sense on the compact domain Sc × Sc, and that the
conventional convergence (in Euclidean norm) |pn − p′n| → 0 is equivalent to Dpnp′n → 0. (Note that this
will no longer be true if we replace pi ≥ c with pi ≥ 0 or pi > 0 for some i ∈ {1, . . . , k}.) To see that D
satisfies the chain property, D4, we use the inequality

Dpq ≥ V pq =
k∑
i=1

|pi − qi| ,

an immediate consequence of Pinsker’s inequality (Csiszàr, 1967).3 It follows that for any chain X with
elements in Sc,

DpXq ≥ V pq,

whence the convergence DpnXnqn → 0 implies V pnqn → 0, which in turn is equivalent to Dpnqn → 0.

1.7 Example. Let S be any finite set of points, and Dxy any function subject to D1−D2. Then D3 and
D4 are satisfied trivially, and D is a dissimilarity function.

2. Conditions Relating Dissimilarities, Quasimetrics, and Metrics

Of the four properties defining dissimilarity, the chain property, D4, is the only one not entirely intuitive. It
is not always obvious how one should go about testing the compliance of a function with this property. The
criterion (necessary and sufficient condition) given in Theorem 2.5 below often proves helpful in this issue.
Conveniently and somewhat surprisingly, it turns out to be a criterion for the conjunction of the conditions
D1,D2,D4 rather than just D4, and it may even help in dealing with D3.

We need first to establish terminological clarity in treating metric-like functions which may lack symme-
try. By simply dropping the symmetry axiom from the list of metric axioms one creates the notion of a
quasimetric.

2.1 Definition. Function M : S×S→ R is a quasimetric function if it has the following properties:

QM1(positivity) Mab > 0 for any distinct a,b ∈ S;

QM2 (zero property) Maa = 0 for any a ∈ S;

QM3 (triangle inequality) Mab +Mbc ≥Mac for all a,b, c ∈ S.

2D2pq is the symmetric Kullback-Leibler divergence, the original divergence measure proposed in Kullback and Leibler
(1951). The present example does not touch on many important aspects of the relationship between divergence measures in
the information geometry and the dissimilarity cumulation theory: this is a topic for a separate treatment.

3The familiar form of Pinsker’s inequality is K2pq =
Pk

i=1 qi log qi
pi
≥ 1

2
V 2pq, from which the present form obtains by

D2pq = K2pq + K2qp.
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Any symmetric metric is obviously a quasimetric. IfM is a quasimetric thenMxy+Myx (or max {Mxy,Myx})
is a symmetric metric.

The notion of a quasimetric, however, turns out to be too unconstrained to serve as a good formalization for
the intuition of an asymmetric (“oriented”) metric. In particular, a quasimetric does not generally induce a
uniformity,4 which means that generally it is not a dissimilarity function (see Dzhafarov & Colonius, 2007).

2.2 Example. Let S be represented by the interval ]0, 1[, and let

Qxy = H0 (x− y) + (y − x) ,

where H0 (a) is a version of the Heaviside function (equal 0 for a ≤ 0 and equal 1 for a > 0). The function
clearly satisfies QM1−QM2, and QM3 follows from

H0 (u) +H0 (v) ≥ H0 (u+ v) ,

for any real u, v. But Q is not a dissimilarity function as it is not intrinsically uniformly continuous: take,
e.g., any a = b = b′ and let a′n → a+ in the conventional sense. Then Qaa′n = a′n − a → 0 and Qbb′ = 0,
but Qa′nb

′ = 1 + b′ − a′n → 1 while Qab = 0. [Compared to the uniformity induced by a dissimilarity
function (Dzhafarov & Colonius, 2007, Section 2.2), one can check that the sets Aε = {(x,y) : Qxy < ε}
taken for all positive ε do not form a uniformity basis on S because, for any ε < 1 and any δ > 0,
A−1
ε = {(y,x) : Qxy < ε} does not include as a subset Aδ.]

We see that simply dropping the symmetry axiom is not completely innocuous. At the same time the
symmetry requirement is too stringent both in and without the present context (e.g., in differential geometry
symmetry is usually unnecessary in treating intrinsic metrics). A satisfactory definition of an asymmetric
metric can be achieved by replacing the symmetry requirement with “symmetry in the small.”

2.3 Definition. Function M : S×S→ R is a metric (or distance function) if it is a quasimetric with the
following property:

M(symmetry in the small) for any ε > 0 one can find a δ > 0 such that Mab < δ implies Mba < ε, for any
a,b ∈ S.

What is important for our purposes is that any metric in the sense of this definition is a dissimilarity function.

2.4 Theorem. A quasimetric is a dissimilarity function if and only if it is a metric.

Proof. A dissimilarity function satisfies the symmetry in the small condition (Dzhafarov & Colonius, 2007,
Theorem 1). This proves the “only if” part. For the “if” part, the compliance of a metric M with D1−D2
is obvious. By the triangle inequality, for any a,b,a′,b′ ∈ S,{

Maa′ +Mb′b ≥Mab−Ma′b′

Ma′a +Mbb′ ≥Ma′b′ −Mab
.

From Definition 2.3, for any ε > 0 there is a δ > 0 such that

max {Ma′a,Mb′b} < ε

2

whenever
max {Maa′,Mbb′} < min

{ε
2
, δ
}
≤ ε

2
.

This proves D3, as it follows that |Mab−Ma′b′| can be made less than ε. The chain property, D4, follows
from MaXb ≥Mab, for all a,b ∈ S and X ∈ S, which holds by the triangle inequality.

4For the notion of uniformity see, e.g., Kelly (1955, Chapter 6). A brief reminder of the basic properties of a uniformity and
the relation of this notion to that of a dissimilarity function can be found in Dzhafarov and Colonius (2007, Sections 2.2 and
2.6).
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The intrinsic metrics of differential geometry always satisfy Definition 2.3, and so does the metric

Mab = inf
X∈S

DaXb

induced by a dissimilarity function D (see Dzhafarov & Colonius, 2007, Theorems 7 and 9). It seems that
most of the basic results pertaining to metrics can be obtained with metrics in the sense of Definition 2.3
(see Dzhafarov, 2008a, b, for the demonstration of this statement on the notion of path length).5

We are now prepared to formulate a criterion for the chain property of a dissimilarity function, followed by
a sufficient condition for intrinsic uniform continuity.

2.5 Theorem. A function D : S × S → R satisfies D1, D2, and D4 if and only if, for some m ∈ ]0,∞]
and any a,b ∈ S,

if Dab < m then Dab ≥Mab,

where M : S × S → R is a quasimetric with the following property: for any ε > 0 one can find a δε > 0
such that, for any a,b ∈ S,

if Mab < δε, then Dab < ε.

2.6 Remark. A slightly less rigorous but more compact formulation of the theorem is this: a real-valued
binary function D on S satisfies D1, D2, and D4 if and only if for all a,b ∈ S with sufficiently small Dab
the latter majorates a quasimetric Mab such that Manbn → 0 implies Danbn → 0.

Proof. If such a quasimetric M exists, D satisfies D1 because if a 6= b, then either Dab ≥ m > 0 or
Dab ≥Mab > 0. D2 follows from the observations that (1) for any ε > 0 we have 0 = Maa < δε, implying
Daa < ε; and (2) choosing ε < m we have Daa ≥ Maa = 0. To show the compliance of D with D4, note
that for any ε > 0, if DaXb < min {m, δε} then

DaXb ≥MaXb ≥Mab < δε,

implying Dab < ε.

Conversely, if D satisfies D1, D2, and D4, then function

Mab = inf
X∈S

DaXb

is a quasimetric. Its compliance with QM3 follows from

Mab +Mbc = inf
X,Y∈S

DaXbYc = inf
Z ∈ S

b is in Z

DaZc ≥ inf
Z∈S

DaZc = Mac.

To see that M satisfies QM2 and QM1, observe that DaXb ≥ 0, for all a,b ∈ S and X ∈ S. Since S
includes the empty chain, we get

Maa = inf
X∈S

DaXa = 0.

For a 6= b,
Mab = inf

X∈S
DaXb > 0,

because if the infimum could be zero then, for every δ > 0, we would be able to find an X with DaXb < δ,
and this would contradict D4 since Dab > 0. To complete the proof it remains to observe that Dab ≥Mab
for all a,b ∈ S.

5In the previous publications on dissimilarity and Fechnerian Scaling the term “oriented metric” was used to designate
what we presently propose to call simply “metric” (adding “symmetric” if dealing with a conventional metric). Nor was in
the previous publications the notion of an asymmetric metric differentiated from that of a quasimetric with sufficient clarity
(although Theorem 2.4 is mentioned in Dzhafarov & Colonius, 2007, Section 2.1).
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In practice the quasimetricM of the theorem often can be chosen to be a metric in the sense of Definition 2.3.
This makes it possible to speak of the function D as being or not being uniformly continuous with respect
to (the uniformity induced by) the metric M : D possesses this property if Mana′n → 0 and Mbnb′n → 0
imply Da′nb′n −Danbn → 0.

2.7 Corollary. If M in Theorem 2.5 is a metric, then D and M induce the same uniformity, that is, the
convergence Dxnyn → 0 is equivalent to the convergence Mxnyn → 0, for any sequences {xn} , {yn} in
S. Consequently, if D is uniformly continuous with respect to (the uniformity induced by) M , then D is a
dissimilarity function.

Proof. The implication “if Mxnyn → 0 then Dxnyn → 0” holds by the definition of M , while the reverse
implication follows from D majorating M whenever the former is sufficiently small. As a result, if D
is uniformly continuous with respect to M then it satisfies D3 (and by the previous theorem it satisfies
D1,D2,D4).

Thus, the properties D1, D2, and D4 in Example 1.5 could be established by noting that for a sufficiently
smallm > 0,

∣∣Φ (a)− 1
2

∣∣ majorates k |a| on the interval
[
Φ−1

(
m− 1

2

)
, Φ−1

(
m+ 1

2

)]
, where k is any positive

number less than the minimum Φ′ (a) on this interval. It would follow then that if Dxy =
∣∣Φ (y−xx )− 1

2

∣∣ < m
(where x, y ∈ [1, U ]), then

Dxy > k
|y − x|
x

≥ k

U
|y − x| = Mxy,

the latter being a (symmetric) metric. Since Mxnyn → 0 clearly implies Dxnyn → 0, the properties
in question follow by Theorem 2.5. The property D3 obtains by Corollary 2.7: M and D are uniformly
equivalent (i.e., one of them converges to zero if and only if so does the other), and it is clear that D is
uniformly continuous on [1, U ] in the conventional sense (which here means, with respect to M).

In Example 1.6, Pinsker’s inequality is all one needs to mention to establish D1, D2, and D4 by Theorem
2.5. D3 follows by Corollary 2.7 using the same reasoning as in the previous example.
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