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Decomposition of Recurrent Choices into
Stochastically Independent Counts
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Consider a fixed set of alternatives {1, ..., k} available at each of a
random number N of choice opportunities, exactly one alternative from
{1, ... k} being selected at each such choice opportunity. Let the
distribution of the conditienal random vector {X,, ..., X, | X X,=N} be
known, X, being the number of times the /th alternative is chosen. What
is the class of all possible (& 4 1)-vectors of probability mass functions
{R(n), A {x,), ., B, Ax,)} such that if N is distributed according to
AR{n}, the components of the unconditional random vector { X, ..., X, }
are mutually independent random variahles distribhuted according ta
R0x,), . Blxg ), tespectively? This paper prasents a complote and
constructive solution of this protxlem for a broad class of conditional
random vectors {X,, .., X, | ¥ X;-- N}, In particular, the solution
applies to all sitvations where the sequence of potentially observable
values of X; (for any i=1, .., k) forms an interval of consecutive
integers, finite or infinite. When, for some i=1, ..., &, this sequence
contains finite gaps, the solution may or may not apply in its entirety.
it is suggested, however, that in many, if not all, such situations
the representation of recurrent choices by conditional vectors
{X . . X [T X, =N} may not be optimal in the first place. A more
natural representation, to which the solution proposed applies
universally, is provided by {M,, ..., M,|¥ M,= M}, where M, is the
ordinal position of an observable value of X, in the sequence of all such
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INTRODUCTHON: PROBLEM ANID TERMINOLOGY

The subject of this paper is related to the lollowing
problem considered in Bdckenholt (1993), Let there be &
fixed alternatives one of which is to be sclected (e.g., one of
k widcly spaced targets in a visual scene to {ixate, or one of
& brands of a certain product to purchase), and let such a
sclection be made recrrrentiy whithin a certain observation
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period. The notion of recurrent choices implies that each
choice consists in a selection of one and only one of the &
alternatives, all of these alternatives are available at each
choice opportunity, and the cheices follow each other in
a chronological, or quasi-chronological order. Different
realizations of the choice sequences are observed repeatedly
and represented by a k-vector of counts {X,, .., X, }. with
X; denoting the number of {imes the ith option is chosen
{within the observation period). The overall number of
choices made within the observation period is a random
variable, N=3% X,, and conditioned on its valuc n, the
partition {X,, ... X, |¥ X;=wn} is 2 random vector. As an
example, suppose that the conditional partition vector is
distributed multinomially, this is,

Prob {X, =X, X =Xy,

fo:”}

n
. Xy Xk
= Py P
(xl, .\,‘.)

and let N be a Poisson count,
Prob{N =un} =¢ *(£"/n!).

The product of these two probability mass f{unctions
(p.m.[’s) is an unconditional p.m.f. for the vector of counts
{X,, ... X;}. By simple algebra one verifies that

Prob{ X, = X =, —¢ ¢ PR v Mty
L N .
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that is, the unconditional p.mf. for {X,, .., X, } 1s a product
of k Poisson p.m.f’s selectively associated with the respec-
tive k alternatives. Equivalently put, {X,, ..., X;} consists of
k independent Poisson counts.

This constitutes an example of the decomposition of
recurrent choices into stochastically independent counts {or
“independent decomposition,” for short). For a given condi-
tional distribution of {X,, .., X; |2 X,;=#} one finds a dis-
tribution of N (the overall count), such that the induced
unconditional vector {X,, .., X, } consists of k independent
random variables (component counts). The conditional pm.f

Ci{xy, ... x;)=Prob {Xl =X, .. Xp =X,

ZX,:Ex,},

k>1,

is called the choice function. Note that n does not explicitly
enter in the list of arguments of C(x,, ..., x;).

The example just given shows that any multinomial
choice function can be independently decomposed into
Poisson component p.m.f’s, with the overall count pm.f.
being Poisson as well Moreover, as shown by Moran
(1952) for the binromial case (k = 2), and by Bol'shev (1965)
for arbitrary %, this decomposition 15 unique: multinomial
choice functions cannot be independently decomposed into
p.m.f’s other than Poisson (this result is proved below,
by different means, as an illustrative example). A general
formulation of the problem addressed in this paper is as
follows: given a k-variate choice function C{x,, .., x,),
what is the class of alf possible (k + 1)-vectors of p.m.f’s
{R(x), R\(x), ..., R{x)} that yield independent decomposi-
tions of this cheice function? This paper presents a com-
plete and constructive solution of this problem for a broad
class of choice functions: it establishes necessary and suf-
ficient conditions under which these choice functions are
independently decomposable, and it provides a general
algorithm for computing all possible (k+ 1)-vectors of
decomposing p.m.£’s. If one restricts one’s attention to suf-
fictent conditions only, that allow one to compute some of
the (X + | }-vectors of decomposing pm.{’s when these con-
ditions are satisfied, then the solution proposed applies to
all choice functions, with no restrictions. As suggested in the
concluding section, the choice functions to which the
necessity part of this solution does not apply are associated
with situations where conditioning of choice probabilities
on > X, may be artificial to begin with.

From 2 mathematical point of view, the theory of
independent decomposability falls within the scope of the
problem of “characterization” of marginal distributions
by conditional distributions {under the assumption of
stochastic independence). The research in this field was
originated by Patil and Seshadri (1964), whose formula-
tions later were corrected and simplified by Menon (1966).

Extensions and generalizations of these formulations that
are relevant in the present context can be found in Mathai
(1967), Kabe (1969), Janardan (1974, 1975), and Gerber
{1980). The exposition below, however, is completely self-
contained and follows a somewhat different logic,

To avoid dealing with cumbersome technicalities at the
outset and to keep the core of the theory of independent
decomposability intuitive, the theory will be presented in
two stages. At first, the consideration will be confined to
everywhere- positive choice functions only, that 1s, to choice

functions C(x, ..., ;) such that
Clxy, ., x>0 forall {x,, .., x:};
x=0,1, ., i=1,..,k

Obviously, Clxy, ..., x;) sums to 1 across all natural parti-
tions of any given } x,; in particular, C(0,.,0)=1. At
the second stage of analysis, the assumption of every-
where-positivity will be removed, and the results will be
generalized to a broad class of cheice functions that may
attain zero values or be undefined for some k-vectors

{15y Xe}-
MULTIPLICATIVELY SEPARABLE CHOICE FUNCTIONS

For everywhere-positive choice functions, the formal
definition of independent decomposability is as follows.

DerniTion 1. A (5 -+ 1)-vector of pm.f's { R(x), R,(x), .,
Ri(x)}, k> 1, each of which is positive on the entire set of
natural numbers, is said to independently decompose the
random partition k-vector {X|, .., X, | X,=N}, described
by an everywhere-positive choice function C{x,, ..., x;.), if

fsl R;(x;) (1)
R(Zio, x)

That is, if N is distributed according to R(x), then the com-
ponents of the induced unconditional k-vector { X, ..., X;}
are stochastically independent random variables distributed
according to {R,(x), .., Ry(x)}, respectively. The p.mf’s
{R(X), .., Ri(x)} are referred to as the component count
pm.fls; R(x) is referred to as the overall count pm.f. By
abuse of language it will also be said in such cases that the
choice function itself, C{x,,..,x;). is “independently
decomposed” by { R(x), Ry(x), ..., Ri(x)}.

C(xl, ey xk) =

The concept introduced next serves as a bridge between
the concept of a choice function in general {for now, under
the assumption of everywhere-positivity) and that of an
independently decomposable choice function.

DeFiviTION 2. An everywhere-positive choice function
C(xy, .. xy) is called mudtiplicatively separable (m-sepa-
rable, for short) if there 1s a vector of real-valued functions
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{g:1(x), .., q.{x)}, each of which is positive on the entire set
of natural numbers, such that for any {x, .., x;},

Hf:l g.(x;)
C(xl EIREE ] xlc) = X ’
g1 2o X))

where

g, 4 (x)= Z H g{u;)

Su=x i=1

(i.c., the summation is over all possible natural partitions of
x}. The functions {g,(x), .., q.(x)} are said to m-generate
the choice function C{x, ..., x.).

Comments on Definition 2. It is trivial to verify that an
m-separable choice function is a legitimate everywhere-
positive p.m.f. (i.e., it is defined and positive for all k-vectors
of natural numbers, and it sums to 1 across all k-partitions
of any natural number). The resemblance between Defini-
tions 1 and 2 is obvious, but it is essential to see the
difference: the m-generating functions ¢,(x) in Definition 2
are not generally p.m.f’s; they do not necessarily sum to 1
across their domain. Representation (2), therefore,
generally does not constitute an independent decomposi-
tion in the sense of Definition 1. Observe, however, that if
{g.(x), ..., gi(x)} are p.m.f7s, and if (2} holds, then g, (x)
is a pm.f, too. Indeed,

e k

Z Z H q.{u;)

x=0 Yu=x i=1

i qr..lx)=

The usefulness of the concept of m-separability in dealing
with the problem of independent decomposability stems
from two facts. First, it immediately follows from Defini-
tions 1 and 2 that an independently decomposable choice
function is m-separable: it is m-generated by the count
pmf’s {g,(x}=R\(x), .., gu(x) = R, (x}}, with R(x)=
g1...:{x) {see Comments above). As a result, insofar as
independent decompesability is concerned, one can restrict
one’s attention to m-separable functions only. {As shown in
the next section, however, not all m-separable choice func-
tions can be independently decomposed.) Second, whereas
it is typically non-obvious whether a choice function is inde-
pendently decomposable, its m-separability is usually
apparent from merely contemplating its mathematical
form.

ExaMmpLES. (El) A multinomial choice function

k k

H
XL, gtk ==
(xl, asy xk> P Pic ,z bi ’

i=1 i=1

1s m-separable; it is m-generated by

X
o
T xU

g.(x) i=1, .,k

The function g, . (#n) has the same form as the m-gener-
ating functions

L_xp)

fh---k(”):n_! !

In relation to Comments on Definition 2, note that g,(x)
and g, ... ,(#n) are not p.m.f’s, because for p #0,

X

o P
xgo;?:ep#l.

{E2) A Dirichlet-compound multinomial {i.e., a multi-
nomial p.mf. integrated over Dirichlet-distributed vectors
of probabilities; Johnson & Kotz, 1969)

n! 08 TTF Mx;+6) ; K k
Tn+0) T 1(0) x,t

is m-separable: it is m-generated by

Mx+6,)

L T 3
RO

g:(x)=

As in the previous example, the function ¢, . ,(#) has the
same form as the m-generating functions:

I'n+8)
q ---k(n)=W-

(E3) Definition 2 can be used to construct “new” choice
functions by using arbitrary m-generating functions
{gi(x), o qu(x)}. Let k=2, and {g,(x).¢,(x)} =
{exp(B, x), exp(B,x%)}, where 8, and B, are positive real
constants. Then the m-generated choice function is

exp(fx3 + B2x3)

Cxy, xy)= =
Zu|+u2=x1+xl exp(ﬂlu? +ﬁ2“g)

INDEPENDENT DECOMPOSABILITY OF
MULTIPLICATIVELY SEPARABLE CHOICE FUNCTIONS

To establish the necessary and sufficient conditions under
which an m-separable everywhere-positive choice function
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is independently decomposable, some preliminary work Is
needed. It begins with establishing the uniqueness proper-
ties of the g,{x)-functions m-generating a given m-separable
function.

THEOREM 1. For an m-separable everywhere-positive
choice function C(x,, .., x;) m-generated by { g,(x), .., ¢(x)},
a k-vector of functions {Q\(x), ..., Qx(x)} m-generates this
choice function if, and only if,

Q!‘(x)=aiqi(x)e_ix5 i;-ls'"s k
where a; are positive reals and A is a real number {common to
all q,{x)-functions).

Comments on Theorem 1. The proof is omitted, for two
reasons. First, the mathematical structure of the proof
(although not the formulation of the theorem as given)
is only a trivial generalization of a technique repeatedly
used in the statistical characterization literature (Patil &
Seshadri, 1964; Menon, 1966; Janardan, 1974): it consists
in reducing the problem to a Cauchy—Pexider functional
equation (Aczél, 1966, 1975) with respect to logarithms
of m-generating functions. Second, Theorem 1 will later be
derived by different means, as part of a constructive
corollary to Theorem 3. One advantage of that derivation is
that it more readily lends itself to generalizations beyond
everywhere-positive choice functions.

Since all independently decomposable choice functions
are m-separable, one comes to the conclusion that a choice
function m-generated by {g,(x), .., q,(x)} is independently
decomposable if, and only if, at least one of the admissible
transformations of g, (x)-functions given by Theorem |
results in a k-vector of pmf’s; g, ,(x) then must be a
pm.f, too (see Comments on Definition 2). For a closer
look at the problem, the following definition is needed.

DermviTioN 3. A function F(x), defined (but not neces-
sarily positive) on the entire set of natural numbers, is said
to be of Laplace order # (a real number} if its Laplace trans-
formation F{A), given by

Fiy= 3 e~ Fx),
x=0

exists {the sum converges) at 2 > ¢ but does not exist (the
sum diverges} at 4 < g. The Laplace order of F{x) is denoted
by ord F{x).

Comments on Definition 3. The term “Laplace order”
corresponds to the “abscissa of absolute convergence of the
Laplace transform™ in the general theory of integral trans-
formations (Hameister, 1946). The definition is well con-
structed, because if the sum above converges (diverges) for
some value of A, it also converges (diverges) for all greater

480/19/1-4

(smaller) values. The existence of the sum at A1=o is
immaterial. The Laplace order of —oo means that the
Laplace transform F{ 1) exists everywhere (i.e., for all 2); the
Laplace order of 4 oo means that F(1) exists nowhere (i,
for no 4).

THECOREM 2. An m-separable everywhere-positive choice
function C(x,, ..., x;.), m-generated by {q,(x), ..., g (x)}, can
be independently decomposed if, and only if,

(3)

max{ord ¢,(x), .., ord g,(x)} =6 < .

The (k 4 1)-vector of count pm.fs { R(x), Ri{(x), .., Ri(x)}
is then computed as

gi(x)e ™ )
R,-- = T =1,...,k, (4)
M= 50) ’
Rix) Lt €208 g
f:ﬂ?i(;») qr...x(2)

where A is any real number exceeding o.

Proof. (i) Necessity. Let C{x,, .. x;) be independ-
ently decomposed by some p.m.f’s { R(x), R (x), .., Ri{x)}.
Then C{x,, .., x;) is m-generated by {R(x), ., Ri(x)}.
Since it is also m-generated by {g,(x), .., gi(x)}, from
Theorem 1 it follows that there should exist a real A and a
set of positive reals {«,, .., o} such that

R(x)=o,q(x)e” ™, i=1,..k
Because R;(x) are p.m.f’s,

Y ogixye =o', i=l,..k

x=0

By Definition 3, this means that (since a; are all strictly
positive) the Laplace order of all ¢,(x)-functions is at most
/. Hence

max{ord ¢,(x), .., ord g{x)} €A < 0,

and the necessity is proven.

(i1} Sufficiency. Let now (3} hold. Choose an arbitrary
A > . By Definition 3,

Loadxye =g (M) <o, i=l, .,k
x=0

Hence

_adx)e”

R,
189 B

) i=1,..
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are legitimate {(and positive) p.m.f’s. Due to Theorem 1, the
R;(x)-functions m-generate C(x,, ..., x,). The sufficiency is
proven, and (4} is established. Equation (5) now follows by
straightforward algebra,

Auy

- Hq(u)e

Zu=x i=| QJ(/")

:ﬁe_i (Z ﬁqf(us))

HL] G (A \gu=x i=1
gk (x)e ™

T, Gy

and, by the well-known property of the Laplace transforms
for convolutions,

k
1_[ Giy=q, 4. 1

Comments on Theorem 2. Observe that the only role
played by the everywhere-positivity constraint in this
theorem is in ensuring that admissible transformations of
m-generating functions are restricted to those given by
Theorem 1. If the admissibility of these, and only these,
transformations is established for a broader class of choice
functions, Theorem 2 will be applicable with no modi-
fications. This issue is further clarified below, after the
everywhere-positivity constraint is removed.

Theorem 2 s now illustrated using the examples con-
sidered in the previous section.

Exampres. (El, continued) Applying (4) to the multi-
nomial choice function, the component count p.m.f’s, if they
exist, should have the form

qi(x)eih
R(x)=10220
H{x) 0
e M p7 xY)
Zwoem’ piiul)
{(EpYiix!

Ty (@l

where e ~* is denoted by £ The denominator is known to
converge to e for all £ (i.e., for all A), which means that the
Laplace order of all these ¢,(x)-functions is — <0, and hence
the component count p.m.f’s exist for all values of & {or A).
One comes to a set of Poisson count p.m.fs,

(ep)™

R.(x Y=e %
x!

%Ep,)( )

Since ¢,. ,(x) here has the same form as g,(x), with 1
replacing p,, the overall count p.m.f. (5) is,

&

x!

R{x)=e = Fulx),

again a Poisson pm.f By Theorem 2, an independent
decomposition of a multinomial choice function can be
obtained with any such, and only such, (k¥ + 1)-vectors of
Poisson functions. Schematically,

Mip, ...y APy Prsprys o Py}, forany E>0.

As mentioned in the mtroduction, this result was obtained

by Bol'shev { 1965), by different means.

(E2, continued) For a Dirichlet-compound multinomial
choice function the decomposing component count p.m.f’s,
if they exist, should have the form, due to (4),

Ax

gi(x)e”
g:(2)
_ [M(x+8)M8)x e ™
Y (P8I0 utle
_ [x+0yrg)xtye
T LI+ 8)rB)yul] ¢

Ri(x)=

where { replaces e * The denominator can be shown to
converge to (1 —{)~%if { <1 (ie, A>0) and to diverge
otherwise. For { < 1, the obtained function,

Mx+8)

Rx)= (1~ O s = B,

is a negative binomial p.m.f. with parameters ({, #,). Since
¢1...x{x) here has the same form as g,{x), with #=73 8,
replacing 0,, the overall count pm.f, due to (5), is

IMx+6) N
WC =NBi. 5 ons

R(x)=(1-{)*

a negative binomial p.m.f. with parameters (£, #). Based on

Theorem 2, one concludes that a Dirichlet-compound

multinomial choice function can be decomposed by any

such, and only such, (k + I)-vectors of negative binomial
functions. Schematically,

DMg, .00+

(N B s oy N Birans o N Bigno}

forany {<l.

(E3, continued) Here, no independent decompeosition
can be constructed because f, and f; are assumed to be
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positive. Indeed, the Laplace order of both exp(f,x*) and
exp(f,x*) is +ooc. Even though Theorem 1 says that one
can form an infinity of alternative m-separable representa-
tions, m-generated by

{Ql(x): Qz(-’“)} = {:xl exp(f,x* — Ax), a, exp(ﬂ2x3 —).x)},

none of these, due to Theorem 2, would form a pair of
legitimate p.m.f’s.

A CRITERION FOR MULTIPLICATIVE SEPARABILITY

As shown in the preceding section, both existence and
uniqueness of independent decompositions for an every-
where-positive choice function are established in a simple
and constructive way, assuming that a single vector of func-
tions m-generating this choice function has been found.
Analogous and special cases of this assumption (although
not the general concept of m-separability} are common in
the literature on statistical characterization: the closest
examples are Menon’s (1966) reformulation of Patil and
Seshadri’s (1964) Theorem | for univariate distributions
{k=2), and Janardan’s (1974) extension of this theorem
to the relationship between two random vectors (less
direct analogous can be found in Mathai, 1967, and Kabe,
1969). De facto, m-separability of many choice functions is
indeed apparent from merely contemplating their mathe-
matical form. Still, a complete theory of independent
decomposability  should include a criterion (ie.,
a necessary and sufficient condition) for m-separability
based on the values of choice functions, rather than their
mathematical form. The closest result in this area is
Theorem 3 by Patil and Seshadri (1964; a corrected for-
mulation 15 in Panaretos, 1982}, but its relevance is rather
indirect, and it only applies to univariate distributions on a
finite support.

In the criterion theorem below, the following notation is
used. For a given choice function C{x,, ..., Xz},

Cix)=C(x,=0, ., x,=x, .., x.=0), Lk

a=1, .
(all arguments but x, are zero). Analogously,

Cab(x: y) = C(xl = 0; oy Xg T Xy iy Xp = Py ey Xy =0)5
abell,. ., k}, a#bh

(all arguments but x, and x, are zero).

THEOREM 3. An everywhere-positive choice function
Clxy, . Xp) is m-separable if, and only if, the following iden-

tity holds across all k-vectors {x,, .., x;}:
i‘(— Cilx;) P(x))
Clxys o ) = — , (6)
PRI x)

where the function P(x) (mapping natural numbers into
positive reals) is defined as

o Cali) Ci(1)
H Cab(i: 1)

i=0

1 if x=0,

if x>0,

P(x}= (7)

for some a, bell, .  k}, a#b.

Proof. (i) Necessity 1s proved by using Definition 2
and expressing all choice functions in (6) and (7) through
m-generating functions {g,(x), .., g {(x)} and ¢q,  (x).
From {7) one derives, for x> 0,

g0 af{1) TI7=, 440) TT7., 4,(0)
g1 ) gy 1) q0) g+(0)
g0 (1) TT;_1 q,(0)
gr..li+ 1) q,{0) g,(0)

o q,-(O))“—‘ g1 i+ 1)
gy..1) gyl

x—=1

Pixy=T]

i=0

.

which simplifies to

i=0

A* *
P(x)—%---k(x)ms (*)
where
4= | QI'(O)- (*%)
q...4{1)

Equation (*) also holds for x =0, yielding P(0)=1, as
required in (7). After substituting for P{x) in the right-hand
side of (6) and observing that ¢, ,(0)=]Tgq.(0), the
expression transforms into

& QE(xi)[H:'(:lqj(O)/QI(O)] (x) A*
= g1 #x) RN (0]
Afo
(11.A.k(2lex.-)m
_ l_[{;iqr'(xi)
‘-1’1....2(2?:1-’5@)’

which, by Definition 2, proves that (6) holds identically.

(ii) Sufficiency is obtained immediately by putting

g(x)=Ci(x) Plx},  i=1,.k,
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and ohserving that (6) satisfies Definition 2. That

follows from the fact that C(x, ...
partitions of 3" x,. |}

, X;) sums to 1 across all

Comments on Theorem 3. To simplify derivations in the
necessity proof, one could use the admissible trans-
formations of Theorem 1 and select the coefficients in

a,q,(x) e ™" so that
. et (1)
ox=—, =q;.. (1)
4:(0) Do
By this one achieves
g{0)=1, i=1,..,k; hence g,. (0)=1,
I3
g:...k1)= Z g (=1,

and P(x) becomes simply g, .. ;{x).

The simplification just mentioned has not been used in
the forma) proof to emphasize that Theorem 3 is independ-
ent of Theorem 1. Moreover, a remarkable fact is
that Theorem | can now be obtained as a corollary
to Theorem 3. This corollary provides a constructive
algorithm for computing the m-generating functions
{q\(x), - qu(x)} from the (everywhere-positive) values of
CEXy, o X )

CoOROLLARY TO THEOREM 3. For an m-separable every-
where-positive choice function C(xy, .., X;), the m-gener-
ating functions {q,(x), .., q,(x)} are determined as follows:

(i) compute the auxiliary function P(x) according to
{7), x=0, 1, ...; the values of P(x) are determined uniquely,
that is, they do not depend on the choice of a and b in (7T);

(i) set {q(0), .., q.(0)}} equal to arbitrary positive
reals, {®), ., % };
(iti)

SJrom

choose an arbitrary rveal A, and compute q, . (1)

k

i=1%

‘h---k(l)-

A=log

(ivy for any x=0, 1, .., compute q,(x) and ¢, . ,(x) as

i=1,..k

¢:(x) =a,C:{x) P(x) e, (3)

K
gi. {(x)=P(x)e *|] a,.

i=1

(2)

DZHAFAROV AND BOCKENHOLT

(X1, oy x;) can only be m-generated by k-vectors of
functions that satisfy (8). Hence different k-vectors of
m-generating functions {q,(x), .., q,(x)} are interrelated by
the transformations given in Theorem 1.

Proof. That P(x) does not depend on the choice of a
and b in (7) follows from the fact that, for any x and any
a,bye,def{l,. ., k},a#b, c#d,

Culx) Cy1) _ Ckx) Cu()

Cab(xsl) B Cca’(x:vl) '

Indeed, if C{x,.,x,) is m-generated by some
{g,(x), ..., g,(x)}, then, by Definition2, both ratios
algebraically transform into

ql...k(x+1)(

i';l qj(O))
gr...kx) '

q1..:41)

Equation (9) immediately follows from ( *} of Theorem 3;
observe that the product of a,’s is g;...,(0) and ¢” equals 4,
as defined in (**} of Theorem 3. By Definition 2,

ql'(x)[n,lf;l q;{0)/q,(0)]
g1 .. k(x) .

Cix)=

Equation (8) is obtained from this and (9) by simple
algebra.

Suppose now that C{xy,.., x,) is m-generated by a
k-vector {Q,(x), .., Qx(x)}, such that g,(0)=0Q.{0),
i=1,.,k and g,....(1)=Q,.. (1). By construction, this
means that {g,(x), ., g:(x)} and {Q;(x), .., Qi(x})} are
associated with the same choice of {«,,..,;} and A
Since P(x) is determined uniquely, it follows from (8) that
Q{x)=g,(x), i=1, .., k, for any x. Since (8) is satisfied
for arbitrary {a,,..., ak} and A, the transformations of
Theorem 1 are admissible. Since, for given {a, ..., a;}
and A, the m-generating functions {g,(x), .., g,(x)} are
determined uniquely, no other transformations are admis-
sible. The proof is complete. |

ExampLes. (El, continued) The m-separability of a
multinomial choice function is apparent from its mathe-
matical form. For illustration purposes, however, it will now
be proven by using the criterion of m-separability provided
by Theorem 3;

x—t pLPs

Plry=T] ————
im0 (i + 1YYV plps
=1 gy 1

e i+ Iy XV
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which satisfies the requirement that P(0) = 1. Identity (6) is
satisfied because

(p7'{(1/x 1)) - (pH(1/x 1))
1/n!
f:l Ci(x) P(x;)
P(n)

This proves that the choice function is m-separable. To
formally reconstruct m-generating functions, set a;=1 and
A=01in(8)and (9):

X
i

p,
G0N =Cx) PR = =1k

1
qln-k(x):P(x):;.

These expressions coincide with those previously found by
direct inspection.

(E4) m-separability is by far not a general property of
all choice functions. For instance, an additive mixture of
two binomial distributions,

1

caox=n " Yprprraom( " ever

1 X2 X1, X3

is not m-separable unless it is trivial, that is, unless
{1 —=)(p, —g,) =0. As a straightforward, although rather
tedious exercise in algebra, one can show that this function
does not satisfy the identity

C(1,0) C(0,2)  C(1,2)
C(0,1)C(2,0) €2, 1)

derived by applying (6) and (7) with x, =1, x,=2. In
general, a non-trivial additive mixture 3 x; C,(x,, ..., X ) of
m-separable choice functions C;(x,, ..., x;), X’ z;=1, is not
m-separable.

REMOVING ASSUMPTION OF
EVERYWHERE-POSITIVITY

Without loss of generality, one can assume that all
unconditional pmf’s Prob{X,=x,,.,X,=x,} are
defined for all possible {x,, ..., x, }-vectors: indeed, if some
{x;, ..., Xc}-vectors were excluded from the domain of an
unconditional p.m.f, the latter can always be redefined as
attaining zero values on these, initially excluded, k-vectors.

Obviously, if Prob{X,=x;,.,X;=x,} =0 at some
k-vector {xi,.. Xx;}, the conditional p.mf Prob{X, =
Xy Xp=x,|> X,;,=3 x;} cannot be positive at this
k-vector. A difficulty is, however, that this value need not be
zero, it may also be undefined (indeterminate). Indeed, by
definition,

Prob{X,=x, .. X, =x, |2 X, =Y x;}

B Prob{X,=x, .., X, =x;}
Yy ey x PIO0{X, =0y, o, X =y}

Obviously, this expression is defined if, and only if, its
denominator is positive. If Prob{X,=x,,.., X;=x.} =0
for aff {x,, .., x;}-vectors partitioning a given total X x,,
then the conditional p.m.f. becomes an indeterminate form
0/0, and all such {x,, .., x,}-vectors must be excluded from
its domain. This possibility turns out to be a nuisance for
multiplicative decompositions of conditional p.m.f’s.

To circumvent this difficulty, it is convenient to modify
the definition of a choice function C(x,, .., x;) in the
following way.

DermviTioN 4. For a given partition k-vector {X;, ..,

). D X,-=Zx.-},

(i) Cxy, .o x)=Prob{X,=x,,.. X, =x, 1Y X;,=
¥ x;} for all ¥ x; at which this probability is defined;

(i) C{xy,.,x)=0 for all ¥ x; at which Prob{X, =
X1, X=X |2 X, =3 x,} is undefined (indeterminate).

Comments on Definition 4. The definition is well con-
structed, because Prob{X,=x,, .. X, =x|>X,=3% x;}
is either defined for all or is not defined for any of
{x,, .., x;}-vectors partitioning a given total. Indeed, to be
a legitimate p.m.f, Prob{X, =x, .., X, =x,|>X X, =3 x;}
has a definite value (positive or zero) at {x,, .., x;} if, and
only if, it sums to 1 across all partitions of 3 x,. The goal
achieved by this definition is that the choice function
C(xq, ..., x;) is defined for all {x,, .., x,}, but the value of
3 Cixy, .., x.), across all partitions of a given ¥ x,, is either
1 or 0. In the former case, the choice functions is a legitimate
p-m.t., satisfying the identity

Clx1, s %)
Zz =3 Cluy, ..., Uy

= C(X, PR xk).

When Prob{X,=x,.., X, =x.|3> X,=% x,} is undefined,
the denominator equals 0, and the left-hand ratio becomes
an indeterminate form 0/0. It will be assumed throughout
the remainder of this paper that all choice functions are
non-degenerate, that is, they are positive for at least two
different k-vectors {x,, ..., x,}.
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The following definition combines and generalizes
Definitions ! and 2.

DerINITION 5. A choice function C{x,, ..., X, } s m-sepa-
rable if there is a vector of (m-generating) real-valued
functions {g,(x), .., g.(x)}, each of which is non-negative
on the entire set of natural numbers, such that for any
{x1, o X} and x,

Clx\,y e Xg)
ZZ =3 C(ul 3 ey uk)

ITio ) a:dx) u
=_qik q]...k(x)= z H qi(ui)'

)
ql---k(Z?:Jxa‘) Tu=xi=l

(Indeterminate forms 0/0 are treated as equal, 0/0 = 0/0.)

The choice function C(x, ..., x,) is independently decom-
posed by a (k + 1}-vector of pm.f’s { R(x), R\(x), .., Ri(x)}
if it is m-generated by {g,(x), .., ¢;(x}} = {R\(x), .., Ri(x)}
and ¢, . (x) = R(x).

Comments on Definition 5. The difference between this
definiticn and Definitions 1 and 2 is not only in replacing all
references to positive functions with those to non-negative
functions. In addition, the decompeositions into m-generat-
ing functions (or count p.m.L’s) are allowed now to assume
the form of an “equality” of two indeterminate forms
(0/0 =0/0}, rather than a numerical equality between a
choice function and a product of functions.

ExampLE E5.  Let function &7 *(x) be defined as

Fp =11 0=+ prme=2)

i=1

where s=1,2, .., {p,. .., p,} are positive reals (different
from 1), and {a,, .., a,} are non-negative integers. This
function is positive everywhere except at x=a,, i=1, . s,
where it 15 zero. As this function is real-valued and non-
negative on the entire set of natural numbers, it can be
used to construct choice functions in accordance with
Definition 5. For instance, the chotce function C{x,, x,)
defined by

C(xh x2)
2”[+u1:11+.\(2 C(u]’ Mz)
"‘@;fpz(xl)“@;fqg(xz)

1,2 1.4
Zm +ur=x1+x2 ‘@m,pz(ul ) @qlaqz(uz)

satisfies Definition 5. It is positive whenever x, isnot 1 or 2
and x, is not 1 or 4. The corresponding conditional p.m.f.,
Prob{X,;=x,, X, =x,|X, + X, =x, + x,} is defined at all

values of x, +x, except at x, +x,=1, because for both
partitions of 1, {0, 1} and {1, 0},

Dl 0 230 (1= 2,2 (1) 257,(0) =0,

It is easy to establish now that the following weakened
version of Theorems 1 and 2 holds for arbitrary m-separable
functions. Recall that Definition 3 of Laplace order applies
to all functions that are defined on the entire set of natural
numbers {which is true for m-generating functions of Defini-
tion 5). For convenience, the equations that are identical to
those of Theorems | and 2 are replicated explicitly, rather
than referenced.

THEOREM 4. Let Cix,, .., x.) be a choice function m-
generated by a k-vector of functions {q,(x), .., qi(x}}. Then
the following propositions hold:

(1) Cixy,..,Xx;) is m-generated by any k-vector of
Junctions { Q(x), .., Qi {x)} such that, for some positive reals
{ay, oy} and a real 2,

Q,(x)=0,q;(x) e i=1,..,k (10)

(i) If max{ord q,(x), .., ord g,(x)} =0 < o0, then
Clxy, ..., X} is independently decomposable. In particular, it
is independently decomposed by any (k + 1)-vector of count
pifls {R(x), R\(x), .., R{x)} such that, for some real
A>a,

X

gix)e *
X7 ogixye ™
:qa'(x)ﬁ’_ix

g4

g xlxye ™™
[T Eieq(x)e™™
__‘[1---k(-‘~')E’_M_QL--A»(X)?_
B T

R(x)=

i=1, ..,k {11)

R(x)=

Ax

2 (12)
17, §i(4)

(iil) If all k-vectors of functions {Q,(x), .., Qu(x)}
m-generating C(x|, ..., x;) are related to {q,(x), ... ¢,(x)}
by transformations (10), then C(x\, .., X;.) is independently
decomposable only if max{ord g,{x), .., ord g(x}} =
o < w0, and then all possible (k + 1)-vectors of count pm.f’s
{R(x}, R\(x), .., Ri(x)} are given by (11) and (12).

Proof. (i) By simple algebra, if {g,(x), ..., ¢.{x)} satisfy
Definition 3, then the same is true for { Q(x), ..., Q.{x)}.

(1) Recall (see Comments on Definition 4) that
C{xy, ., X} 1s assumed to be non-degenerate {(hence not
identically equal to zero). As a result, every g,(x)-function
has at least one positive value and §.(A)>0 for any A
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Obviously, ¢, .. ,{2) >0, too. With this addition, the proof
is identical to that of the sufficiency part of Theorem 2.

(1i1) The proofis identical to that of the necessity part of
Theorem 2, except that here the inadmissibility of transfor-
mations other than (10) is assumed, rather than derived
from Theorem 1. |

It must be clear now (see also Comments on Theorem 2)
that the principal role of the everywhere-positivity con-
straint adopted in the previous sections was to ensure that
transformations (10) are the only admissible transforma-
tions for g¢;(x)-functions m-generating an m-separable
Ci{x,, .., x;). That transformations (10} are admissible is
true for any m-separable choice function (Theorem 4(i)),
and among the k-vectors {0y (x), ... Q,(x)} related to a
given k-vector {g,(x), .., g,(x)} by transformations (10)
one can always find all k-vectors of p.m.{’s, or establish that
such k-vectors do not exist (Theorem 4(ii)). If no other
transformations of {g,(x), ..., gx(x)} are admissible, then alf
independent decompositions of a given choice function are
known (Theorem 4(iit}). As the following two examples
show, this assumption is not true for arbitrary m-separable
choice functions: the class of admissible transformations
may very well include those beyond transformations (10).
As a result, a choice function may be independently decom-
posed by (& + 1 )-vectors of p.m.{’s other than those given by
{11) and (12).

ExampLEs. (E6) Let C(x,, x;) be m-generated by a
pair of functions {g¢,(x), ¢-{x)} such that
g, (x)>0 il x<h,
g,(x)=0 if x>h,
{qz(x)>0 if x<h or xzh+g,
ga(x)=0 if h<x<h+g,

where h— 1 and g are positive integers. For g > h, one can
verify by simple algebra that C{x,, x,) is m-generated by
any pair of functions

Qix)=aq(x)e™™,  Oylx)=aa(x) ga{x)e™™,
where
{az(x)za§>0 if x<h,
ax)=a¥*>0 if x>h

Obviously, these transformations reduce to (10) only when
the two a-values are set equal to each other,

(E7) Let C{x, x,) be m-generated by a pair of func-
tions {gq,(x), g,(x)} such that g,(x)>0 for all x, and
g-(x) > 0 1f, and only if, x = mh, h being a positive integer,
m=0,1,2, ... If =1, then C(x,,x,) is everywhere-
positive, hence transformations (10} are indeed the only

admissible transiormations. If # > 1, however, then, present-
g natural numbers x as mh+d, d=0,1,..,h—1, one can
easily verify that C(x, x,) is m-generated by

O\(mh+d) =o' De M+ g (mh + d),

O.(mhy=a,e g, (mh) if d=0,
O(mh +d) =0 it d#0,

0i(x) =
0:x)=

where {a!”, (", ., al"~ "} and «, are arbitrary positive
reals, and A is, as usual, an arbitrary real. Obviously, trans-
formations (10) obtain only if &{¥ == ... =a{"=",

(E8) One might be tempted to conjecture, based on
the previous examples, that admissible transformations
of m-generating functions are always of the form
o, (x) g,(x) e *, where a,{x) assumes at most a finite
number of different values. Even this generalization is not
true, however. Let C{x,, x,) be m-generated by a pair of
functions {g,(x), g,(x}} such that

g,{(x)>0
g2(x)>0

iff x=2m",
iff x=3™

m=0,12,.,
m=0,1,2, ...

Since for any given s=0, 1, .., there is at most one pair
(m, m*) such that 2™43" =5 the choice function
C(x,, x;) only attains values 1, 0, and 0/0 (indeterminate).
Obviously, C(x,, x,) is m-generated by any two functions
1 04{x), Q.(x}} whose positive domains coincide with those
of {g,{x), ¢,(x)}, componentwise.

It turns out, however, that admissible transformations of
m-generating lunctions are indeed confined to transforma-
tions (10) for a very broad class of choice functions, that
includes everywhere-positive ones as a proper subclass.
Crudely put, the essential feature of these choice functions
(termed “connected™ ones) is that the areas of {x,, .., x,}-
vectors at which C{x,, .., x,})>0 are not separated from
each other by “excessively large” gaps of zero values; as a
result, the mutual constraints imposed by the neighboring
“islands™ of positive values on each other (due to the
inherent properties of conditional p.m.f’s) are sufficiently
restrictive to enable an analogue of the constructive algo-
rithm for m-generating functions provided by Theorem 3
and its corollary. The vectors of m-generating functions, if
they exist, are reconstructed uniquely up to admissible
transformations (10), and Theorem 2 applies in its entirety
to all connected m-separable choice functions. In refation to
the examples given in this section, the choice function con-
structed in E5 is connected, whereas the choice functions
described in E6, E7, and E8 are not.

Substantively, the theory of connected choeice functions is
very similar to the one developed for everywhere-positive
choice functions, but the technicalities involved are
considerably more demanding. In particular, one has to
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introduce a few additional definitions and some new nota-
tion whose intuitive meaning and utility may not be
immediately transparent, For this reason, the entire theory
of connected choice functions, together with illustrating
examples, is relegated to the Appendix. One very simple spe-
cial case, however, has to be introduced here, as it is
required for the discussion in the concluding section of this

paper.

DermvITION 6. A choice function C(x,, ..., ) is called
simply-connected if, for any i=1, .., k, there is an interval
X ={0,., max;} of consecutive natural numbers, from 0
through some (finite or infinite) max,>0, such that
Cx), e X)) >0, 0f, and only if, {x,, .o X} e Xy x - x X,

Simply-connected functions are a straightforward gener-
alization of everywhere-positive ones (obtained from
Definition 6 by putting max, = co for all /), and the theory
of independent decomposability applies here in a most
straightforward fashion, too. It is easy to verify that none of
the results established for everywhere-positive choice func-
tions utilizes the assumption that the positive domains X;
of variables x; (i=1, .., k) are infinite {as opposed to the
assumption, essential for the proofs of Theorems 1 and 3,
that the positive domains consist of consecutive natural
numbers). As a result, all one has to do in order to
generalize these results to simply-connected functions is to
redefine m-generating functions ¢,(x) and component
count pm.f’s R;(x) as being positive on the intervals X, =
{0, ..., max,} and equal to zero above max; (i=1, .., k); the
function g, .. ,(x) and the overall count p.m.f. R,{x)are then
positive at x <} max, and equal to zero above this value.
There is no need to formalize these observations as separate
theorems, because they trivially follow as a special case from
the general theory of connected choice functions presented
in the Appendix (see Comments on Definition A2).

ORDINAL CHOICE FUNCTIONS

A straightforward line of further mathematical develop-
ment would consist in considering choice functions with
progressively weaker constraints imposed on their positive
domains. Moving along this line, one would construct
progressively more general criteria of m-separability,
delimit the corresponding classes of admissible transforma-
tions for m-generating functions, and investigate conditions
under which these transformations yield p.m.f’s. The mathe-
matical complexity (or at least cumbrousness) of this task
seems to be formidable. It is worthwhile, therefore, to dis-
cuss an approach according to which such an investigation,
interesting as it might be from a purely mathematical point
of view; may be unnecessary for probabilistic representa-
tions of recurrent choices.

As stated in the introduction, the notion of recurrent
choices involves a chronological (or quasi-chronological)

sequence of choice decisions made one at a time, each time
with respect to the same k fixed alternatives {1, .., k}. Dif-
ferent realizations of this sequence (within a certain period)
are observed repeatedly and are represented by the k-vector
of counts {X,,.., X,}, the choice function C(x, .., x,)
being the probability of observing {x,, .., x,} among all
observable k-vectors with the same total. Intuitively, one
cxpects that if an 7th option (i=1, ., %) is sometimes
chosen x times, and sometimes, say, x + 2 times, then it
should also be “possible™ for this option to be chosen x4 1
times—unless there is a “structural rule” that “compels” the
chooser, once the {x+ 1)th choice of option / has been
made, to always choose this option again, moreover, to do
so before the end of the observation period. One possible
interpretation of such a “structural rule” is that the two
choices, (x+ 1}th and (x+ 2)th, are “based on a single
decision act,” the decision to choose option i twice (before
a certain deadline). This contradicts the notion that choice
decisions are made one at a time, one choice deciston corre-
sponding to one factual act of choice.

If one dismisses such situations as “impossible™ or requir-
ing a different kind of analysis, then all the remaining
situations are representable by everywhere-positive or, at
least, simply-connected choice functions. Based on empiri-
cal distributions of partition k-vectors it is never possible
to distinguish between zero probabilities and sufficiently
small probabilitics; therefore, unless there are substantive
reasons to believe that “structural rules” do intervene (so
that a subject can decide, e€.g., to select a certain option
“three more times within the remaining 30 minutes™), one
can always confine oneself to modelling recurrent choices
by simply-connected choice functions only. It is trivial to
show that for any m-separable choice function C(x,, .., X;)
there exists a sequence of simply-connected m-separable
functions C,(x,, .., x;), p=1, 2, .., uniformly converging
to C(x,, .., x,) as p increases indefinitely. It is sufficient,
for example, to replace {g,(x), ... gix(x)} m-generating
C(xls R xk) by {CII(x) + P-l» e Qk(x) + p_l} m-gener-
ating C,{x,,..,x,} to obtain a sequence of ecvery-
where-positive choice functions uniformly converging to
C(x,, .., x;). In special cases this can be achieved by more
elegant means: for instance, by replacing natural numbers
{a,, .. a,} with {a,+¢ ..a,+e} in the definition of the
m-generating functions 5" %(x), introduced in E5 of the
previous section, one obtains, as & — 0, arbitrarily close
m-generating functions that are positive on the entire set of
natural numbers.

Suppose, however, that substantive reasons for admitting
“structural rules” in a sequence of recurrent choices do
exists, so that the sets { X, ..., X} of potentially observable
counts do contain true “internal gaps.” In other words, a
certain number x can never be the count of times an 7th
option is chosen, not because x > max, (as would be the case
for simply-connected functions), but because the xth choice
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of the ith option is necessarily followed by several addi-
tional choices of the same option belore the observation
interval ends. A contemplation of the examples of such
choice functions given in the previous section {(E6-E8)
suggests that the main question here is whether it is
reasonable at all to use these functions to represent
recurrent choices with “structural rules” involved. This is
especially apparent for the choice functions introduced in
E7 and E8. In E7, option 2 is always chosen in groups of 4,
whereas option | is chosen one at a time. It seems quite
artificial then to treat, say, partition vectors {X,=1,
X;=h} and {X, =h+ 1, X, =0} as partitioning the same
total number of choice decisions, A+ 1; a more natural
approach would be to view {X,=1,X,=h} as involving
just two choice decisions, the same as in {X, =2, X, =0}
and {X, =0, X, =2#}. Put differently, it seems more natural
to represent these recurrent choices by the choice function

E(my, my)=Prob{X,=m, X, =myht|m, +m,},
m=0,1,2,.., i=12

than by the choice function

Clxy, x;)=Prob{X, =x,, Xo =x,|x, + x,},
xl:Oalyzs'--; x;=0,h,2h,..,.

Obviously, the domain of C{x,, x,) contains “internal
gaps,” whereas %(m,, m,) is everywhere-positive. Analo-
gously, in E8 a natural approach would be to represent the
recurrent choices by

%(my, my) = Prob{ X, =2", X; =3"|m, + m,},
m,=0,1,2, .., i=1,2,

again an everywhere-positive choice function.

A generalization suggests itself immediately. As shown in
the Appendix {Definition Al, Lemma Atl), a choice func-
tion C{x,, .., x,) may be m-separable only if the uncondi-
tional random k-vector of counts {X,, .., X,} is “domain-
separable,” that is, if there are subsets X, (i=1, .., k) of
{not necessarily consecutive) natural numbers, such that
Prob{X,;=x,, ., X, =x,;} >0if, and only if, {x,, .., x,} €
X, % - xX,. The subsets X, (i=1, .., k) are referred to
as seis of potentially observable values (for counts X}, and
they may be finite or infinite. Let these sets of potentially
observable values be ordered as
x5 xl0)

max;

) (i) (i)
Xi=xyi< oo <xlll< <Xl

m=0, .., max,, i=1, .,k
max; being finite or infinite. Let M, be defined as the ordinal

position of X, in the ordered set X,, i=1, .. k; that is,

M, =m if, and only if, X,=x{. Finally, let &F(m,, .., m;)
denote the unconditional p.m.f. defined as

l9'—(??’1], s mk)?-PrOb{Ml =My, Mk=mk}

L k
= Prob{X, =x{}/, ., X, =x}.

The point being made is that in many, if not all, situations
where {X,, .., X} contain internal gaps, the k-vector
{M,, .., M} may provide more adequate representation
for recurrent choices than {X |, .., X, }. If so, then the corre-
sponding conditional partition vectors are {M,, .., M|
Y M,;=Y m,;}, and the choice functions #{m,, .., m,)

associated with them (ordinal choice functions) are
computed as
E(my, . ;) Fmy, ymy)

ey EM s W) sy F Uty o )

{compare with Definition 4). Obviously, ¥(m, .., m,) thus
defined is positive on {0, .., max,} x --- x {0, ., max,},
and it is simply-connected in the sense of Definition 6. As a
result (sece the conclusion of the previous section}, the
theory of independent decomposability applies here in its
simplest form. Observe that for everywhere-positive choice
functions the vectors {M,, .., M,} and {X,, .., X,} coin-
cide, and %(m,, .., m,.) = C(m,, ..., m,), for all k-vectors
{m,, .., m} of natural numbers. For simply-connected
functions, €{(m,, .., m,}= Clm,, ., m;) for all {m, .., m;}
such that 0 <m, <max,; (i=1, .., k). Therefore, the use of
conditional partition vectors {M,, .. M |> M, =% m}
to represent recurrent choices can be viewed as a general
rule, whether or not the sets {X,, .. X} of potentially
observable counts contain internal gaps.

From this “ordinal-position” point of view, the results
established in this paper can be summarized as follows. Let
choices be made recurrently from a fixed set of & options
within a certain observation period, so that at the end of this
period the ith option is chosen a random number X; times
(i=1, .., k). Forevery i, let the set X, of possible (i.e, poten-
tially observable) values of X; be known; X, =x{"< ... <
x <o <xl) . where max,>0 is finite or infinite
{i=1, .., k) It is assumed that a single decision to “choose
the 7th option again,” given that it has already been chosen
x{f1 times, is the decision to select this option x%/_ —x{?
times (m=0, .., x{), ). Once decided upon, the way that
the factual selections are arranged in time should exclude
the possibility that the observation period may end before
all the x!, | —x!? selections have been made; otherwise,
some intermediate values between x! and x!’ | would
have to be included in X,. Under this assumption, the
numerical value of x) in X, becomes immaterial, and one
should treat x%) as simply the mth possible value (counting
from zero) for the number of times that the /th option is
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chosen. As a result, the recurrent choices ¢can be represented
by random vectors { M, ..., M}, where M, is the ordinal
position of X, in the set X,. The problem addressed in this
paper can now be presented as that of finding the necessary
and sufficient conditions for the independent decom-
posability of €(m,, ..., m;), the ordinal choice function
determining the distribution of a conditional partition
vector {M,, .., M|Y M, =3 m,}. According to the solu-
tion proposed, one should ask first whether ¥(m,, ..., m,) is
m-separable, and the answer i1s provided by Theorem 3
(more precisely, by Theorem Al specialized to simply-
connected choice functions). If the answer is affirmative,
all k-vectors of m-generating functions {g,(x), ..., g,(x)} are
related to each other by the transformations given in (10).
Then, according to Theorem 2, the ordinal choice function
€(m,, .., m,) is independently decomposable if, and only if,
the Laplace orders {ord g,(x), .., ord g,(x)} are all finite, in
which case the class of all possible (k + 1)-vectors of count
p.m.f’s independently decompeosing this choice function is
computed according to {11)-(12). This solution is comptlete,
constructive, and applicable to all possible ordinal choice
functions.

APPENDIX: CONNECTED CHOICE FUNCTIONS AS A
GENERALIZATION OF EVERYWHERE-POSITIVE
CHOICE FUNCTIONS

DErFINITION Al.  An unconditional random k-vector of
counts {X,, .., X,} is called domain-separable if there are
non-empty subsets { X, ..., X, ) of natural numbers (“sets of
potentially observable values”), such that Prob{X,=x, ..,
Xe=x,}>0 for all {x,,..x,}eX;x . xX,, and
Prob{X;=x;, .., X,=x,} =0 for all other {x,,..,x;}.
A choice function C{x,, ..., x;) defined by

Clxy, oy Xy)
ZE =3 x; C(ul EIREE ] uk)

_ Prob{X, =x,, ... X, =x.}
ZZ“I:ZJ&' PrOb{Xl =, ey Xk:uk}

is called domain-separable if {Xl,..', Xk} is domain-
separable.

Comments on Definition Al. Observe, first, that a
domain-separable C(x,, .., x;) is In complete compliance
with Definition 4. Second, to exclude trivial cases, a set X of
potentially observable values of X, will always be assumed
to contain at least two different elements, forany i=1, .., k.
Indeed, if X, always equals a fixed number x, then the ith
option can be excluded from the set {1,..,k}, and
Cix,,..,x;) can be redefined as a {k —1)-variate choice
function.

The motivation for this definition is provided by the
following lemma, whose proof is omitted as trivial.

LemMMa Al (1) A domain-separable choice function
Clxy, .y Xy} is positive if, and only if, Prob{X,=x,, ..,
Xp=x.}>0; that is, C(x(,..,x,)>0 if, and only If,
{x, o xfeX x o x X,

(i} Any m-separable choice function Clx,, ..
domain-separable, with

,Xi) I8

X, ={x|q,(x)>0}, i=1,..,k

By counterposition, a choice function that is not domain-
separable is not m-separable; hence it cannot be independ-
ently decomposed.

ExampLes. The m-separable choice functions C(x,, x,)
constructed in E5-E8 are domain-separable, with the
following sets X, and X, of potentially observable values:

(ES, continued ) X, =1{x12,? (x)>0}={0,3,4,5,
6,7, .1 X,={x|2;* (x)>0}=1{0,2,3,56,7,..}.

(E6, continued) X, =1{0,1,...4}: X,={0,1,..h, h+g,
h+g+1Lht+g+2,..}.

(E7, continued) X,={0,1,2,..}; X,={0,4 24, ..}.

(E8, continued} X,={1,2,2%..}, and X,={1,3,3%..}.

The following notation is used in the rest of this
Appendix. Let C(x, .., x;) be domain-separable, positive
on X, x .- x Xy, and let {0, .,0,} X, x .- xX, be a
fixed k-vector. Then the sets { X7, ..., X3} are defined as

X¢={x—0/xeX}, i=1, .,k

{observe that X "-sets generally contain both non-negative
and negative integers.) Let C(x,, .., x;} denote C{o, +
Xyy o 04 x,). Obviously, C(x,, .., x,) >0 if, and only if,
{x,.wx, }eXyx - xX% The one-argument and
two-argument substitutions are defined by analogy with
the notation used in Theorem 3. For a given k-vector

{01, 04},

y e K3
Colx, )= C(x, =0, s X, =X, oy Xp= ¥, .
=C(X=0, s Xg=0,+ X, .y
Xp=0p+ Y, ey X =04),
a,b=1,.,k,
LemMMma A2. For a domain-separable choice function

C(x,, ... x,), positive on X x ---xX,, and for a given
k-vector {0, ., 0.} € X X -+ x X,
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(i) xeU=Ut_,
a=1, .., k;

(i} if CAx)>0 and Cy(y) >0, for some a,b=1, ., k,
a#b, then C,(x, y)>0.

Proof. (1) xeU if, and only if, for some a=1, .., &,
x€ X%, The latter is equivalent to {x,=0,..,x,=x, ..,
X =0} e X{'x ... x X% which, in turn, is equivalent to
C(x)>0.

(i1)
Xy =Y, X =0t € X' x .. X X'¢; hence Co(x, »)>0. 1

X< if, and only if, a,(x) > 0 for some

Due to the previous result, {x;=0,.,x,=x, ..,

The concept introduced next plays the key role in the
further development.

DermuaTioN A2, A domain-separable choice function
Cxy, .y Xi), positive on X x .-« x X, is called connected
to a k-vector {0, ., 0.} € Xy % - X X, if:

(i) the union set U= J*_, X% forms an interval (finite

or infinite) of consecutive integers: w, u+1, ...;

(i) there are at least two different positions b, b* =
1, .., k, at which C,(1) C,.(1)>0.

Clxy, ..., x;} is called connected if it is connected to some
k-vector {04, .., 0, EX | X -+ x X,

Comments on Definition A2. A simply-connected choice
function (see Definition 6) is connected to any k-vector
{01, .., 0,) in its positive domain {0,..,max,} x -+ x
{0, .., max,}, except for those that contain upper bound-
aries max;. [n particular, and most naturally, it is connected
to {0, ..., 0}. With respect to {0,..,0}, X;=X? is a set of
consecutive natural numbers, for any i=1, .., k. Then the
set {/1s also a set of consecutive natural numbers. Condition
(1), therefore, is satisfied. Condition (i) is satisfied because
the function is positive on the entire {0, .., max,;} x -+ x
{0, .., max,}, and max,>0 for any i=1, .., k. As a special
case, an everywhere-positive choice function is connected
to any k-vector {o,, .., 0,}. It is shown below that the
possibility of choosing an “origin point” {o,, .., 0.} for
which (i) and (ii) hold is sufficient for the theory of
independent decomposability of everywhere-positive choice
functions to be generalized with no essential modifications.

ExamprLeEs. (E5, continued) The m-separable choice
function C(x,, x,) is connected. For instance, it is con-
nected to {o,, 0.} ={5 6}. With respect to this pair,
X3={-5-2,-1,0,1,2,.}, XS={—6, —4, =3, —1,
0,1,..}, and U is the (infinite) set of consecutive integers
beginning at —é. Since k = 2, Definition A2(ii) requires that
both C,(1) and C,(1) be positive. This is the case, indeed,
C(N=C54+1,6)>0and C{1)=C(5,6+1)>0.

(E6, continued) The m-separable choice function
C(x,, x,) is connected if, and only if, g<h For g<Ah,
C(x,, x,) is connected to {0,, 0,} ={h—1, 1+ g}. Indeed:

Clh—1,h+ g)>0; Definition A2(i) is satisfied because
U=X"1uXi"¢s={—-h—g —h—g+1,.}; Definition
A2(ii) is satisfled because Clh,h+g)Cth—1,h+g+1)
> 0. For g > h, however, it is easy to see that conditions (i}
and (ii) of Definition A2 cannot be satisfied simultansously
by any pair {o0,, 0,}.

(E7, continued) The m-separable choice function
C(x,, x;) is connected if, and only if, h=1. For h=1,
C(x,, x,) is everywhere-positive, hence connected to
any {x,,x,}. If A>1, however, C(x,,x,) is not con-
nected, because C{x,,x,)>0 only if x,=mh, but then
C(x,,x,+1)=0, contrary to condition (ii} of Defini-
tion A2,

(EB, continued) The m-separable choice function
Clx;,x,} is not connected, because C{x;,x;)>0
only if x,;=2" x,=3"" but then C(x,,x,+1)=
Clx,+1,x,)=0, contrary to condition (ii} of Defini-
tion AZ.

LemMa A3, Let Clxy, .., x,), positive on X | x --- x X,
be connected 1o {o0,,..,0,} €X, % --- xX,. Let U be the
union set of Definition A2. Then

(1) 0eU, and it is the highest possible value for min U;
{i1)
(i) for any xe U, one can find two different positions

a.,b,.=1, ..,k such that

1€ U, and it is the lowest possible value for max U,

C,(x) G (1)
g——— <

C:;{x, 1)

Proof. (i) By definition of X {-sets, 0= X} because
o,eX,, forall i=1,. .,k Ho,=min X, for all i=1, .. k&,
then 0 =min U; otherwise, min U/ < (.

(i1) By condition (i1} of Definition A2, a(l)>0 for
some i=1,.,k Hence le X< U If for all i=1, ., &,
max X; <o, + 1, then 1 =max U; otherwise, max /> 1 (in
particular, it may be oo ).

(i) By Lemma A2(i), one can find a position a=
1, .., k, at which C,{x)>0. By condition (ii) of Defini-
tion A2, one can find aNdifferent position b=1, .k, at
which 6;,(1) > 0. Then C,_{x, 1)>0 by Lemma A2({ii). The
subscript x at @ and & reflects the fact that these values are
generally different for different x. |

This completes the preparatory work for the key theorem
on connected choice functions that is presented next. It
generalizes Theorem 3 from everywhere-positive choice
functions to all connected choice functions. Both the for-
mulation and the proof of this theorem are structured to
maximally resemble those of Theorem 3.

THurorEM Al., A choice function C{x, .., x,} connected
to{o,,..,0.} €Xyx - XX, is m-separable if, and only if,
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the following identity holds across all k-vectors {x. .., x,} €
X o X X%,
£y Clx) P(x)

- i=1

Clxy, o Xp) = -
l * Zz =1 < HL] Ci(u;) Pluy)

(Al)

(summation is across all partitions of 3 x, belonging to

X% - x X ), where, for all xe U= J*_, X9,
x=1C (i) Gy (1
[ Senld if x>0,
=0 Cop(i 1)
Plx)=< 1, i x=0, (A2)
LU S i
11 ,._j'b"(,._,) , i x<0,

i=1 Ca_i(_i) Cb_,—(l)

for some sequence of position pairs a, b.=1,. .k,
a.#b,.

Proof. Observe, first, that since {x,,..,x.}¢€
X{x - x X{%, the left-hand expression in (Al)} is finite
and positive. Hence P(x) must be finite and positive for all
x & [/, which, by (A2), means that

Co(x) Gof1)

0 < < 0.

Coplx, 1)

By Lemma A3(iii), such position pairs a,, &, can indeed be
found for all xe UL

Necessity is proved by using Definition 5 and expressing
all choice functions in {Al) and (A2) through m-generating
functions {g,(x), .., ¢x(x}} and g, .. .(x). Denoting ¥ o, by
(, observe that for any x e U,

C (%) Col1)

Condx, 1)

_l: Qu_((oq(-f-x) Qb_v(oh_‘,‘kl) /qax(oax‘*'x)qh(ob,*‘lq
¢ . 0+ x)q,. (O+1) g1 . (O0+x+1)

N [ HL] q:(0) [TiZ, ‘L‘(Oi)/

[T, g:(0) ]
qg,(oa_() qu(ob,.)

an( Oa,\-) qu(ob,‘)

_QI--~k(0+x+ 1)(1_[:’;1 ‘1;(0:‘)>
B g1..(0O+x) q:..40+1)

g1 {0 +x+1)
gy, (O+x)

where A replaces the ratio in parentheses. Using this expres-
sion in (A2), one derives that for x >0 (xe U),

gy (0+i+1)
P(x)= ] T i)
C= o+
Ax
—mql...k(0+x).

For x <0 (x e U) the resulting expression is the same:

Al g, (010} A

Po=1l o7
A4
:m‘hmk(of [x])
Ax
=mql...k(0+x)-

This expression satisfies the requirement that P(0)=1.
Substituting in the numerator of the right-hand ratio in
(Al), one gets

doi+x)ITE 9,(0,)/q.00,)] (04 x) A%
7. (O+x) Tk 0

k k—1 AE.\:, K
=<H Q;(O,-)) PTG [T g0+ x)

i=1 i=1

&
q
Il
i=1

Equation (Al) then transforms into

H?:l g:lo;+ x;)
IS [T, giloi+uy)
:"c=1 gi{o,+x;)

Clxyy s X5}

g dO+T5 x)

which, due to Definition 5, holds identically across all
k-vectors {x,, .., x,} € X9 x --- x X' . This completes the
proof of the necessity.

Sufficiency is obtained immediately, by putting

_(Cix) P(x) for xeU o !
glo;+x)= {U for xé U}’ i=1, ..,k

Definition 3 is obviously satisfied:

l_lf=1f1.-(0,-+x,-)
9'1--.k(0+2'?:1 x;)

Clo|+x1, 0 0+ X,)

ZZH|=2)¢,- C(Ol +u1, ey O + Mk)

holds as a numerical equality if at least one partition
{uy, 1} of 2 x; belongs to X' x - x X% if otherwise,
then both sides of the equation are indeterminate forms 0/0.
This completes the proof of the sufficiency and of the
theorem. |
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Comments on Theorem Al. The reason for presenting
the denominator in (Al) as ¥ [T C,(u,) P(x,) rather than
P{Y x,), as in {6) of Theorem 3, is that P(x) in (A2)is only
defined for x € U, and if {J is finite, it does not include all
possible values of 3 x,. Without elaborating, it is easy to
show that

S 8w P(u.-)=P(fk; %)

FTu=3x i=1 =1

whenever ¥ x;e U. In particular, this is always the case
when U is infinite (i.e., not bounded from above).

Continuing the analogy with Theorem 3, one can prove
now, as a corollary, that Theorem 1 generalizes to all
connected m-separable choice functions. In addition, the
corollary generalizes to connected choice functions the con-
structive algorithm for computing m-generating functions
{g{x), .., qx(x)}. The corollary is presented without
proof, because, given the modifications in its formulation,
the proof is a virtually verbatim replication of that for
everywhere-positive choice functions.

Corollary to Theoremm Al. For an m-separable choice
function ({x,..,x;) connected to {o;,..0.}€
X, x -+ x X, the m-generating functions {g,{x), .., g.{x)}
are determined as follows:

{i) compute the auxiliary function P(x) according to
(A2), for all xe U; the values of P(x) are determined
uniquely; that s, they are the same for any choice of the
sequence a., b, in {A2), provided that this sequence satisfies
the inequality of Lemma A3(iii);

(i) set g,(o), i=1, ..,k equal to arbitrary positive
values, {a,, ..., a;};

(iii) choose an arbitrary real A, and compute
g,... L0+ 1} (where O stands for 3 o) from

HL] &x;

J=log — %
{0+ 1)

(iv) compute g;(0;+x)and g, (O+x)as
(0,4 3y~ [5G0 ) P €™, i xeU
q:\0; = 0, i xeU ,
i=1, ..k,

X
qi..{0+x)= Z H gi(o;+u;).

Su=x i=1

C{x,, .., x;) 18 not m-generated by any k-vector of functions
that does not satisfy (8). Hence different k-vectors of
m-generating functions {g,{x), ., g,{x)} are interrelated by
transformations {10).

To complete the theory of independent decomposability
of connected choice functions, it remains to observe the
following. Because the assumption of Theorem 4(iii) is
satisfied for all connected m-separable choice functions,
independent decompositions of such a function exist if, and
only if, max{ord ¢,(x), .., ord g,(x)} is finite, and then all
such decompositions are computed according to (11) and
(12). Put differently, Theorem 2 applies in its entivety to all
connected m-separable choice function.

ExamprLEs. (ES, continued) The connected m-separable
choice function C{ x|, x,) is independently decomposable. 1t
is easy to show that ord Z,!"2(x) = {log p,| + |log p,|, and
that for any 1 exceeding this value,

——

Do = ¥ (pT 4P 2)(pITE A pETI2) e
x=0

5 4pypy”
R [y DL+ L)L — P;”pz_ueii)

Hence C(x,, x,) is independently decomposed by

@52, ()
Ry(x) = 2]

Dol

9114 (X
Rz(x)=,_q:_$),

P
R(x)=2u|+uz=x1+x2-@;,fm(l‘zl;)9;]‘;2(“2)’

'@;‘1%1?2()“) '@t:'fqz()“)
where 4> max{|log p| + |log pal, ltog g1 + log 4,1} By
the corollary to Theorem Al and by Theorem 4({iii), these
are the only possible triples of decomposing functions for
C{xy, x2).

{E6, continued) For g<h, the m-separable choice
function C(x,, x,) is connected; due to the corollary to
Theorem Al and by Theorem 4(iii), it is independently
decomposable if, and only if, ord g,(x) is finite. Indeed,
since X = {0, 1, ., h} is finite, ord g,{x) is necessarily finite.
For g¢>h, C(x,, x,} is not connected. One can still apply
Theorem 4(ii) to conclude that if ord g,(x) is finite, then
C{x,, x5) 1s independently decomposable. The “only if”
counterpart of this statement also happens to be true, but it
does not follow from the corollary to Theorem Al, and the
class of decomposing count p.m.f’s here is not restricted to
those given by (11) and (12).

(E7, continued) For A=1, Cix,, x,) 18 everywhere-
positive, and the corollary to Theorem Al applies in the
form of the corollary to Theorem 3. For A> 1, it follows
from Theorem 4{ii) that C{x, x,) is independently decom-
posable if both ord g,(x) and ord g,(x) are finite. As in the
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previous example, the “only if” counterpart of this statement
also happens to be true, but it does not follow from the
corollary to Theorem Al, and the class of decomposing count
p.m.f’s here is not restricted to those given by (11) and (12).

{EB, continued) The m-separable choice function
C(x,, x;) is not connected, and the theory above does not
apply. It is obvious that C(x, x,) is independently decom-
posed by any pair of pm.f’s whose positive domains
coincide with those of {g,(x), g2(x}}. |1

In conclusion, to prevent false conjectures, it should be
pointed out that connectedness of m-separable choice func-
tions is only sufficient, but not necessary, for admissible
transformations of m-generating functions to be limited to
transformations (10). As an example, {g,(x). g,(x)} with
the following properties,

{qi(x)>0

if x<h or xzh+g =12
4:(x)=0 LT

il he<x<h+4g

can be shown to be determined up to transformations (10),
for any non-negative i and g. In particular, this is true when
g>h, even though in this case the choice function
m-generated by {g,{x), g,(x)} is not connected (compare
this example with E6 above).
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